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SUMMARY, -

Feynman diagram techniques are applied to the heavy-ion neutron transfer reac-
tions at energies below the Coulomb barrier. A triangular graph mechanism is propo-
sed in order to describe the three-body rearrangement process, The effects of the off-
-energy-shell core-core Coulomb scattering and the initial and final state interactions
are investigated and compared with those treated in the TMA and DWBA approaches,

1. - INTRODUCTION. -

As it is well known, the three-body rearrangement scattering problem, involved
in the heavy-ion neutron transfer processes, represents a basic step in understanding
the heavy-ion interaction dynamics. This explains the considerable theoretical interest
devoted to these reactions. The distorted-wave Born approximation (DWBA), the mole
cular state approximation (MSA) and the T-matrix approximation (TMA) can be consi-
dered the main attempts to solve this rearrangement problem,

It has been shown that the MSA approach gives a transition amplitude formally
identical to the DWBA theory and, therefore, can be considered as a method that provi-
des an alternative derivation of the DWBA matrix element(l),

On the contrary, non trivial differences exist between the TMA and the DWBA
(or the equivalent MSA) theories; in fact they represent different approximations of the
three-body problem, and, therefore, different reaction mechanisms. As a consequence,
the nuclear structure and the spectiroscopic information obtained from these theories
could not be reliable, in spite of the satisfactory agreement with the experimental cross
section behaviour(2),

In order to understand the differences between the DWBA and the TMA approaches
and to describe correctly heavy-ion transfer processes, one should apply the general
methods, which have recently been introduced to solve the three-body scattering problems.
Unfortunately, these techniques have not been developed sufficiently for practical purpo-
ses in nuclear reaction problems.

However, one can obtain some new insight into the general questions involved in
the heavy-ion rearrangement reactions, by extending to these processes the non-relativi
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2,

stic Feynman-diagram techniques, which have been proved useful in the analysis of direct
interactions as in the (p,d), (d,t), (He3,o) reactions(3#8),

The purpose of this paper is to construct the reaction amplitude on the basis of a
suitable diagram (to which we refer in the following as ''fundamental diagram'') which de-
scribes the three-body rearrangement mechanism and does not take into account the ini-
tial and final state interactions. These latter will then be represented by means of graphs
containing the exact initial and final state scattering r:n‘n.pli’cucie(7 i

Among the possible heavy-ion transfer processes, the low energy neutron transfer
reaction, usually called neutron ''tunnelling', represents an interesting tool for a critical
study on the possibility of obtaining reliable information about reaction mechanism and
nuclear structure. In fact, the description of the neutron tunnelling process is a fairly
"clean'' problem, because: (a) nuclear and Coulomb interactions appear separated in the
reaction amplitude, (b) Coulomb potential dominaies the scaitering problem and it is accu
rately known, while the unknown short-range part of the nuclear wave functions affects
very little the angular and energetic dependence of the amplitude (but in an important way
the over-all normalization). For these reasons the cross section should not depend sen-
sitively on the several parametrizations which complicate higher energy processes(l).
However, because of the many-body aspects of the nuclear particles and of the off-energy-
-shell Coulomb scattering amplitude contributions, the tunnelling process does not repre
sent a trivial problem,

In applying the non-relativistic Feynman-graph tecniques to the heavy-ion interac
tion processes, the usual criteria of choosing the fundamental graphs should now be modi
fied by the relevant role of the Coulomb interactions(3,8+10),

In Sect.2 we introduce the essential features of the Feynman-diagram approach
(FDA) for tunnelling processes. Section 3 is devoted to the triangular graph which descri
bes the three-body rearrangement scattering. After some short considerations on the pos
sible forms of the off-energy-shell Coulomb scattering amplitude, we derive the final ex-
pressions for the transfer matrix element in correspondence to different degrees of ap-
proximation for the core-core Coulomb scattering amplitude,

The initial and final state interactions will be formulated and discussed in terms
of Feynman diagrams in Sect. 4. Finally, in Sect. 5 the FDA formulation is compared with
the DWBA and TMA theories, and, in order to obtain some insight about the truereaction
mechanism in the neutron transfer processes, we reformulate the problem in the frame-
work of the general formal scattering theory.

2. - GENERAL OUTLINE OF THE FEYNMAN DIAGRAM APPROACH, -

The purpose of this Section is to introduce the non-relativistic Feynman diagram
method, in a form suitable to be applied to heavy-ion transfer reactions.

The heavy-ion transfer reaction b(A, a)B can be represented schematically as:

(2.1) (a+x)+b+a+(b+x),

where a and b arethe heavy nuclear 'cores' of the nuclei A=a+x and B=b+x, and x
is the particle (considered here to be aneutron),which is exchanged from one nucleus to
the other, while the cores scatter in their mutual field,

(3)

Following Shapiro’ ', we start from the assumption that the direct reaction ampli
tude m{0) , without taking into account the effects of the initial and final state interac-
tions, is described by non-relativistic Feynman diagrams (with a small number of vir-
tual particles). In selecting the most important Feynman graphs, one has to take intoac
count both of the singularity positions and of the vertex function magnitudes,

(o)

In Fig. 1 the heavy-ion transfer amplitude My, ‘is expressed in terms of the ampli
tude of the simplest graphs, in which the particle x is transferred from the initial bound
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state a+x to the final bound state b+x(x). The small circles represent the three-ray ver-
tex functions describing the virtual decay of A in a+x and the virtual syntesis of b+x in B,
The small square represents the off-energy-shell core-core scattering amplitude,

(o)

FIG. 1 - Diagram representation of the amplitude My, * for the transfer reaction
b(A, a)B.

