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G. Pisent and F. Zardi : SQUARE WELL GENERALIZED OPTICAL MO­
DEL (x). 

1. - INTRODUCTION. -

A great deal of interest has been recently devoted to the cou­
pled channels te"chniques, in order to describe the interaction of nucleons 
with "collective" nuclei. 

Most of the literature on this subject refers to the excitation 
of collective states in medium-heavy nuclei, by means of high energy nu­
cleons(l). In this kind of analysis, the model was mainly intended as an 
improvement on the DWBA. 

A group of works deals with the systematic analysis of the ef­
fects of the channel coupling on the zero energy cross section behaviour, 
with particular regard to the strength function determination(2, 3). 

Finally, the nature of the well separated resonances which aE. 
pear in the low energy cross section, has been studied in the particul ar 
case of the n_ 12 C elastic scattering(4, 5). 

The present research gives a general investigation on the low 
energy cross section behaviour in both energy regions of virtual and 
real excitation of the collective states. 

In spite of the great amount ot. I::alculations carried out so far, 
the general features of the coupled channels model have not been stres-

(x) - Work carried out under Contract Euratom/ CNEN /INFN. 
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2. 

sed as deeply as desiderable. This is mainly due to the complicate struc­
ture of the system of differential equations, whose solution requires ma~ 
sive employement of electronic computers. 

This situation is particularly troublesome in the case of reso­
nant structures, where a detailed knowledge of the mechanisms involved, 
and a suitable method for a first order evaluation of the parameters is 
needed. 

The problem can be faced by introduction of the square well r~ 
dial potential, which leads to drastic semplifications, and allows the cou­
pled system of equations to be solved exactly(6). Since the main objectof 
the research is the analysis of the effects due to the angular dependence 
of the potential, the choice of a potential with the simplest radial depen­
dence, although somewhat crude, is nevertheless justified as a useful 
tool of investigation. 

It is worthwhile to underline that the coupling channels forma­
lism can be naturally framed in the more general problem of the inter­
mediate structures(7). Under this viewpoint the set up given in the pre­
sent paper, can be also intended as a useful exemplification of this more 
fundamental approach. 

The general formulas , in terms of the elastic channellogaril 
mic derivative, are given in paragraph 2. Paragraph 3 considers the in­
teraction of neutrons with even-even nuclei, described by a square well 
spherical optical potential, taking into account the spin-orbit interaction 
and the effects of volume and surface absorption. In paragraph 4 the first 
2+ collective (rotational or vibrational) target level is taken into account, 
and the general formulas are given. Paragraph 5 deals with the problem 
of the growing up of the intermediate structures over the single particle 
cross section, as far as the coupling is switched on. 

Finally, the particular problem of the zero energy and thre­
shold cross sections behaviour is esamined in paragraphs 6 and 7. 

2. - GENERAL FORMALISM. -

The purpose of what follows is to rederive some well known 
expressions, relative to the neutron-nucleus scattering, in a form sui­
table to be applied to both cases of single-channel and multi-channel in­
teraction. 

Following Lane and Thomas (8) we define the interaction ra­
dius R as the minimum projectile-target distance at which no interac­
tion is sensitive. 

Be U c the radial wave function in the elastic channel (c being 
the channel index), and 
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3. 

(1 ) 

the elastic channellogaritmic derivative. 

Let us then describe the scattering process in terms of zc' 
with particular reference to the resonant behaviour and zero energy 
behaviour of the cross sections. 

(2) 

The scattering matrix Ucc in the entrance channel is 

(xc -Sc) + i(yc+Pc) 

(xc -58) + i(yc - Pc) 

where Pc. Pc and Sc are rigid sphere phase shift, penetrability and 
shift factor respectively, as defined in Ref. (8). 

The shape elastic, compound nucleus and total cross section(9) 
can be put in the following form: 

(3a) 

(3b) 

(3c) 

(3d) 

(3e) 

sse = Yc 
e;se 

c 

Scn = Lc \Scn 
c 

t;; tot = Sse+ Scn 

s-~e=(1t/k2)gc \1-Ucc \2 = (1C/k2)gcIA~+A:12 , 

E5"~n = (7C/k2)gc (1 _ \ Ucc \2) = (lL/k2)gc Q~n , 

k being the external momentum and gc the spectroscopic factor. 

