
t Sezione di Padova 
'" , 67/3 

) 

Comitato Nazionale per l'Energia Nucleare 

ISTITUTO NAZIONAlE DI FISICA NUClEARE 

INFN/BE-67/4 
20 Aprile 196'( 

L. Drigo and G. Pisent: ANALYSIS OF THE p-He3 LOW 
ENERGY INTERACTION. -

, . 

, -
, ' 

28 3 
Reperto Tlpogranco 

del Leboretori Nazionali di frascoli 

} 

.' 



Istituto Nazionale di Fisica Nucleare 
Sezione di Padova 

INFN/BE-67/4 
20 Aprile 1967 

L. Drigo and G. Pisent: ANALYSIS OF THE p_He 3 LOW ENERGY IN­
TERACTION(X) . 

SUMMARY -

The elastic scattering of protons from 3He nuclei is analyzed 
at the very low energies. A phase shift analysis on the cross section 
and polarization data leads to the determination of four solution sets. 
These mathematical solutions are examined in the light of a nucleon­
-nucleus potential model. The structure of the spin-dependent intera£ 
tion which is necessary to assume in order to reproduce the experi­
ments is widely discussed. Some elements on the discrimination be­
tween phase shift ambiguities are also given by the potential calcula­
tion, but, for a clear-cut conclusion on this point, further high ener­
gy analyses, and perhaps triple scattering experiments will be prob~ 
bly needed. 

1 - INTRODUCTION -

A great deal of interest has been recently devoted to the Li4 
structure in connection with the general problem of the A = 4 nuc1ei(1). 
As is well known, the excited levels of Li4 can be determined from the 
analysis of the p-He 3 interaction process, through evaluation of the ph~ 
se shifts behaviour, and proper choice of the interaction radius. In sP2 
te of the big number of works dealing with the phase shifts problem, from 
both the theoretical and experimental viewpoint(2), only one analysis, 
due to Tombrello, can be considered complete(3). In fact, in previous 

(x) - Work carried out under Contract EURATOM/CNEN-INFN. 
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2. 

papers, only central and spin-spin forces were considered, while recent 
polarization measurements(4) have shown that other types of spin depen­
dent interactions are undoubtedly important. 

The analysis of the scattering process between two particles 
of spin 1/2 is shown to be cumbersome because of the large number of 
states which are in general involved (four for each value of the angular 
momentum 1). The extraction of phase shifts, discussion on the ambi­
guities and choice of the physical solution is not simple, even when both 
cross section and polarization are known at a given energy. 

It is believed that a great deal of information for a general un­
derstanding of the interaction mechanism should be given by a deep ana­
lysis of the experimental data in the low energy region, where only few 
angular momenta are effective. 

We have carried out such an analysis through the following steps: 

1 - Polarization measurements below'" 5 MeV, where no experiment was 
available, as to our knowledge. The measurements have been performed 
with the Legnaro Van de Graaff Accelerator, and the results are published 
elsewhere(5) . 

2 - Phase shift analysis and discussion of the ambiguities encountered. 
At the energies considered, only Sand P waves are important, allowing 
a very particular and simple discussion of the ambiguities, as will be 
seen later. 

Since the phase shifts given by Tombrello (Tab. II of ref. 3) ac­
count well for cross sections and polarizations at all the energies expl£ 
red till now, our analysis will be devoted mainly (i) to improvement of 
this phase shift set at the very low energies, taking into account the po­
larization data, and (ii) to the research of possible alternative solutions, 
equally good from the viewpoint of single and double scattering experi­
ments, but perhaps preferable for other reasons(x). 

3 - Theoretical calculations on the ground of a nucleon-nucleus poten­
tial, taking into account the most general spin-dependent interaction. The 
purposes of these calculations are the following: (i) to obtain supplemen­
tary information for the discrimination of the phase shift sets; (ii) to e­
stablish which kind of splitting mechanism is responsible for the observed 
polarization, and in particular which is the comparative importance of 
the tensor and spin-orbit term. This is an important problem, which in­
terests mainly the lighest nuclei. In fact, when the interaction of nucleons 
with heavier nuclei is dealt with, most spin effects are averaged on, and 

(x) - A similar analysis, at higher energies, is in progress at the Wisco!! 
sin group. We thank Prof. Haeberli for helpful correspondence on 
this subject. 
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3. 

the interaction is generally well accounted for by neglecting the target 
spin(x), (6) (iii) to obtain a reliable evaluation of the interaction radius; 
(iv) to try the extrapolation to higher energies. 

