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An explicit derivation of a general property of symmetry of the
non-local optical potential is given by using the projection operators. Such
a property, which in a particular case reduces to the symmetry in the
position coordinates, insures the relation of reciprocity and follows from
the reversibility of the original multi-channel system.

1., INTRODUCTION, -

In the last few years it has been pointed out that reversibility
and reciprocity(x) are in general distinct concepts(ls 2), In particular for
some systems of physical interest reciprocity still holds while time-rever
sal is violated. Optical model effective hamiltonians give a common exam
ple for such a situation which is an obvious consequence of the elimination
of the inelastic channels and has been already discussed elsewhere(z’ 3).

The purpose of this note is to give a detailed treatment of this
question in terms of projection operators and to derive in a very explicit
way a general property of symmetry of the non-local optical potential,
This property in the simplest case is just the symmetry in the position
variables and in this form up to now has been verified in particular exam
ples(3). In sect. 2 we formulate the conditions for reversibility and for 3
reciprocity for systems described by effective hamiltonians and in sect, 3

(k) - The sense of the term reciprocity here used is defined in sect, 2 and
is the same as in ref, (2).
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we discuss the implications that the reversibility of the multichannel sy-
stem has on the structure of the optical potential,

2. REVERSIBILITY AND RECIPROCITY FOR SYSTEMS DESCRIBED BY
EFFECTIVE HAMILTONIANS, -

For a quantum-mechanical system reversibility holds when, if the
state vector I\k> evolves from | ¥.> to I\r Y, then the time-reversed
state vector | 2 > evolves, in the same tlme interval, from \‘1“ > to
| l}«l Y. The time reversal is an anti-unitary mapping of the Hilbert space
into itself\*’/: so, in any representation, it can be written:

(2.1) Wl - g yX

where U is a unitary operator and the asterisk means complex conjugate,
The operator U must satisfy the correspondence principle:

(2.2) (wR, a¢R) =+ (¥, ay)

where the sign plus or minus is taken according to the even or odd charac
ter of the corresponding classical variable under the time reversal opera

tlan, From the Schrldinger equation:

el
(2. 3) Lz = HY

it follows that a system is reversible if its hamiltonian satisfies the relation:
(2. 4) H=UH u’!

which is often written equivalently as(5,6,7),

(2.5) H=UHT u-l

since H is hermitian, (Here the suffix T means transposed)(x).

We consider now the condition of reversibility for effective non her
mitian hamiltonians, Such effective hamiltonians describe usually physical

(x) - In writing eq, (2, 4) the property UT =cU, where ¢ is a c-number of
modulus one(7), has been used.
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systems projected on suitable subspaces of the whole space of their states,
In general they are also energy dependent so that the time evolution of the
projected system is given, instead of eq. (2. 3), by the equation(s’s):

©
(2. 6) : %V‘il)" - f W (t-t') @ (t') dt'
- 00
where the '"time non-local' operator
e (t-t)
i -i(t-t") E
T A
(2. 7) W (t-t') 5 7T H(E) e dE
-

is the Fourier transform of the effective hamiltonian H (E) which occurs
in the equation for the stationary states tyE:

(2.8) H (E) LPE=E ‘rE

The reversibility may now be expressed by saying that the time reversed
state vector, eq. (2.1), must satisfy the equation:

GwR(t) B

Q0
(2.9) og ——o ok /W(t'—t)va(t')dt'
-

The condition for reversibility then follows:

(2.10) W (t-t') = UW (t'-t) =

Of course if W is causal, i,e, W(t-t')=0 for t<£t', reversibility is impos
sible(3), From eq. (2. 11) the condition on the effective hamiltonian follows:

(2.11) H(E) = UvE ®) Ul .