It is well known(a’ 5) that the pole graph corresponds to the usual Butler mechanism,
The form of its amplitude has been extensively studied in the literature. The triangular
graph of Fig. 1 could appear of knock-on type; in effect it can be considered as a refinement
of the pole mechanism: in addition to the neutron transfer the core-core interaction is taken
into account, We devote the next Section to the analysis of its amplitude,

In order to obtain the direct reaction amplitude Mg which describes also the initial
and final state interaction effects, one can apply the diagram summation method (DSM (6),
In this method the amplitude My is constructed starting from the initial amplitude M io)by
summing all the graphs which describe the initial and final channel interactions. This is ac
complished in Fig, 2, where the shaded circle represents the amplitude M&)), described
by Fig. 1, and the small shaded squares represent the initial or final channel scattering
amplitude,

FIG. 2 - Diagram representation of the amplitude My; taking into account
the initial and final state interactions,

According to the non-relativistic Feynman-diagram rules(s' 7), the amplitudes of the
graphs which appear in Figs. 1 and 2 can be written in terms of the internal line propagators
and of the three-ray and four-ray vertex functions, At energies below the Coulomb barrier,
the four-ray vertices can be sufficiently well represented by the Coulomb scattering ampli-
tude, because, owing to the strong repulsive Coulomb interactions, the nuclear potential ef
fects are expected to be relatively unimportant. Among the nuclear interactions, only the
neutron-core ones are taken into account, They are described by the three-ray vertex func
tions. Therefore, nuclear and Coulomb effects appear, in the reaction amplitude, into two
different factors, the former in the neutron-core nuclear form factors, and the latter in
the nucleus-core and core-core Coulomb scattering amplitudes.

(x) - The non-relativistic amplitude of graphs with two internal lines vanishes in our case,
Triangular graphs corresponding to a cluster structure of A and B (or a and b) and
quadrangular graphs describe mechanisms more complicated than neutron exchange;
at low energies they would be inhibited by the strong Coulomb potential,
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Let us consider the analytic expressions for the "vertex'' functions. The three-ray
vertex amplitude M{' describing the virtual decay (or synthesis) of the nucleus N in (from)
core + neutron state can be written, in the one-particle model(7- 3), as:

V2x,m m
cn_ N A p Rt
(2.2) My ';Ef;__-%rszsz(kcn)nlél(JscmjmclBNmN)(zSnmzmnIij)Yg (k)
cn 3 &

=
where Bons kcn; B, my are reduced mass, relative linear momentum, relative orbital mo

mentum quantum numbers of the particles (e¢,n) (c=a or b), respectively; s; and m; are spin
quantum numbers; V is the normalization volume. The quantity IN is given in terms of the
binding energy £%P of the neutron in N by le\fZﬁ.cn E%n. The constant ¥, can be ex-
pressed through the reduced with O-L , conventionally used in the direct nchlear reaction

theories, and through a nuclear-surface radius Rpj; one obtains:

2
6los,l

2=
I'szl

32 (1) 2
(xR lhE (ixyRy) |
The nuclear form factor ij (ko) has the form:

(kgn+x§)fjl(kcnr)¢2(r)r?dr
(2.3) sz(kcn)- . . : ’
lim {(k +xN)Jj1(kcnrD¢1{r)r2dr}

where ¢g(r) is the radial part of the bound-state wave function. The usual Wronskian form
for the form factor (2.3), obtained at sufficiently small values of k.p. represents, in the
low-energy heavy-ion transfer processes, a better approximation than in the usual direct
reactions, because, in the former case, only the asymptotic behaviour of the bound state
wave functions gives the dominant contributions to the transfer amplitude.

The four-ray vertex amplitude M1'22' describing the Coulomb scattering of the par
ticles (1,2) can be expressed by means of the off-shell Coulomb amplitude fc by
1r2° i

=L 21 g g
(2.4) M "V u125m1mr 6m2mz.fc(k12’kpar;E)n

where A 12, Kqa, k1'2' and E are reduced mass, relative linear momentum before and af-
ter the scattering and center-of-mass kinetic energy of the particles (1, 2) respectively,
The amplitude f¢ satisfies the generalized Lippman-Schwinger integral equation 10) and
represents a regular function in the E variable with the exception of the physical energy
spectrum(ll). The more useful form for fc, together with its more used approximated
expressions, will be introduced and discussed in Sec. 3.2,

3. - THREE-BODY REARRANGEMENT TRIANGULAR GRAPH MECHANISM, -

3.1.= General form fer the triangular graph amplitude,-=

We now consider the triangular graph introduced in the preceding Section, Let 1=a',
2=b', 3=n be the three internal virtual particles of the graph; ﬁ'i, f)}; £, &‘f relative li-
near momenta and kinetic energies in the initial and final channels, respectively; Q= £23.
- £13 the reaction Q-value; My, My, Ei' Ei the mass, spin projection, linear momentum
and kinetic energy of the i-particle in the center of mass system.

According to the well known non-relativistic Feynman rules, one obtains for the
amplitude My;(A) of the triangular graph of Fig. 3
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FIG. 3 - Three-body rearrangement
triangular graph mechanism.