The important, but limited and semiqualitative purposes of the 
calculations, justify some crude approximations which will be introdu­
ced in paragraph 3. 

It is hoped that the general information obtained here on the a 
verage interaction of the incident proton with the target nucleus will 
constitute a useful background for further calculations , based on a nu­
cleon-nucleon non central potential. 

2 - PHASE SHIFT ANALYSIS -

Let us write down the general form of the differential cross se.£. 
tion " and polarization P, of charged spin 1/2 particles, scattered by 
spin 1/2 targets. (Beam and target are supposed to be initially unpola­
rized): 

1 s· s 

(1) I. L 
S',6=0 m'=-s' m=-s 

(2) 

If (Q)12 
slm' sm # , 

(.0) 

where Q and ~ are the scattering angles in the CM system. The matrix 
elements fs ' m ', sm(Q) of eqs (1), (2) are given by: 

(x) - Calculations of this kind (with a central plus spin-orbit potential, 
but assuming the target spin to be zero!) have been applied to the 
p_3He scattering too(7). The order of magnitude of depth and ra­
dius of the central potential of tef. (7) are in good agreement 
with ours. A detailed discussion on the spin dependent forces was 
there impossible, because of the lack of experimental information. 

(0) _ See for example refs. (8), (9). 
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( 3) 

00 

f" (Q) = f (Q) d , X , + i fi 
s m ~ 8m c ssm rn L. 

1=0 

1+s j+s' 

L. 
j= Il-si 

L (slmO!im)(s'l'm', m-m'l jm) 
1'= Ij-s'l 

The symbols s'm' and sm indicate spin and projection of the output cha!! 
nel and entrance channel respectively, and j is the total angular momen­
tum. In eq. (3) WI is the coulomb phase shift as defined in ref. (8) and 
fc(Q) is the coulomb scattering amplitude, given by equation 

(4) 
"I ,1-cosS 

fc(Q) = - --:(-'-I--c-o'-S-Q-:-)- exp (-11 1n 2 ), 

where ., = Zlz2e2/ftV. In the most general case, if one takes into ac­
count the mixing parameters between singlet and triplet states (t-jl, and 
between states of th~ same parity (t:j), the relations between S matrix 
and phase shifts d ~l read: 

(5a) 

(5b) 

he e ~ "'"'," 1\ , w r .:::::!,:!..,_ '_1 U, are two dimensional matrices, defined as fol 
lows ( )" fJ. = 0, 1): 

(6a) " = d exp2i( W ,+ S j, ,), 
AfJ.).fJ. J "J 

(6b) 8 =SJ1' '1+2' l' 1+2' N,,,=lJ,,,exP2i(kl
J
'_1+2,+oJ1',J'_1+2\)' 

XfJ. ,J- ,,; ,J- fJ. ",..",.. A " 

cosx sinx 
(6c) U(x) :: ( , 

- -Slnx cosx 
) . 

In Sand P waves approximation, the S matrix elements are gi­
ven by the following expressions ( £ 1 :: E..) : 

(7a) Ss - 2' ~ s 
O 0 - exp 1 0 

S ,s s 
(s=O,1). 
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(7b) (j=O,2), 

(7c) 

(7d) 

(7e) 

It is well known (see eq. 1) that in general the cross section 
analysis leads to an indetermined problem, because the number of un­
known phase shifts is higher than the number of angular distribution coei 
ficients extracted from the experiment. On the other hand, contempor~ 
ry analysis of cross section and polarization leads to overdetermination. 
In the first case the problem is unsolvable, while in the second one the 
conditioned best fit procedure for the extraction of the coefficients leads 
to a system of nonlinear equations. The case of a pure Sand P waves 
interaction between charged particles without mixing terms is an important 
exception, because in this case the cross section depends on six phase 
shifts and six independent coefficients, while the polarization contains 
four phase shifts (i. e. it depends on the triplet states only) and four coef 
ficients. This means that a separate analysis of cross section and polarl 
zation is expected to lead to unambiguous determination of the angular dl 
stribution coefficients for the two curves. Once these coefficients are 
known, all phase shift sets compatible with G"" (Q) from one hand, and 
P(Q) from the other, should be calculated by solution of simple trigono­
metric equations (see Appendix). The problem of ·the consistency between 
cross section and polarization should be considered as a final stage. 