Therefore is the eq. (2, 4), and not the eq. (2.5), that must be assumed as
condition for reversibility if also systems described by effective hamiltonians
are treated,

We pass now to consider the condition for reciprocity, i, e, for
the property of the S-matrix

(2.12) A sy = P lsla RS,

It has been proved(l) that if a unitary operator V exists which
satisfies the equation:
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£

TV- 4

(2.5') H=VH
then for the S-matrix the property holds:
(2.13) KAs kY =4L|s| A >
where

X
(2.14) Y = VY,
For hermitian hamiltonians this result had been previously established(g)
by starting from eq. (2.4). When the operator V identifies with the time
reversal operator U, eq. (2.1), then eq. (2.13) becomes the usual recipro
city relation (2,12),

To handle with a formalism as simple as possible we consider
in the following of this paper only systems of spinless particles, Then,
in coordinate representation, it can be put U=1 in the eq, (2.1), In this
case the reversibility holds if:

(2.15) H=H ,
and reciprocity if:
(2.16) H=H' .

3, THE SYMMETRY OF THE THEORETICAL OPTICAL POTENTIAL, -

Let us consider a physical system described by a (hermitian) ha-
miltonian‘y, and let \‘VE be a stationary state:

(3.1) 'z«ﬁka =E o

It is well known(10) that the vectors Py and QLPE, where P is a projec
tion operator and Q=1- P, are related by:

(8.2 (E-PWRP) Py = PRQ QY
(3..2" (E-Q¥Q Q¥ = QP Py

If to the states Q ¥ the outgoing wave condition is imposed, then for the
vector P\('E the equation follows:

(3.3) H(E) Py =EPY,

where



(3.4) H(E) = PAP+ PRQ 4 al-Q';Q,Q QR P (£=0")

plays the role of the hamiltonian operator, and is called the effective ha-

miltonian, Because it incorporates the boundary condition on Q '4' , which
is of causal type (as it is formally expressed by the term i& occurrmg

in the denominator), this effective hamiltonian describes a non-reversible
system,

However the reciprocity still holds provided that (i) it may make
sense in the subspace defined by P and (ii) the original system is physical
(i. e. ® hermitian) and reversible (i.e. W real). This is obvious because
a projection only limits the states of a system without changing its own
dynamics, i.e., it only selects matrix elements from the original S-ma-
trix(2, 11,12, 13) This is also easily seen interms of the effective hamil
tonian: if the hypotheses (i) and (ii) are satisfied it follows immediately
from eq, (3.4) that the effective hamiltonian is self-transposed in coordina
te representation, Indeed this equation shows that H(E) is self-transposed
if also ® and P are, Hypothesis (ii) insures such a property for W and
hypothesis (i) for P, In fact hypothesis (i) is equivalent to saying that P
must project on a subspace which is mapped into itself under the time
reversal operation, and this precisely makes P self-transposed in coordi
nate representation,

Let us now consider a multi-channel reversible physical system
described by a many-body(¥) (hermitian and real) hamiltonian ¥ :

(3.5) RERQO,...gA;RO,...RA).

According to Wigner and Eisenbud(!3:14) 4 channel at any energy E may
be defined as an eigenstate

(3. 6) | o€y oty tyEl ol > ot,> 10>
of the asymptotic hamiltonian:

(3.7) Rap = &g+ Ry

where

(x) - We here neglect the problems arising from the identity of the particles,
The proper account of this one gives rise to complication in the for-
malism w1thout changing the conceptual aspect of the results here di
scussed(l



A and B are two fragments built up with the particles of the ori-
ginal many-body system;

‘a{A and }(- are their hamiltonians with eigenstates | & ) and
Aty

N ol is the hamiltonian for the relative motion (kinetic energy plus
possible long range potential terms) with eigenstates | .