The potential and 'resonant scattering amplitude AP , A r, the 
. ( p rx cn C C mterference term 2Re Ac Ac ), and the function Qc read: 

(4a) AP = e 2i9c - 1 , 
c 

(4b) 

(4c) 

(4d) 
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4. 

In cases of well separated resonances the Breit-Wigner one 
level formula is : 

( 5a) 

(5b) 

i r se 
c 

where the resonance energy E r satisfies the following equation: 

(6) ( s ) = 0 (x) • 
Xc - c E = E r 

The Breit-Wigner parameters are : 

(7a) r se = / )' c - 2 Pc (xc - Sc E=Er 

(7b) 

Here and in the following the prime means derivative in respect of 
energy, 

(8 ) 

If one introduces the (complex) phase shift .r c 

= eZi J c Ucc 

it follows immediately from eq. (2) that 

(9 ) P cot ( 0 + rl ) = Z - S c 0 'Pc C C 

It is interesting to note that in the pure elastic case «\ real, zc =- xc). 
the resonance definition (6) gives: (d c + ~c)E=Er = lC /2 • 

The behaviour of the S wave cross sections in the limiting ca­
se E - 0, can be characterized by the following parameters: 

(x) - For a recent interpretation of the very well known condition (6) as 
the "natural boundary condition", see Ref. (10). 
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5. 

lim 
1 1m (1 - UCC ) a = 

c E~O 2k 
(lOa) 

(lOb) 
1 

b = lim 2k Re (1 - UCC ) c 
E~O 

The parameter ac is the scattering length(X), while bc is simply conne£. 
ted with the S wave strength function. 

By introducing eq. (2) into eqs. (10) one obtains the following 
expressions 

R(1-
Xc 

) a c = 
x2 + y~ 

, 
c 

(Ua) 

(Ub) b -R 
yc 

= c x2 + y2 c c 

which, in the pure elastic case become: 

(12a) 

( 12b) 

a = R(l­c 

3. - OPTICAL, SQUARE WELL, SPHERICAL POTENTIAL. -

Let us now specialize the above equations to the case of a squ!!,. 
re well spherical potential, and zero spin target. We assume the follo­
wing hamiltonian, which takes into account the spin-orbit coupling and 
both surface and volume absorbtions. 

(13) 
H h " (r rJ-'1) = T(rrJ-),,) - (Vo+ iWo)f(r) + 

sp erlC 

+ ((1I./M 1TC)2 L'S ~ Vs + iRo ws1 (df/dr) , 

where T is the kinetic energy, and 

(14a) fIr) = 1 for r < Ro ; f(r) = 0 for r "> Ro 

(x) - In the pure elastic case eq. (lOa) assumes the" very well known 
expression ac = -lim (d c /k) • 

E-+O 
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6. 

(14b) df/dr = - ~(r - Ro) . 

The channel index is now c ; jl. In order to apply the formulas of the 
preceding paragraph, we may define the interaction radius .. as the squ~ 
re well radius ; (R ; Ro), pr ovided the function Zjl be evaluated in the 
external region: . 

(15 ) ZJ'J.; x
J
'! +iy

J
'! = lim R(du,!ldr) =R /Ujl (R). 

r-R+ J r 

Owing to the surface effects , there is discontinuity between z'1 and the 
internal logaritmic derivative J 

(16 ) 
int int int 

z, = x 'l +iy , = lim R(du'l/dr) R /u'l(R) • 
Jl J Jl r 4 R - J r= J 

We can then define an effective internal logaritmic derivative 

(17) 

where the parameter fjl takes into account the surfac e effects, namely: 

(18a) j jl = X jl + i' ' 

(l8b) .:tjl = - Vs (2M!rhth/M/td<L'S) 

(18c ) 

By equating the external and effective internal logaritmic deri 
vative 

(19) 

we have finally the link between the function Zjl and the potential para­
meters. 