Unfortunately, a direct application of the method is unwieldy in 
our case, because of the weakness of the interference between coulomb 
and nuclear scattering amplitude. In fact the best fit on experiments 
leads to interference coefficients which are completely meaningless. 
In spite of this, if one solution has been found by means of the usual v~ 
riational procedure, the equations of the Appendix can be employed in o£ 
der to derive all the other solutions, able to give the same cross sect­
ion or the same polarization curves. 

This way has been followed in present calculations, starting 
from the phase shifts of Table II, ref. (3). 

First of all these phase shifts have been improved by minirni 
zation of the mean square error /';. defined as follows: 
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1 

_ { -1 ~ [ "exp(Q>.)- b(Q~) 2 P exp(Q" )-P(Q>.) 2J} 2 
A - (2N) L. ( ~I>(Q) ) +( ~P(Q) ) , 

"=1 . oX ). 
( 8) 

where the experimental polarizations Pexp are taken from ref. (5), whl 
Ie the cross sections <') ex are obtained by interpolation of the results of 
Tombrello et al. (2) and MtDonald et al. (4). Symbols .6P and .610 indi 
tate experimental errors. The expressions of P and 6' are given by eqs 
(1), (2), (3), (4), (7). The phase shifts and the mean square errors ob­
tained are quoted in Table la. The mixing parameter i: has been found 
to be zero (within the limits of experimental errors), in the whole ene.':: 
gy region here considered. 

Figures 1 and 2 show that the phase shifts la match perfectly 
with those of ref. (3). Small differences are found only at very low e­
nergies, where the analysis by Tombrello was carried out without the 
experimental knowledge of the polarization. An example of the small 
discrepancies at the very low energies is given in Figs 3 and 4. 

The phase shifts of solution (a) have been then transformed by 
means of the formulas of the Appendix, in order to find all solutions a­
ble to reproduce equally well the cross section (polarization). The pha­
se shift sets leading to completely wrong polarization (cross section) 
were immediately rejected. The remaining solutions have been finally 
subjected to a new process of mean square error minimization (see eq. 
8), in order to find the best values for contemporary reproduction of 
cross section and polarization data. The solutions (b), (c), (d) of Ta­
ble I represent the final result of the procedure. 

Solution (c) exhibits, as compared to solution (a), inversion 
of the S doublet except for some anomalous points/and different beha­
viour of the P singlet. Solutions (b) and (d) show inversion of the firsts 
two P triplet levels, while the remaining phase shifts are nearly e­
qual to those of solutions (a) and (c) respectively. 

The solution sets (b), (c) and (d) have been extrapolated at the 
energies of 5.51 and 6.82 MeV, using the experimental data of McDonald 
et al. (4), and introducing the mixing parameter E and two D phase shifts 
(~62 '" 0 02, "b = d I2 = a r2'; ;S 12). The results are listed in Ta­
ble II, together with extrapolation of solution (a), taken from ref. (3). 
All solutions seem to be continuous in energy up to the values here con­
sidered. The D phase shifts have, almost in all cases, negative values. 

For solutions (a) a nd (c) we have calculated the effective range 
parameters relative to the singlet and triplet S wave (as, ros, at, rot), 
and the scattering lengths corresponding to a pure nuclear interaction 
(a~, arlo (For details see refs (10) and (11)). 

The behaviour of the S phase shifts relative to solutions (b) and 
(d) is very similar to that of solution (a) and (c) respectively. 
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FIG. 1 - Behaviour of the phase shifts ~ ~O(o). b ~O(.) and & 61 (fj ) vs. 
energy. The phase shifts relative to energies lower (hlgher) 
than 5 MeV. are those of Table Ia (Table II of Ref. (3)). 
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FIG. 2 - Behaviour of the phase shifts S ~1 (0). & i1 (.) and & i1 (Ll ) vs. 
energy. 
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FIG. 4 - Polarization at the energy E = 3.22 MeV. The experimental 
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Fig. 3. 
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TABLE I 

Phase shift sets extracted from cross section and polarization exp~ 
riments below 5 MeV. 