13
M, MB MbldkadEg

(3.1) Mg, (a)=- e TU T TA AN

3
(2m) my m,m, (kf-ZulEl_ia) (kz-ZuZEz-—ie) (k%-?u 3Eg-ie)

2

where the vertg\: functions MA (MZE) and Mkz)il depend on the kinematic var1ab1es
- — —
kls(k23); kbl' k2a and E which are connected with the integration variables k3 and
Ej5 by the relations:

H =5 e un-b- &> -+ Hp - e ua e
I A - R, =K. +2D ., K, . spi= ——=K3, K,_=p +——K,,
1 3 "Apl, 23773t f b17Fi u_tuy 2a Ff u_tuy 3
(3.2) . 12 K2
3 23 3 )
E=ei-eA -E,- ————Seg-ep -Ea- 5
2Cu*u ) 2(ua+ub)
furthermore we obtain
(3.3) §=K-E3,

ton 2
where A='f)‘.-p is the momentum transfer in the reaction and 3=1;;1-?23 the momentum
transfer in the core-core scattering,

By introducing in (3.1) the expressions (2, 2) and (2, 4) and changing the integration
variable from Egj to E, the amplitude Mﬁ(b.) can be written, after suitable kinematic tran
sformations,

m, m
Jp A
m. m,‘ mz mz
P V% Iz *» A "B
(3.4) M _(A):-—l_—A—_ Z Y Y C. I (A)’
£i 2 o IS e y B ik
baV: u u b jARAm. mE A"A BB ATA ATA

jolam, m
BBJB.P.B

where
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Ja *a
m, m
Ip *p _
(3.5) CjAEA =(]AsamjAma|5AmA)(LASnmzAmnlemjA) x
ig*s
x (3Bsbmj melsBmB) Cﬂ.BsnmRanthjB) 2
o
P OF, . (kDY AR, DY, BRIV EAE Lk sE)aR. dE
m, m 3,2 s Ry () 2874 137 238° =0 > 3E)d 3 9
L, Ry L*A B"B A B bl 2a
(3.6) I, (a)=
Iats
i (E-T+ie) (E-T'+ie) (E-S-ie)
B“B
with
2 2 2
(3.7) T= K1 T'= i Sl s .k; u -ﬁé:h?l
. H H] =E4 ’ - :
2up TS i "A 2“3.(a+b) 3,(at+b) T T

The integration over E of (3. 6) can be performed in the complex E-plane. In fact,
by putting E+ie =z and by choosing the integration path as in Fig. 4, since the contribution
from the semicircle CR vanishes in the limit R - 00, one obtains

+ o0

=271
(E~T+ie) (E-T"+ie) (E-S-ig) (S=T+ieg) (S=-T"+ie)

B =+ -+ =+ .
fc(kbl’k2a;E)dE fc(kbl’kZa’S+ls)

Imz

CR
FIG. 4 - Integration path and singularities of the
R integrand function in (3, 6), in the energy variable
S+2ie p %
o B ez (x: poles, ——: cut).
T T
By introducing this expression into (3.6), we have
My m:
A,n B,~ > * *
i 0 I-"j " (kls)Fj . (k23)Y£ (kH)Y2 (kza)fcckbl’kZa’S)dkB
2, Ly _ ATA B"B A B
(3.8) 1. 3 (a)=2ni
Ja*a (S-T)(S-T")
jBR'B

where S includes a small positive imaginary part.
The equations (3, 4) and (3. 8) give the exact expression for the matrix element of the
triangular graph represented in Fig, 3 and, by means of the well known relations presented
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in Refs, (10,12) they allow the evaluation of cross-sections for specific reactions. In order
to go on, as far as possible, in the analytical integration and give an approximate evaluation
of the cross-section behaviour corresponding to the considered mechanism, we will make the
se semplifying approximations,

a) First of all we observe that, for sufficiently heavy interacting ions, at low ener-
gies, recoil effects can be discarded; then one can put approximately

>
vk, .

> &+
k13%k23” 3

Recoil corrections have .been evaluated in specific models(13+ 15)_

b) Owing to the presence of oscillating factors in the Coulomb amplitude, the spheri-
cal harmonics can be brought out of the integral and calculated in correspondence of the sad
dle point .Q, in the angular variables(16, 17) This approximation is not necessary for zero
orbital momenta.

From (3.4), by using the approximations (a) and (b) and carrying out the magnetic
sums, one obtains

I (a)]2=

™A
mpMa
(3.9) XX
= AP (254#1) (285+1) T 121y, , 1219, , )2,
2 N JAEA Ig*s  Iata
(BrV Uy 3l 3iy y ]A£ foohy
B*B
where
= + +
{E}Aﬁfkl3)FjB£B(k23)fC(kh1’kZa’S)dks
(3.10) I (8)= |
It (S-T)(5-T")
Iptp

3.2.- General considerations on the Coulomb scattering amplitude,-

Let us first consider the problem of choosing the more convenient form for the Cou
lomb scattering amplitude to introduce in (3,10), The Coulomb problem has been discussed
extensively by several authors(11,18,19) but it seems useful, at this point, to review some con
cepts and formulas on the argument.

The core-core Coulomb scattering appearing in the triangular graph of Fig. 3 can be
described correctly by the complete off-energy-shell amplitude (generalized amplitude)
which, in the forms derived by Schwinger(ll), is written as

1

2u_,a pindp
(3.11a) (kb1’+ 3E)=- b +2inu o ;
P ") (1-p)
0
or
1 .
T w2, a(E-T) (E-T") p*M(1-p2)dp
(3.11b) fo(k, ok, 3E)= . .
- .rppz- —;—E(E-T)(E-T')(l-p)z:l
g v
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i
where the so-called Sommerfeld parameter is given by M =4d 2;;) with o =Z,Zy ez.
If the energy E has a small positive imaginary part, (3.11a) can be expressed in

terms of hypergeometric - functions by the relation

2u_,a 4iEna
fc(ibl,ﬁza;5)=— a? - = x
(3.12) P*  (E-T)(E-T') (pp-1)(1+in)
x E‘(l,l+in;2+in;l)-pzl“(l,l*-in;l-tin;oz)_i
°E
where:
(3.13) (l+q)J"+l
- P —
B taag)laa
with
2u_, (E-T)(E-T")
(3.14) q=—=b .
Ep?