Explicit expres siorsfor the e~ernal function.s 91 ( f 0), PI (S> 0)' 
Sl ( f 0) and for the internal functions x~ft(Ao' Yo), if\Ao,)J 0), are 
found in Ref. (9) and in the Appendix re~pectively. Title arguments of 
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7. 

these functions are the external and internal momentum-times-radius 
f 0 and ft 0 + i ~ 0 

(20a) .Po = R t(2M/1l.2)E}1/2 

(20b) )<0 = R[[M/h21tV(Vo+E)2 +W~ + (Vo+Ei] } 1/2 

(20c) = R{[M/li2] [V(Vo+E)2 +W! - (Vo+EU} 1/2 . 

The quantities A~l' A:, QCt, together with the resonant pa­
rameters and scattering l~ngth feqs, J 4., .12), can be now calculated 
through the externallogaritmic derivative (19), and the cross sections 
are given by eqs. (3) with a gc = (2j + 1) /2 • 

We conclude with some observations on the resonant behaviour 
of the cross section, starting from the spectrum which is observed in 
the pure elastic case (Wo = Ws = 0). In this case the position and width of 
the resonances are given by eqs. (6) and (7a) respectively, being r ~n :; 
iiyc =0. Ifa surface absorption is added (Wo=O, Wsl0), xc rem2lins 
unchanged, while Yc;' 7 becomes 1 0. 

Therefore the resonances are broadened but not shifted with 're 
spect to the elastic case. Finally, the introduction of a volume absor­
ption too (Wo 1.0, Ws 'f 0), modifies both Xc and Yc values, and causes 
enlargement and shifting of the levels. 

It,is easily seen that the presence of singularities in the beha­
viour of xmt vs. energy is a sufficient condition for the existence of 
resonance~, independently o~ the values assumed by Sc and :it". It is 
shown in the Appendix that x~nt has no singularities when W 0 'f 0. 

Therefore, when the volume absorption becomes sufficiently 
large, some resonances can disappear. 

4. - OPTICAL SQUARE WELL DEFORMED POTENTIAL. -

Let us consider now a collective target nucleus of spin I = 0, 
taking into account the first excited level, characterized by I1C' = 2+ and 
excitation energy 6 I = 2 • The hamiltonian becomes : 

(21 ) H =H ,(rt9-f)+H P~')+H (~)4'f). 
tot spherlc target r tensor 

• 
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8. 

In addition to H h ., defined by eq. (13) we have now the target 
sll erlC 

hamiltonian Htarget ( r) (r standing for the internal coordinates of the -
target) and the tensorial interaction Rtensor (11-'1'f) which is responsible 
for the coupling. The last term reads : 

(22) 

The hamiltonian Htensor (1) and the second rank tensor T 2(f) which 
are esplicitely written in Ref. (11), depend on the rotational or vibratio 

+ -
nal nature of the 2 level. 

By usual procedure, the decomposition of the total wave funct­
ion in states ljl leads (in the case of square well potential) to the follo­
wing system ot e quations for the radial wave function components uIjl : 

[Zc(Ao "0) - zc( ~ 0)) Uc + 2: m f;7i. c cm uC-m = 0 

(23) 

o(cnc U c + r m {[ZCn V <2 \)2) - zc
n

( f 2)] 6mn + 0<' cmc
n

} uCm = O. 

As usual c ii (1=0, jl) is the entrance channel index, while cm ' c
n 

ii (1=2, jl) 
runs over all the channels which are coupled with the given c through 
conservation of parity and total angular momentum J. 

The coupling matrix elements .,{ I . 1 . I . 1 can be written as: 
III l' 2122 

(24) 

The pure geometrical factors fIJ II , h, 11 ;12, j2, 12 are explicit ely given 

in Ref. (5). It is worthwhile to remember only that 

(25) 01.. -01.. =0, 
cc - Ojl; Ojl 

and that the W's relative to the vibrational and rotational case are rela­
ted by the expression 

(26) 
vibr 

~Iljl1l;I2j212 = 
(1 - J'I I ) • 

1 2 

The arguments- g I)) vI of eq. (23) are given by expressions 
(20) provided one substitutes E - ~I to E, and remempers that ~ 0 = O. 