E 0 0 1 0 1 2 
(MeV) - ~ 00 - d 10 b 01 ~ll all Sll !:> 

2.38 36.0° 35.4° 12.8° 4.4° 15.3° 18.8° 1. 89 
2. 61 36.2° 39 • 6° 15.8° 5.9° 18.1° 21.1° 0.56 
2.89 38 8° 39.3° 17.6° 5 7° 19.5° 26.4° 0.87 

(a) 3. 22 44.6° 41.0° 19.7° 5.7° 23.4° 32.0° 0.46 
3.54 43.1° 45.5° 22.0° 8 9° 24.4° 36.1° 1.00 
3.84 45.5° 47 6° 23 4° 8.2° 27.2° 39.5° 0.98 
4.15 46.8° 48.8° 23.4° 8.8° 31.3° 43.7° 0.85 
4.46 49 8° 51.4° 22.8° 11.6° 33.3° 45.8° 1.82 

2.38 38.0° 33.4° 14.8° 21.2° 8.2° 21.0° 1.88 
2. 61 37.2° 38.6° 16.8° 20.2° 9.5° 22.0° 0.62 
2.89 40.8° 37.3° 19.6° 23 5° 8.7° 28.0° 0.92 

(b) 
3.22 44.6° 39.0° 21. 7° 28.5° 11.5° 34.0° 0.56 
3.54 42.1° 44.5° 23.0° 28.0° 13.0° 37.0° 1.08 
3.84 42.5° 44.6° 26.4° 33.5° 13.0° 42.0° 1.08 
4.15 44.8° 46.8° 25.4° 36.4° 15.7° 46.0° 1. 14 
4.46 45.8° 49.4° 24.8° 42.0° 16.0° 48.0° 2. 15 

2.38 36.2° 34.7° 19 1° 4 3° 14 7° 18.5° 1.83 
2.61 41.3° 37.9° 20.1° 5.0° 16.1° 19.8° 0.55 
2.89 39.6° 39 1° 24.5° 7.6° 14.6° 24.7° 0.86 

(c) 3.22 38.2° 43.8° 29.3° 4.3° 18.8° 28.0° 0.48 
3.54 46.7° 44.3° 33.2° 8.4° 19.3° 32.6° 0.94 
3.84 47.7° 45.6° 37.5° 3 4° 23.1° 36.0° 0.70 
4.15 52.8° 46.8° 43.1° 5.3° 23.6° 38.1° 0.73 
4.46 55.2° 49.6° 46.7° 7.0° 26.0° 38.8° 1.73 

2.38 37 1° 33.7° 20.1° 17.7° 7.2° 19.5° 1.89 
2.61 42.3° 36 9° 21.1° 19.2° 8.2 2 0.8° 0.57 
2.89 40.6° 38.1° 25.5° 17.0° 10.0° 25.7° 0.90 

(d) 3.22 36.2° 43.8° 29.3° 23.5° 9.7° 30.0° 0.52 
3.54 45.7° 43.3° 34.2° 20.5° 12.0° 33.6° 0.98 
3.84 49.7° 41.6° 41.5° 30.0° 8.0° 38.0° 0.74 
4.15 51.8° 43.8° 46.1° 28.0° 10.2° 39.1° 0.68 
4.46 58.2° 46.6° 49 7° 26.5° 15.5° 39.8° 1.41 
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In the best fit procedure, experimental data of Tables la, Ic, 
IIa, IIc have been considered. For higher energies the behaviour of the 
experimental phase shifts is no longer accounted for by the effective raE. 
ge formula. 

The results are shown in Table III, where a~ and af are also col!! 
pared with values obtained by Szydlik(12), for the n - 3H interaction. The 
overall error relative to the evaluation of the effective range parameters 
is presumably higher than the small discrepancies observed in the Ta­
ble. It is however worthwhile to note that solution (c) agrees better with 
ref. (12), because it gives a~ > ar. 

Finally, an S, P and D waves analysis of the experimental data 
has been performed by means of eq. (8), assuming as starting values 
the Sand P phase shifts of Table I, and zero D phase shifts. Very small 
D phase !3hifts « "'1 0 ) have been obtained in the whole energy region. 
This result confirms "a posteriori" the assumption of paragraph 2, and 
justifies the approximations which will be introduced in paragraph 3. 

3 - POTENTIAL CALCULATIONS -

form: 

(9) 

where 

( lOa) 

(lOb) 

( 10c) 

( 10d) 

Let us consider a nucleon-nucleus potential of the following 

V O(r) = -Uog(r) + V c(r), 

V 6"'6'"" (r) = - U <>,;-g(r), 

In eqs. (10) M1T is the pion mass, g(r) gives the radial wave 
function which will be defined later, and V c is the usual coulomb poten­
tial, namely 

(11a) 

( 11b) 

Vc(r) = [zlz2e2j2RJ [3_(rjR)2) for r~R, 
2 

V c (r) = ZI Z2e jr for r > R. 
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TABLE II 

Extrapolation of the phase shifts of Table I to higher energies. 