The approximated expression of fc for small off-energy-shell contributions can be
derived from (3,12) for Iql«<1( Pp™ 4/q); one then obtains, after straightforward calcula-
tions:

i s :i.n.r inT
TApeXP ~4lo0l | (p-1) (T'-E)
(3.15) FA(K, . K, _3EATAT')= - — = === fap(p)
= Sinh(rrn.r) 4T 4T CR

where

2u_,dfBu_, T|in

P P
represents the physical Coulomb scattering amplitude and

Yab :

(3.17) =\ Uo=argE'(l+1nT):la

In the approximation (3.15), the Sommerfeld parameter 7| can be considered approximately
independent of E, On the other hand, (3.15) represents a good approximation as far as the
off-energy-shell effects are effectively small in the region where the integral (3,10) recei-
ves the main contributions,

An energy-independent Sommerfeld parameter can appear in the amplitude only if
both incoming (or outgoing) particles lie on the energy shell (see, for example, the graphs
of Fig, 2). In this case the Coulomb scattering amplitude can be described by the expression
(impulse approximation)

« 1in
> . ” 7 G T'-T-ic¢ T o
which can be obtained from (3.12) for E*T+i€ (T#T') and by dividing by the renormaliza-
tion factor(19)
E-T) Ao
4T

g =exp( Znp)T(1-ing) (
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We will return on this problem at the end of this Section.

3.3.- Triangular graph amplitude with generalized Coulomb scatte-
ring amplitude,. -

For the calculation of the integral (3, 10), it is more convenient to use the genera-
lized scattering amplitude in the form (3. 11b). By substituting (3,11b) in (3.10), one ob-
tains:

-
» , 9%,
JjAEA(A)- G(A)-uaba TFjA-%A(kla)FjBEB(kN) x
igtp
(3.19) 1 :
o " (1-p2)dp
x ]
2

U
! [op2- 722(s-m (s-11) (1= 2]

where S is given by (3.7) and the quantities S-T and S-T' can be related to the integration
variables by
1

2 D 1 % 1 2 2yn,_
-2—3(k13+xA)R:- 13(]{ +xA), S=T'== —zuza(kza-i-xB)%'

2
(3.20) S-T=- 2l 3(k§+x3)-

Performing the integral over the angular wvariables, one obtains

o0
2z
FjAEA(ka)Fszn(ka)k3dk3
JG(A)=Hnu§bu S X
(]
(3.21) 1 .
pln(l-pz)dp
»® 5 m
o (a+k, ) 2= —2R(S-T)(S=T") (1-p)?|[p(a-kq) 2= =2R(S=T)(S-T')(1-p)2
: 3 28 3 28

Introducing (3.21) in (3.9), one gets the modulus squared of the triangular graph
matrix element when the core-core scattering is described by the generalized Coulomb
amplitude., The integrals in (3.21) must be performed numerically; this calculation can
be made rather easily, the only difficulty arising from the presence of the small imagi-
nary part of S, .

Looking at (3.21), one can see that, for &;< el the quantity S, given by (3.7),
is negative in all the integration range of kg. Then, té\e parameter i is real and positive
(apart from a small positive imaginary part) and it goes to zero as kq-» . The most im
portant contributions to the integral (3,21) come from k3 A where the integral over P has
a logarithmic-type divergency (for A #0). As A -0 (forward scattering of the particles A
and a,orbackward scattering of the particles A and B), the main contributions come now
from the region of small kg-values, where the integrand function becomes large, Then, in
this case, (3,21) gives a forward-peaked cross-section. For £&; > EA , the parameter
in is imaginary (apart from a small positive real part) up to the value k% 2 (a+b)(81
- g13), The strongly oscillating factor appearing in the integral could cancel the contri-
butions for small k3 values, In this case the cross-section could be backward-peaked.

In any case, owing to the complicate expression (3.21), definite conclusions on its
detailed structure can be drawn only after suitable numerical calculations,

o0
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10.

3.4,- Triangular graph amplitude for small off-energy shell contri-
butions of the Coulomb amplitude. -

Now we will calculate the integral (3.10) with the Coulomb scattering amplitude
described by the formula (3.15), corresponding to small off-energy-shell contributions, A
discussion on the validity of this approximation will be made at the end of this Section., Fur
thermore, we will limit our considerations to the cases in which the two binding energies

S}S and E'ZBS are approximately equal,

Since in the region of validity of (3.15) kz is of the order of J(,z or A2 with X
and xB sufficiently small, the main contributions come from the smaﬁ k3-values. Then

Tk ¥

= o s o 2 ‘
T 2Uab(Pi pa+ubns) %Ei !

and (3.15) becomes
in 2 DA i o o 2o
2wuabun Vay 1 (k3+xA) (k3+xB)
expl(=mn)
Eci”13“24

where, now, 1 is constant: 1 = \],b»ab/z €,. The formula (3.22) is similar to the Cou-
lomb scattering amplitude used by Greider(1,20), apart from the factor (kg-f Xi) in y

x(k§+ 1%)”‘- , which takes into account the Coulomb field distortions during the interac
tion. Analogous expressions have been used also by other authors 21). .

