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G. Dillon and G. Passatore: THE SYMMETRY OF THE THEORETICAL O~ 
TICAL POTENTIAL AND ITS CONNECTION WITH TIME REVERSAL AND 
RECIPROCITY. -

An explicit derivation of a general property of symmetry of the 
non-local optical potential is given by using the projection operators. Such 
a property, which in a particular case reduces to the symmetry in the 
position coordinates, insures the relation of reciprocity and follows from 
the reversibility of the original multi-channel system. 

1. INTRODUCTION.-

In the last few years it has been pointed out that reversibility 
and reciprocity(X) are in general distinct concepts(1, 2). In particular for 
some systems of physical interest reciprocity still holds while time-reve!:. · 
sal is violated. Optical model effective hamiltonians give a common exa~ 
pIe for such a situation which is an obvious consequence of the elimination 
of the inelastic channels and has been already discussed elsewhere(2, 3). 

The purpose of this note is to give a detailed treatment of this 
question in terms of projection operators and to derive in a very explicit 
way a general property of symmetry of the non-local optical potential. 
This property in the Simplest case is just the symmetry in the position 
variables and in this form up to now has been verified in particular exam 
ples(3). In sect. 2 we formulate the conditions for reversibility and for -
reciprocity for systems described by effective hamiltonians and in sect. 3 

(x) - The sense of the term reciprocity here used is defined in sect . 2 and 
is the same a s in ref. (2) . 
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2. 

we discuss the implications that the reversibility of the multichannel sy
stem has on the structure of the optical potential. 

2. REVERSIBILITY AND RECIPROCITY FOR SYSTEMS DESCRIBED BY 
EFFECTIVE HAMILTONIANS.-

For a quantum-mechanical system reversibility holds when, if the 
state vector I ~> evolves from I If."> to I '+-f'>, then the time-reversed 
state vector I y..R> evolves, in the1same time interval, from Ilf'r > to 
I y..!i- >. The time reversal is an anti-unitary mapping of the Hilbert space 

into \tself(4): so, in any representation, it can be written: 

(2. 1) y.R = u ,+,x 

where U i s a unitary operator and the asterisk means complex conjugate. 
The operator U m ust satisfy the correspondence principle: 

(2.2) 

where the sign plus or minus is taken according to the even or odd charac 
ter of the corresponding classical variable under the time reversal oper~ 
tion. 

From the Schrlldinger equation: 

(2. 3) i =H~ 

it follows that a system is reversible if its hamiltonian satisfies the relation: 

(2.4) 

which is often written equivalently as(5, 6, 7): 

(2. 5) 

since H is hermitian. (Here the suffix T means transposed) (x). 

We consider now the condition of reversibility for effective non he!:, 
mitian hamiltonians. Such effective hamiltonians describe usually physical 

(x) - In writing eq. (2.4) the property UT = cU, where c is a c-number of 
modulus one(7), has been used. 
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systems projected on suitable subspaces of the whole space of their states. 
In general they are also energy dependent so that the time evolution of the 
projected system is given, instead of eq. (2.3), by the equation(3,8): 

(2. 6) i 8 If'(t) = 

"t 
00 J W (t-t') y..(t') dt' 

-00 

where the "time non-local" operator 

(2. 7) 

00 

W(t - t') = _1_ J H(E) e-i(t-t')E dE 
27r 

-00 

is the Fourier transform of the effective hamiltonian H (E) which occurs 
in the equation for the stationary states 'rE : 

(2.8) H(E) ~E = E If-E 

The reversibility may now be expressed by saying that the time reversed 
state vector, eq. (2.1), must satisfy the equation: 

(2.9) 
'd 'f-'R (t) 

- i ~ t = 

00 

J W (t' -t) y.-R (t') dt' 

-00 

The condition for reversibility then follows: 

(2.10) W (t-t') = U w'" (t' -t) U-
1 

Of course if W is causal, i. e. W (t-t') = 0 for t < t', reversibility is impo~ 
sible(3). From eq. (2.11) the condition on the effective hamiltonian follows: 

(2.11) 

Therefore is the eq. (2.4), and not the eq. (2.5), that must be assumed as 
condition for reversibility if also systems described by effective hamiltonians 
are treated. 

We pass now to consider the condition for reciprocity, i. e. for 
the property of the S-matrix 

(2.12) 

It has been proved(1) that if a unitary operator V exists which 
satisfies the equation: 
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(2.5') 

then for the S-matrix the property holds: 

(2.13) 

where 

(2.14) If--=v,+; x 
t><. 0<. 