E 0 1 1 0 1 2 
"02 ii12 6. 

MeV - ~Oo - ~10 " 01 
~11 ::5

11 
d

11 £. 

(a) 
5.51 53.2° 59.9° 24.3° 13.8° 38.6° 54.4° _5.4° _1.2° _0.9° 0.56 

6.82 59.0° 67.5° 23.1° 16.7° 46.2° 59.8° _9.9° -0 3° -4 7° 0.67 

(b) 
5.51 53.5° 57.0° 25.5° 53.0° 20 0° 57.0° _3.0° _2.0° 6.0° 1.13 

6. 82 62.0° 65.0° 27.00 61.0° 27.0° 63.0° -4.0° _2.0° 8.0° 1.98 

5.51 61.0° 60.0° 57.0° 14.0° 31.0° 40.0° 0.0° _2.0° 8.0° 0.51 
(c) 

6. 82 70.5° 65.0° 67.0° 16.5° 34.0° 45.0° _2.0° _2.0° 8.0° 0.71 

5.51 62.0° 59.0° 57.0° 35.0° 22.0° 42.0° 0.0° _2.0° 8.0° 0.46 
(d) 

6.82 69.0° 66.0° 63.0° 42.0° 24.5° 48.0° 1.0° _3.0° 10.0° 0.69 

TABLE III 

S-wave effective range parameter (in fermis). 

n n a rOs at rOt a at s I s 

P _ 3He (sol. a) 8.45 1.38 8.45 1. 62 3.50 3.72 

P - 3He (sol. c) 7.94 1.96 7.89 1.62 3.89 3.60 
3 (ref. 12) 3.38 3.25 n- H -- -- -- --

Since we are interested mainly in a qualitative discussion on the 
effect of the various potential terms on the interaction, we start from a 
simple square well radial shape, which leads to straight-forward integra 
tion of the Schr(ldinger equation. Namely -

( 12a) 

(12b) 

g(r) = 1 

g(r) = 0 

for r ~ R 

for r > R. 
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At the end of the paragraph the effect of a more realistic diffu­
sed potential will be shorthly discussed. 

By considering first only central, spin-spin and spin-orbit fo£ 
ces, the radial part of the Schr1:ldinger equation for the state \ jsl '> reads: 

( 13) 

{(fl2/2M) [_d
2
/dr + l(l+l)/r i ] +Vc(r)­

- [Uo + UG'"E> (2s (s + 1)-3)1 girl + 

+(fl/M c)2(U
l

· /2)(j(j+1)-l(l+I)-s(s+1))(1/r)( '0 g/'d r) -
TI S 

where Mp is the proton mass, M the reduced mass of the system and E 
is the energy in the laboratory frame. Introducing eqs (12) into eq. (13), 
and approximating the coulomb potential inside the nucleus by the con­
stant Vc(R) = ZlZ2e2/R(*), the connection between phase shifts and po­
tential parameters is simply given by the following equation: 

(14) 

P~(p)cot [S!l + ~~(p)l = flsFl_ l(fls)/Fl(fls) -

-l-S~ (p) - (M/fl
2

)(fl/ M TIc) 2Uls (j(j+ 1 )-l(l+ l~-s (s+ 1 )), 

where Fl is the regular solution of the Schr1:ldinger equation for positive 
energy free neutral particles, PI' Sl' ~~ are penetrability, shift factor 
and hard sphere phase shift for charged particles(8). The external and 
internal momenta are defined as follows: 

(15a) p = [(2M2/1't2~)R2E] 1/2, 

(15b) fls = [(2M/1i
2

)R
2

{UO + [2s(s+1)-3J US6"}+p2-2Il)PJ1/2. 

Let us consider finally the tensorial term V T. It is well known 
that the tensor interaction leads to coupling of triplet states with same 
parity and same j. Therefore, a rigorous approach to the problem would 

(*) - It can be easily shown that the error introduced by this approxim~ 
tion is irrelevant. In any case, after the potential parameters we­
re obtained under this assumption, all phase shifts have been re­
calculated by numerical integration, using eqs (11) for Vc and a 
Wood's and Saxon form with very small diffuseness for gIrl. The 
phase ffi ifts obtained were in agreement with those derived from 
eq. (14) within less than 10. 2: ~ 6 
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require new phase shifts analyses, taking into account higher angular 
momenta and mixing coefficients £j (see eq. 5b). Nevertheless, in the 
framework of our crude model, at the very low energies considered h~ 
re, a useful approximation devoted to evaluate the order of magnitude 
of the effects could be that of neglecting couplings, and considering only 
the diagonal terms of the tensor operator. 