(3.22) fa(k.. % _;T)=- .
s senh(mn) (P2)1n+1

Introducing (3.22) in (3,10) and changing the integration variable :from T{’S to P,

one obtains:

16720 . U, H,aan M in
(3. 23) Jo(8)=- ab 13 2% exp(-mn) (—E—)" k()
senh(mn) Be uygls,
where
oo +1
d(cose_)
d p
}{A:—-P— .
(3.24) e 1-in 1-in

21n
P -+ > 2 -+
S RN

In (3. 24), the form factors are assumed equal to 1; this represents a good approximation
for sufficiently small binding energies,

The integral (3. 24) can be performed exactly in both variables for equal binding
energies add written formally as (see Appendix )

A 5
B(= —ln,%-ln) Y 3 A2
(3. 25) K(A)=—2 F(3-inyo-in,gs
7 -in A2+X2
(82+x2)

This expression gives, as (3,21), a forward-peaked cross-section,
The forward-backward ratio can be evaluated, in this case, using (I.4) and (I, 5)

J(8=0) 2

A x 6
%32n2(—§ELJ ;

JI(A=Amax)

For the reaction 14N(14N, 13N) 15y at €,=6 MeV, this ratio is equal to 106,
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3.56,- Triangular graph amplitude using the on-energy-shell form for
the Coulomb amplitude.-

By introdusing in (3. 10) the form (3. 16) for the Coulomb scattering amplitude, one
obtains
éou
; d(cos@_)
i . d D
G(Buabei). "exp(2iay) "2"% 5

r_+ e 0 i o i?
o (p-a)2+xA_] [(p—ﬁ) +x3_l

JR(8)=18mu puy qu,

with T = £; and the form factors equal to 1. The integral on the left hand side can be per-
formed analitically in both variables and gives, for equal binding energies:
in
abb13¥23% {8uapey)
2 231+1n
cosh(my) (a*+x*)

82y a(8y exp(2igg)

JR(A)=

(3.26)

x {%cosh E (n-?arc‘tg%):] +%senh E (n-—?arctg%):l b

Formula (3.26) represents the well known expression for the matrix element derived by
Greider in the TMA approach. It gives a backward peaked angular distribution, the for-
ward-backward ratio being equal to:

i Amax % X
% ( ) lsnzexp[—2n(ﬁ- —):l
X Pi

JR(A=O)

JR(A=ﬂmax)

For the reaction 14N(14N, 13N)15N this value is equal to 3 - 161 at Ci=6 MeV.

3.6.- Validity of the approximations on the Coulomb amplitude and the
role of the triangular graph mechanism, -

By inspection of the three relations (3,21), (3.23) and (3. 26) one easily notices that
their structures are very different, In order to compare the absolute values of these three
expressions, we have calculated the quantity | J( & )12 for A =0 in (3.21) and (3. 23), which
give angular distributions forward peaked, and for A = Amax in (3. 26); one has, respectively,

n

| i 2 ;] -3 i 3,
1J5(8=0) [ “%1.4x107} (8=0) |*&s5.2x10 "'y logla=a__ )[2R2.5x107;

l.x
T
where the calculations refer to the reaction 14N(14N, 13N)lsN for £i=6 MeV,

The very strong difference between lJG\Z and 1JI|2, although surprising, can be
explained and mainly attributed to two reasons. First of all, we remember that the Coulomb
amplitude in the form (3,15) has been obtained from the generalized one for small values of
the quantity q, given by (3. 14), This condition is not satisfied for the reaction lan(l4n, 13N)15N,
where the minimum g-value is approximately equal to 1 in the region of small kg-values, Fur
thermore, as already mentioned, for &; < £€,, the quantity S is negative everywhere in the
kg-range of integration; for this reason the assumption ST % £; is never verified and the
Sommerfeld parameter m becomes a negative imaginary quantity. This follows from the fact
that, for £&; < £, the two cores interact off-energy-shell at negative energies, even if the
neutron is transferred at rest. On the contrary, since the position S=T = Ei implies a real
and positive parameter 1 in IJI |4, the cross-section in the approximation of taking into acco-
unt only small off-energy-shell contributions is strongly reduced by exponentially decreasing
factors, and this approximation becomes meaningless,

In spite of the fact that the expression (3.26) gives a backward peaked angular distribu
tion, the use of the Coulomb amplitude in the physical form, appears in this model hardly ju
stifiable; especially in the case of heavy-ion interactions, where off-energy shell Coulomb di
stortions are important. In particular, the introduction of a real Sommerfeld parameter for the
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core-core interaction is still incorrect, One can easily realize that the strong difference
between the formula (3, 26) and (3. 21), and between the absolute values of the corresponding
matrix elements are essentially due to: (a) the elimination in (3. 26) of important oscilla-
ting factors, due to the Coulomb distortions; (b) the introducing of a constant and real W-pa
rameter, used, normally, in the impulsive Coulomb amplitude for initial or final state inte-
ractions, '

We notice that the triangular graph alone cannot represent correctly the overall pro
cess. In fact, the strong Coulomb interaction in the initial and final channels cannot in any
case be neglected. The triangular graph must be considered as a tool for describing the tra:
nsfer mechanism more correctly than in the DWBA and MSA theories, that use a simple po
le graph, By adding to the trfangular graph mechanism the initial and final state interactions,
one can then obtain the correct behaviour of the angular distribution, On the other side, in
order to obtain reliable nuclear information, it is necessary to describe correctly the tran
sfer mechanism, because it includes those quantities which depend on nuclear structure,