For hermitian hamiltonians this result had been previously established(9) 
by starting from eq. (2.4). When the operator V identifies with the time 
reversal operator U, eq. (2.1), then eq. (2.13) becomes the usual recipr'2. 
city relation (2.12). 

To handle with a formalism as simple as possible we consider 
in the following of this paper only systems of spinless particles. Then, 
in coordinate representation, it can be put U = 1 in the eq. (2.1). In this 
case the reversibility holds if: 

(2. 15) 

and reciprocity if: 

(2.16) 

x 
H=H 

3. THE SYMMETRY OF THE THEORETICAL OPTICAL POTENTIAL.-

Let us consider a physical system described by a (hermitian) ha
miltonian 'X, and let 'f-E be a stationary state: 

(3. 1) lst I.y = E \., E TE 

It is well known(10) that the vectors P If'E and Q '+-E' where P is a proje~ 
tion operator and Q = 1 - P, are related by: 

(3.2' ) 

(3.2") 

(E - P~P) P'f
E 

= P"*,Q QtrE 

(E-Q4t,Q) Q If'E = Qit,p P4-
E 

If to the states Q 'f-E the outgoing wave condition is imposed, then for the 
vector P 'f-E the equation follows: 

(3. 3 ) 

wh ere 
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(3.4) 
1 

H(E) = pdtp + P~Q E+H. _Q>l..Q Q~P 

plays the role of the hamiltonian operator, and is called the effective ha
miltonian. Because it incorporates the boundary condition on Q If-E' which 
is of causal type (as it is formally expressed by the term i e.. occurring 
in the denominator), this effective hamiltonian describes a non-reversible 
system. 

However the reciprocity still holds provided that (i) it may make 
sense in the subspace defined by P and (ii) the original system is physical 
(i . e . ~ hermitian) and reversible (i. e. )to real). This is obvious because 
a projection only limits the states of a system without changing its own 
dynamics, i . e. it only selects matrix elements from the original S-ma
trix(2, 11,12,13). This is also easily seen interms of the effective hamil 
tonian: if the hypotheses (i) and (ii) are satisfied it follows immediately 
from eq. (3.4) that the effective hamiltonian is self-transposed in coordin~ 
te representation. Indeed this equation shows that H (E) is self-transposed 
if also ~ and P are. Hypothesis (ii) insures such a property for 'I.- and 
hypothesis (i) for p. In fact hypothesis (i) is equivalent to saying that P 
must project on a subspace which is mapped into itself under the time 
reversal operation, and this precisely makes P self-transposed in coor~ 
nate representation. 

Let us now consider a multi-channel reversible physical system 
described by a many- body(X) (hermitian and real) hamiltonian at : 

(3. 5) ')t 1S 1t (r , .• • r A; P ,. •• p A) • 
-"'0 "- -0 ,..,., 

According to Wigner and Eisenbud(13 , 14) a channel at any energy E may 
be defined as an eigenstate 

(3. 6) 

of the asymptotic hamiltonian : 

(3 . 1) ~AB = '>!.. A + ~B + dtrel ' 

where 

(x) - We here neglect the problems arising from the identity of the particles. 
The proper account of this one gives r i se to complication in the for 
malis m without changing the conceptual aspect of the results here di 
scussed(lO) 
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A and B are two fragments built up with the particles of the ori
ginal many-body system; 

'tA and 4tB are their hamiltonians with eigenstates \ oJ..A> and 

\ol.B'> ; 
"Iv I is the hamiltonian for the relative motion (kinetic energy plus re 

possible long range potential terms) with eigenstates \<:>(.'). 

Projection operators on various sets of channels can be construc,. 
ted in terms of suitable sets of eigenstates of asymptotic hamiltonians 
like (3. 7). Let us consider in particular the projection on the set of the 
elastic channels, i. e. on the subspace spanned by the vectors \ cJ.. , cJ.. T '> 
where \ oJ.. T ') denotes the ground state of the target A (supposed not de
generate for the moment) and the quantum numbers for the internal state 
of the projectile B do not appear because it has been assumed spinless 
and not composite. Then: 

(3. 8) (0( T fixed) 

On the other channels the outgoing wave condition is imposed. The oper~ 
tor P is self-transposed in coordinate representation. Indeed it projects 
on a subspace which is time-reversal invariant, for \ 0<. T') is a not deg~ 
nerate eigenstate of ~A and the vectors \.,1,'> are all the eigenstates of 
dtrel , both hamiltonians being hermitian and real. 