9. 

In eqs. (23) the effective internallogaritmic derivatives Zc' 
Zcn are calculated through the eq. (17) and the formulas of the Appen­
dix. The externallogaritmic derivative for anelastic channels zcn 
reads: 

(27) 

where it is worthwhile to note that when f 2 is pure imaginary (below 
the 2+ threshold) we have (see Ref. (9)) : 

(28) 

The only unknown in the system (23) is then the externalloga­
ritmic derivative :;:'c in the elastic channel. This is determined from the 
condition of solubility of the linear homogeneous system (23) in the un 
knowns '11; namely: 

(29 ) D; det 

Z -z 
c c 

o(Cl c 

0( 
cCl 

Zq- ZC l+,,(Cl c l 

•••••••••••••••••••••••••• •••• • ,e , ••••• 

By solving eq. (29) one finds 

(30) 

where 

(31 ) M 
c 

Z = Z + M /D 
c c c cc 

N 

=L 
n=l 

= 0 

and Dcc
n 

(Dcc) indicate the determinant obtained from (29) by dropping 
the c row and cn (c) column. 

The comparison between eqs. (19) and (30) clearly evidences the 
obvious fact that the term litensor' being a surface term, introduces a 
supplementary discontinuity between internal and external logaritmic de­
rivatives. The -occurrence of the intermediate structures is then deter­
mined by the behaviour of Mc/Dcc' 

In the multichannel model, above the 2+ threshold, one can 
calculate besidES CC)' cn the inelastic cross section 6' in defined as 
follows 

(32a) 10 in = ~ E)"in 
L.. c c ' 



10. 

(32b) G" in 
c 

The homogeneous system (23), together with the condition (29), 
gives the link between elastic and inelastic wave functions, namely 

(33) 
n 

uc = (- ) (D ID ) u • 
n cCn cc c 

Since we have 

(34) u =1 -U 0 c c cc c 

we finally obtain 

(35 ) 
4P c 

= 

The difference between compound nucleus and inelastic cross sections 
defined above, correspondes to the compound elastic cross section. In 
the case W 0 = W s = 0, S;;; cn and ~ in coincide, owing to the U matrix 
unitarity. 

The formalism developed so far is rigorous within the limits of 
the chosen model. 

In the next paragraphs some noticeable .f.eatures of the channels 
coupling mechanism will be stressed by analysis of the following points: 

- Geness of the intermediate structures when the coupling is gradually 
switched on (limit ,1 .... 0); 

- Zero energy behaviour of the cross sections (limit 5'0 - 0); 
- Th.reshold behaviour of the cross section (limit fJ 2 ~ 0). 

5. - GENESIS OF THE INTERMEDIATE STRUCTURES FOR GRADUA~ 
LY INCREASING COUPLING.-

5a. - V i bra t ion a 1 mod e l. -

The distinction between vibrational and rotational case , never 
stressed so far, becomes useful at this stage of specialization of the 
discussion. We start from analysis of the simpler vibrational model, and 
the concepts introduced this way will be then extended to the more com­
plicated rotational case. 

• 



11. 

In the vibrational case the matrix of the system (23) in the 
subspace of the anelastic channels, is diagonal and independent on Ib 
(see eq. (26 )), so that the logaritmic derivative (30) becomes: 

(36) 

with the position 

( 37) 

From eq. (36) we have immediately the resonance condition for the gen~ 
ral case: 

(38) (X -8 )_132 [ ..!L2 
c c n cCn 

= 0 , 

and for the pure elastic case : 

(39) 
2 

(X - 8 ) - (3 l: c c n 

2 
.n..cc 

n 
= 0 • 

We begin now the discussion on the growing up of the resonan­
ces by considering first eq. (39) in the limit of small ~ values. 