In this regard we remark that, the TMA approach, provided that the core-core Coulomb
interactions are treated correctly, can be considered rather as a suggestion for a more
appropriate description of the fundamental mechanism than a complete treatment of the en-
tire process,

In order to show the importance of the triangular graph as basic mechanism with re
spect to the polar one (used in the DWBA and MSA), we have evaluated the ratio at A =0 be
tween the squares of the corresponding matrix elements

[JG(A)szh

24252
Ghv *n¥ab

2
m{m Mgz (8|27 ] |Mg4(pole) "%
b"A MpMa

Ra"p Ma"p

This ratio, for the reaction 14N(14N, 13N)!15N is equal to = 24, The predominant role of the
triangular graph is due to presence of the strong core-core Coulomb interaction.

4, - INITIAL AND FINAL STATE INTERACTIONS IN THE FEYNMAN DIAGRAM FORMALISM. -

In this Section we will discuss in details the problem of initial and final state interac
tions for the case of the heavy-ion transfer reactions, According to the Feynman diagram
technique, this will be accomplished by the so-called DSM method(6), which consists in sum
ming all the graphs of Fig. 2. For energies sufficiently below the Coulomb barrier, the ini
tial and final elastic scattering amplitudes can be well represented by the Coulomb matrix
element alone, as it is suggested by the experimental results on the elastic scattering at
low energies,

Pi As pointed out in Ref. (6), the matrix ele-
A s ments of the first three graphs on the right in Fig. 2
(if constructed on the basis of the pole graph) are re
spectively equal to the PWBA, DWBA with initial state
interactions alone and DWBA with final state interac-
tions alone; the only difference between the DSM and
the complete DWBA theories arises from the term
which corresponds to the fourth graph in Fig. 2. For
this reason, we will now start by calculating the ma-
trix element for the graph of Fig. 5.

By using the non-relativistic Feynman ru-
les and integrating over the internal energies E; and
Eg by means of the residue method, one obtains:

FIG, 5 - Initial and final state interac
tions on the basis of the pole graph.
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2 2
_ U Ha¥p¥ntats i
Mo.== Vx, x X
g VZTFZ ( i )2 A"B
Ya"¥p? Hi3¥a3VAbYaB
m. m
(4.1) ia %
m, m
y B B
¥iie Y. ! !
Iptamy ™y Iata Ipts Ipfy fi -,
A TA jBlB
Joloym, m
B B "y
where
Ifi=
»
mg mg' N . .
(4.2} FjAf-A(ki3)FjBQB(k23)Y A (kla)YRB (kza)fCI(pl, An, )fCI(kB'l’pf;Ef)dkzﬁ'd‘(B’l
u H23
. TR et - S S S T
J (kQA,-p H)(kB'l-pf_lE)EE(23+XB+uBa(kB'l pg) lE]

The meaning of the kinematic symbols used in (4.1) and (4. 2) appears in Fig. 5; they are
mutually connected by the relations:

U‘a + =+ > ub-r- S b

F - - — — -
(4. 3) Ky 35— - Ko u kB,l, Ko 35K, uBk 2 u~K

B1’

The matrix element in the complete DWBA theory can be obtained by neglecting the
term (#ZS/FBa (kgr1-pf), appearing in the propagator in square bracket in (4. 2), and add
ing to Iy the contributions from the first three graphs in Fig. 2. If one takes into account the
formulas(18), (A. 1) and (A. 2) of Ref. (19), one gets the complete factor Iﬁ to introduce in
(4.1): ¥

m m
u [ L u
c ___b 3 . lT- A B . . = ._é-t "
Ifi_uB“ exp ( 2(ni+nf))‘fEA (nO)Y£B (ﬂn)F(l+1ni)r(l+1nf)[exp( l“Bpf 7)) x
(4.4)

u exp(-x,r) .
X F(-inf,l;iu—b-[pfr-+Ef-ﬂ)———r—\—exp(1p -P)F(-ml,l 1I_pir -§i-+])dr
B

where the spherical functions and form factors are approximated as in Sect. 3, and 1 ;(n f)
is the Sommerfeld parameter in the initial (final) state.

The expression (4.4) corresponds to the matrix element obtained in the DWBA ap-
proach in the so-called "post" representation{12). We remark that, in virtue of the equality:

UhIod .8 Mafm 2
(4.5) ;EEczgx +———(k3.l pfﬂ > [ +xA+u k2 P JJ

the matrix element of the so-called "'prior" representation can be obtained in the same way,
by startmg from the propa% ator written as in the right side of (4, 5) and by dropping the qu-
antity (Myg/Mpp) (k2A' p;).

Since the presence of the term #23/ MBa) (k]23'1'Pf%) in the exact propagator (4.5) re
fleects the existence of a three particle-cut, as shown in Ref.(6), one can say that the three-
-particle intermediate state (1,2, 3) appearing in Fig. 5 eliminates the ''post-prior' para-
dox of the DWBA. This represents a further reason for thinking the DSM a better ap-

g}
)
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proximation than the DWBA in treating the initial and final state interactions. The study
of the role of the three particle-cut in (4. 2) and the comparison of the two theories repre-
sents, however, an open problem, which would be useful to solve in order to obtain a mo
re justifiablé criterion of choice between 'prior" and 'post' representation,

We remark that one of the main features of the transfer reactions is that, for
sufficiently heavy particles, nuclear interactions can be considered as a small perturba
tion of the strong Coulomb scattering. For this reason, the main term of both the DSM
and the DWBA theories would be represented by (4. 2) (in the DWBA the three-particle
cut is neglected), which is quadratic in the Coulomb scattering amplitudel

The same technique can be used for describing the
initial and final interactions starting from the triangular graph
of Fig. 3 we proposed in the preceding Section, This is ac-
complished in Fig. 6, where the important Coulomb interac-
tions are correctly represented in the initial, intermediate
and final state., The evaluation of the cross-sections, coming
from this graph, is in progress in some practical cases.

