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INTRODUCTION -

The value of the coherence energy r is one of the most important 
informations one can draw from the analysis of the fluctuating excitation 
function (studied with good energy resolution) ' of a reaction in which 
the compound nucleus is excited in the continuum energy region. (1,2) 

A method to obtain a correct value of r I from an analysis of e~ 
perimental results, has been already shown(3, 41, 

In this paper we now derive the theoretical expression of r (in the 
framework of the statistical model) that must be compared with the exp~ 
rimental value for a given reaction. 

In Section 1 we report the theoretical expression of r, usually 
compared with the experimental values, pointing out the approximations 
introduced. 

In Section 2 we discuss the validity of such approximations and de 
rive more correct expressions for r, in the case of integrated cross- -
sections and purely statistical reactions. We show that r is a weighted av~ 
rage over spins, energy and parity, of the widths of the C.N, levels in
volved in the reaction, 

In Section 3 the influence of non statistical effects on the value of 
r is studied. 

(x) - Work supported by the Research Contract Euratom-CNEN/INFN. 
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In Section 4, at last, we examine the dependence on the emission 
angle g of the r deduced by the analysis of a differential excitation func
tion. 

SECTION 1 -

Let us consider a reaction which proceeds, at least partially, 
through the formation of a C. N. in the continuum energy region. 

All the C. N. levels involved in this reaction are characterized by 
a widlh r](E) function of their energy, spin and parity. The coherence 
energy r characterizing the fluctuations of the excitation function, is gi
ven by a' weighted average over energy, spin and parity of all the r Y(E). 
The statistical model gives for r Y(E) the following expression: 

E
Max 
>' '\ 1 x " (\-I) .", '\ L dE" POy(E.,)LTl , (Ey ) L LF(j) 

v 0 I' s' j 
( 1 ) 

DJ(E) is the spacing, at the energy E, of the C. N. l evels of definite pari 
ty and spin J, Po" (Et) gives the energy dependence of the density of the 1~. 
vels of definite parity of the residual nuclei v to whic h the C. N. may decay, 
T~1') are the transmission functions of the particles emitted in each of the 
allowed final channels, F(j) = (2j+l) exp (-j(j+l)!.2 S~) gives the spin depen 
dence of the residual nuclei level densities, S.} is the spin cut-off facto;::. 

In the analysis of the fluctuations, a great semplification is obtai
ned making the following approximations: 

a) The spin cut-off factors are considered infinitely large. In this 
approximation a ll the exponential terms appearing in the spin distribution 
of the level densities are equal to unity and I~ j(E) C>t rX(E), being 

(2) 
D (E) 

r x (E) = --.:0-,-_ 
2,,2 

L (2i,,+ 1) 
v 

where S:(E y ) is the inverse cross-section. 

b) Be E 2 -E l the energy interval in which the excitation functions a 
re measured. In this interval rX(E) is assumed to depend weakly on E 
and to be approximately equal to rX(E) with E = (E l + E 2)/2. 

If, as it is usually done in the analysis of the experimental results(,5) 
the approximations a) and b) are assumed to be valid, it is: 

5t 
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SECTION 2 -

In this Section we examine the extent of validity of the approxima
tions a) and b): at first we consider only integrated cross sections and p!:! 
rely statistical reactions, 

The approximation a) is rather rough, particularly for light nuclei 
(A :$ 50). 

Let us consider a nucleus with A ~ 50, 'd be the moment of inertia 
of the rigid nucleus (at present experimental data seem to indicate that this 
is a limit value for the moment of inertia. )(6) and t =l, 5 MeV the nuclear 
temperature(x) (we assume an excitation energy E -:::: 16 MeV, reasonable 
value for the excitation energy of the C. N.). Taking R = 1.4 A l /3 fm" we get 

2 ci..! 
s = -~2 = 19.2 

With such a value of S 2, varying J from 0 to 5, the term 

exp(-J(J+1)/2 ~2) 

appearing in the expression of D,J(E), varies from 1 to 0,46. The appro
ximation is really poor and it becomes worse as A and E decrease, Ta
king into account all the exponential terms which give the spin distribu
tions, r ;(E) depends on J, decreasing as J increases, For example, in 
the case of the C. N. Sc45 at an effective excitation energy(+) E = 16.25 MeV, 
there is a factor 2 in the r :J(E) values for J = 1/2 and J = 11/2. (Here 
and in the following we use the level density expression given by Lang and 
LeCouteur(8) with the "a" parameters of ref. 7). 

For lighter nuclei the dependence of r ;(E) on J still increases: 
for instance in the case of Si 29 at E ~ 17.5 MeV, r J(E) changes of a fa£ 
tor 3 going from J=1/2 to J=11/2. 

The absolute values of r j(E) and rK(E) so calculated may be no 
correct: in fact while the level density p(E) we have used, appears to be 
correct for E ~ 10 MeV, it seems to increase too much with the energy 
for E ~ 10 MeV(10). However, at a given energy, expression (1) should 
allow to evaluate the behaviour of r j(E) with J, with a small error. 