Under this assumption the zeros of eq. (39) lie near points 
and E~n' defined by the following equations(x) : 

(40a) 

(40b) (Xc - 8c )E-Eo = 0 n n - c 
n 

It is immediately recognized that EO is the unperturbed (,1 = 0) single 
c 

particle resonance energy, whose width is given by 

(41 ) r se 
c 

(x) - If (3 is small eq. (39) is satisfied either near E~ where Xc -8c be­
comes small, or near E~n where the second term of the equation 
goes rapidly from '" 0 to 00 and from - 00 to IV O. The case 
E~ ,.., E~n (i. e. the overlapping between single particle and collec­
tive resonances) will be not considered here. 

. , 



12. 

On the other hand eq. (40b), where (Xc - Sc ) depen~ on .the negative 
energy E - ~2' is a bound state equatfon. This means that Egn corre­
sponds to a bound state of the incident particle in the excited target 
nucleus, and implies the existence of a single particle bound state in 

o L 0 " the ground state nucleus, at the energy Ecn - "'2' We call Ec colle£. 
" n tive unperturbed resonance energy. 

The "true" collective resonance energy E~cn = E~n + ilc(cn ) 
which satisfies eq. (39), is characterized by the shift factor and width 
given below 2 

..fL 
2 cCn 

(42a) li c (en) = /!> t (Xc -Sc ) (X
cn 

-Sc
n

)·] E=Eo 
cn 

2 r -2Pc.n.~c J (x) 
(42b) r:e(cn ) = ;; n • 

_ (Xc -Sc ) (Xcn-Scn) E=Eo 
cn 

These expressions have been obtained by neglecting the non resonant 
inelastic channels and by expanding (Xc -Sc ) to the first order in ener 

n n 4 -
gy, near the point Eg. In eq. (42b) one term!1 has been neglected. 

n 

In conclusion, when the coupling !1 is gradually switched on, 
a collective spectrum appears over the single particle background. In 
the limit /?> ~ 0 this collective spectrum shows infinitely narrow reso­
nances at the energies Egn , with degeneracy of all the elastic chan~els 
c which are coupled with the same cn' When (!. is slightly increased 
the resonances are enlarged and shifted, so that the degeneracy is gra­
dually removed. 

The coupling between elastic and inelastic channels up to the 
G states is given in Table I for easy reference. 

(x) - In connection with eqs. (42) it is worthwhile to observe that: 
- Since we have in all cases (Xcn-Sc ). <. 0, the sign of Jj. is de-

termined by the sign of the single ~article function Xc -Sc. • 
- When a collective resonant state happens to be close to a single 

particle resonance, its coupling with the entrance channel is e~ 
phasized. The effect is clearly evidenced by term Xc-Sc in 
eq. (42b) , which is small in the neighbourhood ofE~ • 

,. 0. 6 oil 

• 



• 

• 

13. 

TABLE I 

~ 
'" '" '" '" '" '" '" '" '" . . . . . . . . 
0- 0- W W c.n c.n "" "" '" -- -- -- -- -- -- -- -- --'" '" '" '" '" '" '" '" '" . . . . . . . . . 

c-I.J.l 0 0- 0- '" '" w w "" "" 
0.1/2.0 + + 

0.1/2.1 + + 

0.3/2.1 + + + + 

0.3/2.2 + + + + 

0.5/2.2 + + + + + 

0.5/2.3 + + + + 

0.7/2.3 + + + 

0.7/2.4 + + + + 

0.9/2.4 + + + 

The channels coupled together are signed by + in the table. 

The more general case of absorbing potential and/or real elC­
citation of the 2+ level. is described by eq. (38). 