Equation (13) is then modified by taking into account the dia­
gonal terms of the operator S12' which are given below for easy refe­
rence: 

( 16a) 

( 16b) 

( 16c) 

< j, 1, j-1 I S121 j, 1, j-l '> = -2(j-l}/(2j+l}, 

< j, 1, j I S 121 j, 1, j '> = 2, 

< j, 1, j+l I S12\ j, 1, j + 1) = -2(j+2}/(2j + I}. 

The analysis of all the solutions of Table I in the ligth of the the£ 
retical approach outlined above, leads to the following conclusions: 

- All solutions show a very small splitting of the S doublet. The spin-spin 
interaction must than be small, and will be neglected throughout. 2 

- In solution (c) and (d) the phase shift J 61 is in general higher than all. 
Now, if we assume V = V c we have obviously ~ 61 = ,s- i l' If V T is ad­
ded, it can be easily seen from eq. (16) that d il is only slightly varied 
(unless exceedingly large VT values be introduced), while the introduc­
tion of VIs (of the usual sign), can only rise the phase shift S'il' The 
conclusion is that solutions (c) and (d) cannot be reproduced by our m£ 
del. This conclusion is confirmed by actual calculations, and is widely 
independent on the radial potential form. 

Let us then consider solutions (a) and (b) from a more quantita­
tive viewpoint: 

- Solution (a) shows the P triplet sequence as expected from a spin-orbit 
interaction, but it can be easily seen that a pure spin-orbit force is not 
able to reproduce the experimental splittings. In fact, from eq. (14) one 
can derive the following relation among the phase shifts of the P triplet: 

which is strongly violated by the data of Table I. The tensorial term is 
then needed, and these conclusions are supported by calculations per-

(!t) - The relation (17) is independent on potential strengths VO' V <>6- , 

VIs' and only slightly dependent on the nuclear radius R, through 
the slow varying function ~i(p}. It is also independent on the appr£ 
ximation given for the coulomb potential. 
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formed by a Wood and Saxon potential (see forward). 
The best fit with experience has been obtained by means of the follo­
wing parameters: 

(18) R = 2. 62f; Vo = (35.62 - 1. 08E)MeV; V~s- = O. 

(19) VIs = 3MeV; VT = 1 MeV. 

In Figs. 5 and 6 the comparison between calculations and experiments 
is shown. The P triplets obtained by pure spin-orbit interaction are 
drawn with dotted lines. 

- In order to reproduce solution (b), the tensorial term is expected to 
be more and more important, because the phase shifts d i 1 and d ~ 1 
must be inverted. A satisfactory agreement with experience (see 
Figs. 7 and 8), has been obtained with the central potential parameters 
given before, and with the following values of VT and VIs: 

( 20) VIs = 2MeV; VT = -lMeV. 

It must be said for completeness that neither solution (a) nor (b) can 
be reproduced by a pure tensorial interaction. 

As a final step of the analysis, solution (a) has been analyzed 
with a Wood and Saxon's potential, in order to ascertain that the general 
conclusions which have been drawn, are independent on the radial form 
of the interaction. The expression 

(21) g(r) = [1 + exp { (r - R)/aJr
1 

has been substituted into eqs. (10), and the Schroedinger equation has 
been numer.ically integrated by means of the electronic computer. 

Starting from parameters (18) (19), and assuming initially a d~ 
fuseness a = O. 5f, the phase shift behaviour has been studied for varia­
tion of all potential parameters. It has been found that, as in the square 
well calculations, both spin-orbit and tensor interactions are needed in 
order to reproduce the P triplet. We may say therefore that the qualita­
tive conclusions drawn in the square well approximation continue to 
hold even when a diffuseness is introduced into potential. The following 
values of the parameters 

(22) 
R = 2. 37f; 

VE>s- = 0; 

a = O. 5f; 

VIs =4MeV; 

Vo = (38. 7-1. OE)MeV; 

VT = 1.3 MeV. 

give a phase shift behaviour similar to that of Figs. 5 and 6, which re-
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FIG. 5 - Solution a: The phase shifts S gO(O), & tole) and ~ 61 (h) are 
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FIG. 7 - Solution b: comparison between phase shifts S gO(O). 
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present the best agreement with the experiment obtained by us. It is ne­
vertheless believed that a more systematic analysis (which unfortunate­
ly requires long calculation times) should probably improve slightly the 
fit. 