5. - COMPARISON OF FDA, TMA AND DWBA THEORIES, -

The exact transition matrix element My; for the re
arrangement scattering (a+n)+b = a+(b+n) can be derived from
the formal scattering theory. We would like to write two exact
expressions for Myg;, which will be suitable for the compari-
son of DWBA and TMA approaches with the FDA theory.

FIG. 6 - Triangular graph
mechanism with initialand
final state interactions.

Let H, and Hy be the hamiltonians for the internal
structure of the two systems a and b regpectively; K, Kp
and K, the kinetic energy operators for the center-of-mass
motion of the systems a, b and n; V,,, Vpn and Vab the
interactions between the systems (a,n) (b,n) and (a, b). The

initial and final channel hamiltonians K; and Ky and the channel interactions Vi and Ve
are then:

(5. 1) l(i=]<-i-1-~I+Van Kf=K+H+Vbn ’ (5.2) Vi=V +V Ve=V_. +V 3

4 ab 'bn ? "f Yab “an

where K=Ka+Kb+Kn and H=H_ +H. The complete hamiltonian is:

(5. 3) =K +V =KV g

Let now ¢. and §f be the initial and final channel wave functions and 'P.H) and “P§') the

wave functions describing the entire scattering process and asymptotic to ‘fi and if,
respectively. The scattering matrix is:
& (+) (+)
(5.4) Mei=(Fps (V o4V, Dyp. 7= (op "5V p*Vp 085
Now, introducing the partially interacting states
+
(5.5) A . —Vap |85 xén)“[ : —Vap | Eg
E -(K +V )+1E Ef-(Kf+Vab)-le
and
(+) 1 G310 1
(5:6) Xjp =|1F By ¥ 1+ Voo [ §
e E;-(K,+V, )+ic Von|ti2 Xer Eg=(K#V_ )-ie 2 F

where E;= &;- SA’ rb‘ E¢= 5f— :B' é‘ with &, the total binding energy of the j-particle,
and following the treatment of the two- otent1a1 problem for the rearrangement scatte-
ring as given by Goldberger and Watson 22) we obtain, in the limit & 07,

QUu
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_r. (=) X (+)
(5.7) Mfi_(XfD ,(vbn"'vanEi:Jc'-is bn]xlD )’
by using (5.5) and

_r. (=) 1 (+)
(5. 8) Mei= [Xf’l‘ 3 (Vab+vab ] ]

Ei-‘&’t+1£

+ +
by using (5.6). We notice that the terms (3, (V ,+V,-Vp,) 'Z.ED)) and ( 2. Van ( ))

vanish in the limit £-50%, Therefore the question of neglecting them does not arlbes(1,20,21)_
Both (5.7) and (5.8) are exact expressions for the M-matrix element and represent the sta
rting point for introducing the DWBA and TMA theories, respectively,

The partially interacting states (5.6) are pure nuclear states, while the partially in
teracting states (5.5) become pure Coulomb states below the Coulomb barrier.

The DWBA approach can be obtained from (5.7): (a) by keeping only the operator Vpp
in the bracket; (b) by replacing the wave functions I( ) and Ii,]'D) by the corresponding

(+) (-) iD 1L ERS, :
d
foW and X DW which describe the elastic scattering in the initial and final state
channels (optical distorted wave functions):
DWBA_( (=) (+)
(5.9) Meg '(Xwa > VpnXipw )

The TMA approximation at low energies can be obtained from (5.8): (a) by replacing
the operator in the bracket by means of the two body U~ operator for t e off-energy-shell
Coulomb scattering; (b) by using the plane wave 2, ff instead of x and ?lf’I‘

(5.10) TMA‘(éf,U 50

In the practical calculations the on-energy-shell form is assumed for the Coulomb operator
Upq.

& The two formulations appear to be rather different. In fact, while in the DWBA the
strong Coulomb interactions are correctly treated in the ihitial and final state and are com
pletely neglected in the intermediate states, the TMA approximation, derived from a less
intuitive form for the exact matrix element, gives a good account of the Coulomb interac-
tions in the intermediate states, but does not allow a simple understanding of the initial and
final interaction effects,

Let us now look for a formal theory representation of the fundamental mechanism am
plitude Mg( A ). After introducing (2.4) inthe My ( A) and integrating over the energy, we
obtain by means of (3.3) and (3. 20).