It is easily seen that. for the single particle unperturbed re­
sonances. there is no difference between this case and the elastic case 
discussed above. We have on the contrary quite a different situation as 
far as the collective structure~are concerned. In fact. owing to the pr~ 
sence of the absorption. the second term of eq. (38) has no singularities. 
and below a certain value of ;3 the collective resonances are cancelled 
out. In this case the cross sections are characterized by non resonant 
collective structure. as shown by the following expressions; 

2 

I r12 - 4Pc [2 <:; .0.2 ] (x) 
(43a) Ac - S )2 2 1 - 2/l Ln ccn(fcfcn -gcgcn) • 

(Xc - c +(Yc-PC> 

(x) - We have considered for the sake of semplicity the only resonant part 
of the elastic cross section. When Pe is not negligible the interfere!!; 
ce between scattering and potential amplitude must be obviously ta­
ken into account, but this complication does not influence the general 
conclusions drawn below. 
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(43b) 

(43c) 

where 

(44a) f. = 
1 

(44b) gi = 

-4P Y 
c c 

Y. - P. 
1 1 

(Xi - 8i )2 + (Yi 

X. -8. 
1 1 

- P i )2 

(Xi - 8i )2 + (Yi - Pi)2 

Pc 
n 

Yc -Pc 
n n 

Eqs. (43) have been obtained by power expansion up to ;32. Note that 
the expansion fails to hold in the pure el astic case, so that eqs. (43) 
cannot be used in the limit W 0 - 0, W s ~ 0 under the threshold. 

In the neighbourhood 6f.theenergy Eg , by assuming (as in the 
elastic case) (Xcn-8cn) linear in energy, an~ all other functions con­
stant in energy, fc and gc behave as s hown in Fig. 1. These functions 
fall rapidly to zeronoutwarS of an interval of the order of magnitude of 
2(Ycn-Pc ), which repres ents the half width for fCn and the maximum­
minimumndistance for gCn' We can say therefore, as a qualitative sta­
tement , that the cross sections contain a single particle background 
plus collective structures (in correspondence to energie s Eg) of height 
proportional to iJ 2 and pseudo -width independent of j!" given by : 

(45) 
Yc -Pc 

n n 
2 (X _ 8 )' cn cn 

In the particular case of I;" in, the single particle background is obvio­
usly zero. 

In other words the collective structures (otherwise than the 
collective resonances in the pure elastic case), born with constant width 
and infinitely small height,as the coupling is switched on. 

• 
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x,. -5,. 

fc• 

FIG. 1 

When t1 increases and becomes sufficiently large with . r~spect 
to the absorbing effects, the structures are gradually transformed into 
true resonances. 

We note finally that each structure in the an elastic channel c n ' 
above threshold, implies the existence of a single particle resonance 
below threshold (at the unperturbed energy Egn - ~2). in the elastic 
channel c ;. cn• 

5b. - Rotational model. -

In spite of the presence of the non diagonal terms in the ane­
lastic subspace, the logaritmic derivative (30) can be still written in a 
form similar to that of eq. (36) namely: 

(46) Zc = Zc + 13
2 

Nc/Dcc ' 
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where it is immediately recognized that Nc = Mc/f?>2 is a polynomial 
in fo with non null zero order term. 

We consider now the resonance condition starting as before from 
the pure elastic case: 

( 47) 

Following the procedure employed in the vibrational case we can still 
define an unperturbed collective resonance energy E~ through equation 

(48 ) (D) = 0 , cc E =Eo 
c 

. r 0 
and calculate the shlft factor between Eo (eq. (47» and Ec (eq. (48», 
and the width of the level: 

(49a) 

(49b) r se = ~ 2l- 2P cNc 1 
c (X -8 )2 D' ecce 

The new features of these formulas with respect to the corre­
sponding formulas introduced in the vibrational case are the following: 

- E~ is a function of ft. 
- The unperturbed resonance is determined by the cooperative con-

tribution of all the coupled channels. 
- The function~Nc and Dcc contain both even and odd powers of jJ, as 

obvious because in this case the prolate or oblate form of the de­
formed nucleus comes into play. 

In the limit ;; -'> 0 the coupling is destroyed and a certain cha!!; 
nel c n becomes predominant in the resonance equation. Consequently 
both energies Eg and E~ teJld tQ _ ti):~"ulilperturbetl energy defined in the 
vibrational case (eq. (40a». . 