Finally the potential model can be used in order to calculate the 
D phase shifts, whose experimental determination is very uncertain. 

The problem of extrapolating the potential parameters is cu~ 
bersome, because the linear dependence of Uo and the approximated 
treatment of the tensor interaction are expected to fail as soon as the ene£ 
gy is raised. It is nevertheless reasonable to expect, from these calcu­
lations, realistic indications at least on the sign of the D waves. We ha­
ve found, at the energy of 4-5 MeV, small (~ 1 0 ~ 20 ) and positive values 
for the 4 D phase shifts, in contrast with the calculations performed by 
us (see Table II), and with the results of Ref. (3). These conclusions are 
stable against sensitive variations of the potential parameters, and in­
dependent on the employment of the square well or Wood and Saxon ra­
dial form. 

CONCLUSIONS -

Four phase shift sets have been obtained, able to reproduce 
cross section and polarization curves between zero and '" 7 MeV. Only 
solution (a) has for the moment the support of higher energies calcula­
tions. 

On the ground of the interaction form here considered, only so­
lutions (a) and (b) can be accounted for by a potential model. Both spin­
-orbit and tensor forces seem to be necessary and also sufficient (within 
the limits of experimental errors), in order to reproduce these solutions. 
On the contrary spin-spin forces are negligible in all cases. 

It is believed that a definitive word on the discrimination will 
be said by experiments with polarized protons scattered by polarized 
targets. We are not able, for example, to exclude completely solutions 
(c) and (d), but we only say that these solutions should require comple­
tely different potential forms: for example potentials not spherically sy~ 
metric in spatial coordinates. 

Of course one should not be surprised if further experiments 
would disclose that more realistic potential forms are needed, in order 
to account for possible "anomalous" phase shift behaviour, arising from 
the well known anomalous properties of the He 3 system. 
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APPENDIX -

In the approximation lmax = 1, and neglecting mixing parameter, 
the differential cross section (1) reads: 

(AI) 
6 

k 2 6'(Q) _ If (Q) 12 = L A a (Q), 
c n=l n n 

where the angular functions an (Q) and the distribution coefficients An can 
be written as follows: 

(A2a) 

(A2b) 

(A2c) 

(A2d) 

(A2e) 

(A2f) 

(A3a) 

(A3b) 

(A3c) 

(A3d) 

(A3e ) 

(A3f) 

2 a
1 

(Q) = 1-3 cos Q, 

a
2

(Q) = cosQ, 

a
3

(Q) = Re [fc(Q)1 + ~ cos
2

Q, 

a 4 (Q) = 1m Ifc (Q)1 ' 

a
5

(Q) = Re [fc(Q)} cosQ + ~ cos2 WI cos
2

Q, 

- ] 3 2 a
6

(Q) = Im Lfc(g) cosQ +"2 sin 2 ()J 1 cos g, 

cos2 S~o + 3cos2 S~o = 4(1-A 3), 

sin2 ~ 80 + 3sin2 (j to = -4A4, 

3cos2 Q ~1 (cos2( /oJ 1- S ~0)-COS2( WI - ~ 1 »_ 
10 

-3Sin2d61(Sin2(W1 - ~~o) - sin2 (W 1 - ¢~o»" 

= 8A2-4A5(1-COS2'S~0) +4A6sin2d~0+3COS2(W1- ¢~o)­

-3cos2 (W 1 - 6 ~o)' 

cos2( tv1 + ¢ ~1) + 3cos2( tv 1 + ~ ~1) + 5cos2( 6J 1 + d ~1) = 

=12cos2 W l - 3cos2( /Ai 1 + S ~1) - 4A
5

, 

sin2( WI + 6~1) + 3sin2( WI + 'S ~1) + 5sin2(t<! 1 + J ~1):: 

=12sin2W
1 

- 3sin2(W
1 

+ ct~l) - 4A
6

, 

4COS2(6~1 - S~l) + 9cos2 ('S~1- d~1)=13+16A3-32A1' 



19. 

If the coefficients An are known from experience, the solution 
of the trigonometric system (A3) leads to determination of the phase 
shifts, with certain mathematical ambiguities. The solution of the system 
and the mathematical ambiguities encountered will be now briefly discu~ 
sed. 