13..B

1“13 23 o My Mpaf C(P)dp

(5.11) (A)—-
w2 Hab m, (k13+xA)(k23+xB)

Introducing the Fourier transform of fC(gFfC(EI)l’R;a;S)

>\ _ uab . > -+
(5.12) fo(p)=- n; exp(ip-ry )oo(ry ddry s

and rewriting the nuclear vertex functions Mrcqn in the form

cn_
My -;——————— Zsjﬂ I (s ,mm_ |Jm ) (s ms m, | symy) x
Hen e m.m,
]
(5.13)
o Mg v o
x (kCV+XN exp(-lkcn'r)%(r)'f2 (rl)dr |,

- |
&

on
&3
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where the quantity ﬁjk is connected with the sz one by the relation

is f =
l .
(5.14) v N0 THun O ) 3, (kgnr) 8, (00200} |
kcn+ AN
the amplitude (5,11) becomes:
m, m
Ia Fa
m. m
Ip
(5.15) j(8)= 1 gh u gt 3
B“SVZ fy iy i, 9abardpbp dydy Rl
Ip *a 338
jBLijBmQB
where g
m
iR s B YRR
I= exp(ik, .- 23)¢EB(r iy r, explip.ry
(5.16) a5

)
-+ oo > A~ > + Lo -+
% gc(rba)exp(—lkl3-r13)¢£A(r13)Y£A (raa)dr23drbadr13dp y

with the co-ordinate vectors r13. r23 and rba defined in Fig. 7 and mutually connected

among them and with r1 and rf by the realtions
> =; %o ££+ > > = Eﬂ+ >+ ++
(5.17) TiTTpA™ bau, 13 FET BT baT U 7230 T2 pa g

FIG, 7 - The system of coordinate vectors,

By taking into account the kinematic relations (3.2) and the vectors transformation (5.17),
the integration over the P and ?23 variables can be easily performed; it results

m. m

1a %
Ty My -+ > * "kg.

3 - =
gla)==s Z B . B, , C.°B "B lexp(-ir_.p )¢, (r )Y (pr.. )%
V23, 8,m, m, 42, Iptp Jpt, £ 5f Tag 23" ap "T23

Ja *a i 2
(5.18) §.km, m BB
B"B i EB
m
(P, _Jexp(ir.:p.)¢, (r, )Y RA( )dr dr
I T e ] 1,137 e, had
(6,10)

The Lippmann-Schwinger integral equation satisfied by the matrix element fo ( p)
is equivalent to the formal expression for the operator W

) 1
(812 WeVap*Vab oK +V_)¥1c"ab’

where Kgp, is the kinetic-energy operator for the core-core relative motion.
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It is easy to see that the Green operator

=1 -1
¥ i :
LS—(Kab+Vab)+:Le_l can be replaced by Bi-(K+H+Vab)+1e 3

when applied to the channel states ¥, and §f. containing eigenstates describing the inter
nal structure of a and b systems,. In fact, the operator K+H can be written (in the barycen
tric subspace) as:

K+H= K +H +H

n (atb)

where K (a+b) is the kinetic energy operator for the neutron-(a+b) center of mass relative
motion. When apphed to the channel States Il and % ¢ the term Ky, (a+b)+H +Hy, gives the
;:orrect quantity r 3/2)&3 (a+b)] d,- § » Which must be added to S in order to obtain
i-
Finally, from (5,18) and (5.19) we can write the desired formal expression for the
Mygi(A)
1

Ei-(K+H+Vab)+1c

(5. 20) Mg (8)= (0, (V+V oy Vap#i) .

This result can be intuitively understood. In fact, in the intermediate state, there is only
the core-core interaction V,p and the intermediate state hamiltonian K . has the form

Km:K+ H+Vab='&c-vanmvbn ¥

which is symmetric with respect to the initial and final state,

Equation (5. 20) can be derived from (5. 8) by neglecting all nuclear interactions both
in the operators and in the states X f,}) and X(-). We remark that the intermediate state
core-core Coulomb interactions are contained in the latter term of the exact matrix element
(5.7), which is completely neglected in the DWBA theory, The three-triangle graph of fi-
gure 6 we proposed represents a simple and very reasonable physical way for taking into
account the Coulomb effects of this latter term, whose absolute value, as mentioned at the
end of Sect. 3, would be larger than the one in the DWBA. We hope that a correct treat-
ment of the graph of Fig, 6 can give, besides a reasonable agreement with both the angular
and energy experimental distributions, reliable nuclear structure information.

We wish to thank Professor C, Villi for his fruitful suggestions and constant encou
ragement throughout the work.
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APPENDIX

In the case of equal binding energies, the integral (3.24) can be directly integrated
on the angular variable cos 0, and then it becomes

P
iz 1
(a3 |dn |‘ d(cos@p) L 1 g |
punJ [(E-K)hx%] 2-21n (24n-1) 28(A2+a2)171"
(A.1) 0 -1

w

1-2in .

it x-zin-l[(x2+2xcost+l)l'zin-(x2+2xcos(n—t)+1)
0
where cost= A/ VA2+ X2

Adding to . a small imaginary part and using (3. 252, 10) of Ref, (23), one obtains

1 . 1) .
2272 M feeng 2240 (3 _2i0)B(-2in,2-2in)
(A.2) K(a)=

» a .
g P;hzl"(cost)-Pfﬂm(cost) a
2 (2in-1)a(a2+x?) o

This last expression can be putted in a more convenient form in terms of the hypergeome
tric functions., Using (15.4.26) of Ref, (24) one gets

1 3 A2

55

(A.3) K(a)= B(3 -in,3-in)F(3-in,3 -in, 3

. 2 2
(a2+4x2)2 ~40 A%
For A =0 (forward scattering) (A.3) becomes

(A.4) K(a=0)= x 21“‘33(% -inid=in),

while, for A» X [Az/(62+ 12)'\'1] (backward scattering) (A.3) gives

r(2in-3)

(8.5) KCa>>x) = 2353 _in 3-1n)
r¢in)r(l+in)

59
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