It is interesting to observe that eq. (48) gives the eigenenergies 
relative to the closed channels subspace. Therefore our definition of the 
unperturbed resonances coincides with the definition given in the Fesh­
bach's picture(12). It could be also demonstrated that widths and shift 
factors given by us are easily related to the expressions foundb}'l Fesh­
bach. 

• 

• 
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In the case of absorbing potentials and/ or real level excitation, 
the cross sections evaluation in the limit A -+ 0 is straigthforward. 
In fact, being (Y cn - Pen) f 0, a power expansion in t3 allows complete 
channels separation ana leads to the formulas (43) already obtained 
for the vibrational case. 

6. - ZERO ENERGY CROSS SECTION. -

We consider here the S wave scattering length in the pure 
elastic case (eq. (12a)). 

It is immediately seen (Table 1) that three channels only come 
into play: c=O, 1/2, 0; cl =2.'3/2.2; c 2 =2.5/2.2. 

The resonance condition (ac .... 00; Xc = 0) is then written as 
follows: 

( 50) 

where all functions X are calculated in the point E=O. 

= O. 

Eq. (50) is identical to the general resonance condition (47) 
specialized to the particular channel c = 0, 1/2, 0 with the difference 
that the variable is in this case the radius R rather than the energy E. 
One can therefore translate to this case most of the concepts introdu­
ced in the preceding paragraph, and in particular one can define, for 
sufficiently small f; values an unperturbed resonance condition 

(51 ) 

It immediately follows that the resonances of the scattering 
length a c • can be only due to the elastic channel S or to the anelastic 
channels D. 

In the vibrational case eq. (50) becomes : 

.JL 2 .n. 2 
2 cC1 cC 2 Xc-/J { + 

Xq XC2 
(52 ) = 0 

and the unperturbed collective resonances are due to separate contri­
bution of the D wave elastic channels. 

~Ol 
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7. - THRESHOLD EFFECTS. 

This paragraph deals with the behaviour of the cross sections 
<0 se and G'cn = I:)in at the 2+ threshold, in the case of real potentials 
(Wo = Ws = 0). 

Let us write down for easy reference the detailed expressions 
of functions (4b, c, d) : 

(53a) 

(53b) 

(53c) 

-2 i P c 

p rX 
2Re(Ac Ac ) = 8Pcsin9c • 

[Xc+Re(Mc/Dcc)-Sc] cos 9c + [Im(Mc/Dcc) - pc]sin9c 

l xc+Re(Mc/Dcc)-Sc12 + [Im(Mc/Dcc )-P c 12 

In eqs. (53) XcScPc9c are regular functions of the energy 
through the threshold. The only source of anomalies may be Mc IDcc' 
which contains the effects of the inelastic channels. Let us analyze 
the structure of the determinants Dcc (see eq. (31)) and D • 

n cc 

(54) 

BesideJthe determinant (29) which writes in this case 

D = det 

~CC1 
(xC! -Sc1 +o(C! c1 )-iPC1 

0{ c 2c 1 

~CC2 
O(C! c2 •••• 

(XC2 -SC2 + ~2C2)-iPC2 

......... 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

it is convenient to consider the real determinant d, defined as follows: 

!tQ2 

• 
• 



• 
• 

(55 ) 

(56 ) 

x -x c c o(..ccl o(CC2 

d = det "':Cl c XC! -Sc!+~ICl O<cl c2 

oI..C2C o(c 2cl X C2 -SC2 +0( c2 c 2 

Since functions Pc are infinitesimal in threshold: 
n 

. . 21+1 [ J2 hm Pc = hm rr
2 

I (21-1)!! = 0, 
E~b+ n E-+c + 

2 2 
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we can expand the determinant (54) to the first order in the Pc's, by 
employment of the Leibnitz theorem for determinant derivation? The 
following expressions are obtained: 

(57a) 
c c 

D =d -i~ P d
mm 

cc cc -m cm cc 

(57b) 

where di · is as usual the minor of order ij of d, and d~j is the deter­
minant obtained from d by dropping the rows i, 1 and the columns j, m. 