The system of equations (A3 a, b) is very well known from the 
analysis of the scattering between 0 spin and 1/2 spin particles(13). We 
write down, for easy reference, the system in a more general form, 
and the resolutive formulas: 

(A4a) xcos d. + ycos fb = u, 

(A4b) xsin d. + ysin fb = v. 

(A5a) cos r:J. = F+(12, u, v)/x, 

(A5b) sin cS. = F +(il, v, -u) /x, 

(A5c) cos(3 =F (il. - , u, v)/y, 

(A5d) sin /'> =F (..!l - , v, -u)/y, 

where 

(A6) { 
\, 2 2 2 21 

F +(.0.., p, q) = p L(p + q ).:!: (x - y )1 ± 

[ 
2 2 2 2 2 2) 1/2} { 2 2}-1 .:!: Jl.q (2xy) -(p +q -x -y ) 2(p +q ) • 

Assuming in eqs (A5). (A6) either ll...= + 1 or .n. = -1, we obtain two so­
lution sets, which satisfy equation 

(A 7) oi. (jL= 1)- /l (ll. = 1) = A1>- =-1) - ~ (JL=-l), 

and represent an ambiguity known as the Fermi-Yang ambiguity in the 
case of the 1T+ -p process. 

By particularization of the formulas (A4), (A5), (AS) to the ca­
se (A3a, b), two S wave doublets are obtained. 

The eq. (A3cl. considered now in the unknown .s~1 has the form 

(AS) xcos r:J. +ysin 0(' = z, 

and can be solved by the following expressions: 

(A9a) [ "2 2 2] [2 2] -1 cosO<: = xz+Jl.YVx +y -z x +y , 
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(A9b) [ 
,/ 2 2 2J [2 2J-1 sino{ = yz - .fl.x V x + Y - z x + y • 

By means of eqs (A9), we obtain two values of the singlet P ph~ 
se shift, for each one of the S doublets found above. 

The system (A3d, e, f) can be solved for example by parametri­
zation in respect of the phase shift d fl. By this procedure the system 
(A3d, e) assumes the form (A4) (in the unknown ;S ~ I' S t 1)' and is im­
mediately solved through eqs (A5). The eq. (A3f) is then employed as a 
"freezing" condition. One gets this way four sets of P triplets for each 
one of the sets found before. The four P triplets (corresponding to the 
same S and singlet P phase shifts) satisfy the following equation(14): 

(A10) (j=O, I, 2) 

We have therefore in general 24 = 16 solution sets, which give 
the same differential cross section. In practical cases the total number 
of mathematical solutions can be reduced drastically, because several 
of the sets now discussed happen to be imaginary. 

In the same approximation, the polarization can be put into the 
form 

4 
(All) P(Q)k

2 
G"(Q)/sinQ = ~1 Bnbn(Q) 

where the angular functions bn(Q) are: 

(A12a) b 1 (Q) = I, 

(A12b) b2(Q) = cosQ, 

(A12c) b
3

(Q) = Re Ifc(Q)) , 

(A12d) b4 (Q) = 1m [fc(Q)], 

and where the coefficients Bn satisfy the following equations: 

(A13a) 

(A13b) 

B 2cos2( ~~O + W1)+B 3sin2( d~O+ 1I-\)=-2Bo+B 2, 

B2cOS2(~ ~1+ l.u 1)+B 3siIi2.( S ~1+ ~\) = 

= -(2/3)B 1+B 2cos2 W1+B
3
sin2 WI' 

• 

• 



, . 

• 
• 

(Al3c) 

(AI3d) 

o ,1 
2COS2(~11+ ()\)+3cos2(CJ ll + "'1) = 

=8B 3+5cos2( d il + "'1), 

2sin2( b ~1 + W 1)+3sin2( O~1 + tv 1) = 

= - 8B2 + 5sin2(b~1 + WI). 

21. 

The eqs. (A13a, b) have the structure (A8), and can be solved with 
formulas (A9). We obtain therefore two values of the phase shift d ~ and 
(independently) two values of S ~1. Finally, the system (A13c, d) (in ~he u~ 
knownS~ ~l and ~ b) is equivalent to the system (A4) and gives two dou­
blets (j ql d'il (for each one of the two ~ h phase shifts) which are conne£ 
ted by the Fermi-Yang ambiguity. Since these P triplet states can be combi 
ned indifferently with both S triplet solutions, we have altogether eight pha 
se shift sets, which give rise to the same polarization curves. 
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