Projection operators on various sets of channels can be construc
ted in terms of suitable sets of eigenstates of asymptotic hamiltonians
like (3, 7). Let us consider in particular the projection on the set of the
elastic channels, i.e. on the subspace spanned by the vectors it A 3
where |9 > denotes the ground state of the target A (supposed not de-
generate for the moment) and the quantum numbers for the internal state
of the projectile B do not appear because it has been assumed spinless
and not composite, Then:

(3.8) P=2\°<,°<T5<°4,°<Ti (X . fixed)
oA

On the other channels the outgoing wave condition is imposed. The opera
tor P is self-transposed in coordinate representation. Indeed it projects
on a subspace which is time-reversal invariant, for \o( > is a not dege
nerate eigenstate of }?, and the vectors | are all the eigenstates of
Rrel’ both hamiltonians being hermitian and real,

The elastic scattering amplitude in the coordinate representation
is:

(3.9) E(x)=<x. L l¥g>.

Wherewng is the relative coordinate between projectile and target, and it
is easy to see from eqs. (3, 3), (3.4) and (3. 8) that it satisfies the equation:

(3.10) jdE:E, <AX°‘T\H\§,°(T\/' f(x)=Ef(y).

which can be written as:
(3.11) T+ )f=E1,

by extracting from PR P in eq, (3.4) the term PTP, where T is the kine
tic energy of the relative motion, The term V" comes from the remaining
part K of H:

(3.12) U’(g_,gg)=<ﬂz,°leK|3$,°4T>



and is the theoretical optical potential,

The operator K is self-transposed in coordinate representation,
as H and T are. Then:

(9. 13) U’(x,;‘g)ﬂj'(gv,x),

because the wave function of the ground state of the target is real,

When the ground state of the target is degenerate (e. g. when
its spin is different from zero), the operator P, eq, (3.8), is no longer
self-transposed if the state | o4, ,> is not self-time reversed, As a con-
sequence, U'(g;_, y.) turns out fo be not symmetrical. But the notion of
reciprocity makes no sense for such projected system,

It makes still sense, however, if we project on the whole subspace
of the elastic channels, i, e, if we use the projection operator:

(3.14) P = Z Pobirs »
o T

where P"LT is given by eq. (3. 8) and dz means summation over the azimu

thal spin component of the target ground state. From eq. (3.3) we get now,
instead of eq, (3.10) the system of equations:

(3.15) dedg,g(z, ﬂTIHIE,dT><-’£°‘Tl“PE>= E<9L/”T| “PE>
T

which, as for eq. (3.10), can be written in the form (3.11) where now f is
a column matrix with elements fg ., labelled by the values of the azimu-
thal component of the target spin, and the operator V" has the matrix ele-
ments:

(3.18) T (y,

B )= K LA Kl xel >

=
where the operator K is defined as above, This system of equations is the
same as that derived by Francis and Watson 15 . As the operator P, equa

tion (3, 14), is now self-transposed in coordinate representation, K is also
self-transposed here and therefore:

R SN L P N S ST FY

where the suffix R means time reversed, Then:

(3.18'") UATdT(i’E)Zy“TR/*’TR(i’L)’
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or, in momentum representation for the relative motion:

" - :
(3.18") %T«T(g,g) «<p RAp R (-p.g).
Eq. (3.18) is the generalization of the symmetry property (3.13). It has
been already recognized that eq. (3.13) insures the reciprocity(3). Indeed
eq. (3.13) is equivalent to

(3.19") <y Z;EI] x5 =4x \?gl\’z>

(3.19") (gl%§1)£>=<*£ \331‘&5

where ZEI is the operator connected to the optical potential by the
Li%pmann-Schwinger equation(15: 16) and giving, on the energy shell q2 =
=p“=2 mE, the elastic scattering amplitude. On the energy shell equa-
tion (3.19") is just the reciprocity relation, Of course similar conside-
rations apply to the more general eq. (3.18).

We conclude by remarking that eq. (3,18) or, equivalently, (3,19),
follows only from the reversibility of the original multi-channel system
described by the hamiltonian %, Then, while the lack of reversibility for
projected systems is due to purely formal reasons, a failure of reciproci
ty would imply a true violation of time reversal,

10
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