(58) 

From eqs. (57}, to the first order in the Pc's we obtain 
n 

= 

Owing to eq. (56) the functions Pc present infinite slope in 
energy, in threshold, for S wave inelastic~hannels only. We have con­
sequently that only the part Im(Mc IDcc) shows anomalies in threshold, 
and this happens when S wave inelastic channels are implied. 

Since the inelastic S channel is coupled only with elastic D 
channels, the threshold behaviour of S in and thre shold anomalies of 
6" se are driven essentially by the D wave elastic channels. 

l.t03 
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In particular the threshold inelastic cross section reads 

(59 ) 
in 2 in in 

10 ~ (TLlk )(2Qo, 3/2,2 + 3QO,5/2,2)' 

Let us then consider in detail the elastic channel c ~ 0, j, 2, 
which is coupled with c1 ~ 2, 1/2, ° and with D and G inelastic states cn . 

For this particular channel (to the first order in g 2) eqs. (57 ) 
and (58) become 

(60a) 
c c 

D '" d _ i~ d 11 
cc cc 2 cc 

(60b) 

( 61) 

And finally : 

(62) 

which shows that Im(Mc IDcc) presents in this case infinite slope in ene£ 
gy as forseen. 

In the vibrational case the contribution of the individual ine la­
stic channels are well separated, and eq. (62) becomes: 

(63) 



• 

• 
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APPENDIX. -

The very well known expression of the internal wave function 
and logaritmic derivative are: 

(AI) 

(A2) 

int int. int 
Z 0 = x 0 + 1 Yo = (I' +i V) cot V' +iV) , 

F} -1 (J< +i >1) 

Fl (I'+i)/"j 

By the position 

(A3) 

one obtains, from eqs. (A2) : 

(A4) 

int [ . . rL 1-1 Yo = ysm2)'- -},-smh2YJ cosh2V -cos2rJ • 

(A5) 

and 

- 1 • 

The realAimaginary part of Fl can be calculated by the follo­
wing recursion formulas : 

F: = sin)< cosh \J • 

(A6) 
FI = cos)'. sinh v 

0 

FR )"-F~ + \J F~ 
- cos I" cosh V = 1 ~2 + y2 . /. 

~0 5 
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(AG) 

(A 7) 

Since functions Fl (eq. (AI)) are known to have no compl~x ze­
ro it follows (eq. (A2)) that in presence of volume absorption, z~nt has 
no s ingularity for real e{lergies. This is obviously no more true in the 
case of elastic scattering or pure surface absorption. 

~os 

• 



• 

23. 

AKNOWLEDGMENTS. -

The authors are pleased to thank Prof. C. Villi for stimu 
lating discussions and continuous interest in this work. 

The collaboration of A. Pascolini is also gratefully akno~ 
ledged. 

REFERENCES. -

(1) - T. Tamura, Rev. Mod. Phys., ~, 679 (1965) and papers therein 
quoted. 

(2) - B. Buck and F. Perey, Phys. Letters!!., 444 (1967) and papers 
therein quoted. 

(3) - J. Furuoya and A. Sugie, Nucl. Phys. 44, 44 (1963). 
(4) - S. Okay and T. Tamura, Nucl. Phys. ~, 185 (1967). 
(5) - G. Pisent and A. M. Saruis, Nucl. Phys. !U., 561 (1967). 
(6) - S. Yoshida, Proc. Phys. Soc. ~, 668 (1956). 
(7) - H. Feshbach, A. K .. Kerman and R. H. Lemmer, Ann. Phys. Q, 

230 (1967). 
(8) - A. M. Lane and H. G. Thomas, Rev. Mod. Phys. 30, 257 (1958). 
(9) - H. Feshbach, L. E. Porter and V. F. Weisskopf, Phys. Rev. 96, 

448 (1954). 
(10) - M. Danos and W. Greiner, Phys. Rev. 138B, 93 (1965). 
(11) - B. Buck, Phys. Rev. 130, 712 (1963). 
(12) - H. Feshbach, Ann. Phys. ~, 357 (1958);~, 287 (1962) . 

407 