The elastic scattering amplitude in the coordinate representation 
is: 

(3. 9) 

where x is the relative coordinate between projectile and target, and it -is easy to see from eqs. (3.3), (3.4) and (3.8) that it satisfies the equation: 

(3.10) 

which can be written as: 

(3.11) (T + 1/ ) f = E f , 

by extracting from Pdt P in eq. (3.4) the term P T P, where T is the kine 
tic energy of the relative motion. The term 1)- comes from the remaining 
part K of H: 

(3.12) 
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and is the theoretical optical potential. 

The operator K is self-transposed in coordinate representation, 
as Hand T are. Then: 

(3. 13) 

because the wave function of the ground state of the target is real. 

When the ground state of the target is degenerate (e. g. when 
its spin is different from zero)' the operator P, eq. (3.8), is no longer 
self-transposed if the state \ oZ T'> is not self-time reversed. As a con
sequence , U- (*, :t..) turns out to be not symmetrical. But the notion of 
reciprocity makes no sense for such projected system. 

It makes still sense, however, if we project on the whole subspace 
of the elastic channels, i. e . if we use the projection operator: 

(3.14) P = L Po<..T ' 
o(T 

where Po( T is given by eq. (3.8) and 2. means summation over the azimu 
o(T 

thaI spin component of the target ground state. From eq. (3. 3) we get now, 
instead of eq. (3.10) the system of equations: 

(3.15) ;-fd~<4.;3T1HI~olTl<.?iD(.Tllt-E'>=E<'~"'TI"rE> 
T 

which, as for eq. (3.10), can be written in the form (3.11) where now f is 
a column matrix with elements f.,{ T labelled by the values of the azimu
thal component of the target spin, and the operator 'It has the matrix ele
ments: 

(3.16) 

where the operator K is defined as above. This system of equations is the 
same as that derived by Francis and Watson(15). As the operator P, equa 
tion (3.14), is now self-transposed in coordinate representation, K is als;; 
self-transposed here and therefore: 

(3 . 17) 

wher e the suffix R means time revers e d. Then : 

(3.18') 11 A 0{ (y, x ) =?t 01.. R!?> R ( x , Jt...) , 
T T - - T T -
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or, in momentum representation for the relative motion: 

(3.18") 

Eq. (3.18) is the generalization of the symmetry property (3.13). It has 
been already recognized that eq. (3. 13) insures the reciprocity( 3). Indeed 
eq. (3.13) is equivalent to 

or 

(3.19") 

where '6 ~l is the operator connected to the optical potential by the 
Li~mann-Schwinger equation(15, 16) and giving, on the energy shell q2 = 

= P = 2 mE, the elastic scattering amplitude. On the energy shell equa
tion (3.19") is just the reciprocity relation. Of course similar conside
rations apply to the more general eq. (3.18). 

We conclude by remarking that eq. (3.18) or, equivalently, (3. 19), 
follows only from the reversibility of the original multi-channel system 
described by the hamiltonian ~. Then, while the lack of reversibility for 
projected systems is due to purely formal reasons, a failure of reciproci 
ty would imply a true violation of time reversal. 

10 



9. 

REFERENCES. -

(1) - D. E. Bilhorn, L. L. Foldy, R. M. Thaler, W. Tobocman and V. A. Madsen, 
J. Math. Phys. 2.. 435 (1964). 

(2) - L. C. Biedenharn, Nuclear Phys. !Q, 620 (1959). 
(3) - R. Lipperheide, Nuclear Phys. 89, 97 (1966). 
(4) - E. Wigner, Gllttinger Nachr. ~,546 (1932). 
(5) - F. Coester, Phys. Rev. ~, 619 (1953). 
(6) - E. M. Henley and B. Jacobson, Phys. Rev. 113, 225 (1959). 
(7) - K. Nishijima, Fundamental Particles (Benjamin, New York, 1963). 
(8) - J. M. Cornwall andM. Ruderman, Phys. Rev. 128, 1474 (1962). 
(9) - G. Morpurgo, L. A. Radicati and B. F. Touschek, Nuovo Cimento, g, 

677 (1954). 
(10) - H. Feshbach, Ann. Phys. ~, 287 (1962). 
(11) - T. Teichmann and E. Wigner, Phys. Rev. 87, 123 (1952). 
(12) - R. G. Thomas, Phys. Rev. ~, 224 (1955). 
(13) - A.M. Lane and R.G. Thomas, Revs. Modern Phys. 30, 257 (1958). 
(14) - E. Wigner and L. Eisenbud, Phys. Rev. ~, 29 (1947). 
(15) - N. C. Francis and K. M. Watson, Phys. Rev. 92, 291 (1953). 
(16) - M. L. Goldber ger and K. M. Watson, Collision Theory. (Wiley and Sons, 

New York 1964), pp. 215 and 782. 

11 



12 
, 