Going back to the examples cited before, the value of rK(E) re
sults to be larger than r 1/ 2(E); in general it is larger than the r j(E) 
corresponding to the minimum J allowed, the largest of all the I' j{E). 
It is so an over-estimation of the correct theoretical value of the cohe
rence energy r which, indeed, is a proper average value of the different 
r J(E) given by the statistical model. 

(x) 

(+) 

- We have calculated t from the relation E = at 2 - t assuming the value 
of the parameter "a" given by Erba et al. (7f:" -

- The effective excitation energy E is given by the relation E = U - l:, 

where U is the usual excitation energy and Li. the pairing energy as 
given by C ameron( 9). 

r ( 0 , 
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Approximation b}: the expression (l) gives the energy dependence 
of r j(E}. We limit our considerations to the case of a quite slow varia
tion o~ r J(E} with the energy. If A E is the energy interval in which the 
excitation function is studied, in such a case, it is reasonable to assume 
that A E can be divided in i sub-intervals b 'E into which, although the 
excitation function shows ;;-any fluctuations, all the r j(E} may be consi 
dered approximately c'"lTIstant(x}. In the energy interval iJ E toghether with 
the r'Y(E). in general will vary with E the average statistical cross-se£. 
tion ","c(E} around which the fluctuations occur(l1} and the number N(E} 
of uncorrelated channels equally contributing to the reaction: 

Jlsl's' f'J 

Let us assume both \;)c(E} and N(E} almost constant into each sub
-interval A 'E. We consider now only the energy dependence of the theo
retical expression of the coherence energy r (the average over spins and 
parity is supposed to be already done): let r (E) be the averaged value of 
the r j(E} at a given energy E. 

In the case of the integrated cross-section, it is possible to show, 
in a simple way, that 

(3) 

(x) - The ideal case we examine approaches more and more real situations, 
as the mass number of the examined C. N. increases; however our as
sumption becomes already correct for A !>. 30. In the case of Si 29, for 
example, for 17 .5 <. E <19.5 MeV the various P Y(E} are of the order 
of some ten KeV (lO-50 KeV) and in an energy interval of about 1 MeV 
their relative variation is of the order of 20 - 30%; the relative chan
ges of the r ~(E) are observed on the values calculated with the ex
pression (l) and the level density used before. If, for E> 10 MeV the 
true level density increases slowlier than the one we used, the relatJ: 
ve change of the r Y(E} decreases and our conclusions are still more 
valid. By increasing E the absolute values of the r Y(E} increase, but 
their relative change decrease; for example for 19.5 < E < 22.5 MeV 
the values of r Y(E} range between 20 and 90 KeV, but over a larger 
energy interval of about 1.5 MeV, their relative variation is still of 
the order of 25%. 
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where the brackets have the meaning of an average over the complete e
nergy interval A E, 

An approximate method to relate r to the various r (Ek) is the fa.! 
lowing: in the hypothesis of a slow variation of the rj(E) with E, Ftot( f ) 
has approximately the shape of a Laurentzian curve of half width r , 

Then we may write: 

(4) F
tot 

(0) 

Writing explicitly this expression, with Ftot(~) given by (3), negle£ 
ting r 2(E

k
) with respect to (nr)2, when n _ 00, one gets 

{"2 ['S"c(Ek)] 2 
k=l I (Ek) N(Ek) 

(5) ± t O"c(Ek )j2 

k=l N(Ek ) 

This method of expressing r in terms of the r (Ek ) is a very good 
approximation when expression (3) is valid, As an example of this state
ment, in fig. 1 are plotted the functions W(t:) and V(.£) in a limit case, 

A.U. 

3&0 

r 2. 3. 4. 

WIll • 

Y It! • 

FIG, 1 - Comparis')n, as a function of £., of 
the functions V( £) and W( () described in the 
text, 

I. t 
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They are given by· 

r2(Ek) 
2 

i [6'C (Ek ) ] 
W( [.) = ~ 2 2 

k=l £. + r (Ek ) N(E
k

) 
and 

V(t) 
['2 

= 
t 2+ r2 

i [oC(Ek )]2 

k=l N(E
k

) 

with r 2 as from expression (5). The assumptions we made are the following: 
a change in the r (Ek) of a factor 3 in the interval 4 E divided into the l. 
sub-intervals LI'E; in the same interval we have su.pposed that the terms 
[6"c(Ek)]2 /N(E k ) vary with a quadratic law: [G'c(Ek)J 2/N(Ek) = K E~, with Ek 
ranging, with discrete values, from /J'E/2 to L\E-(Il'E/2) being LIE and Ll'E 
the intervals already defined; l. has been chosen equal to 9. The experimental 
data seem to indicate that a variation like the one we have chosen for the 
quantities defining W( E) and V( ~) is possible only over an energy interval 
larger than 5 MeV for nuclei with A :0: 30, larger than 2.5 MeV for A :0: 45 
and larger than 2 MeV for A :::-60. In the case we examined r (E) approxi 
mates {' (bein~ E = IlE/2) within 300/0. When the relative change of the -
r(Ek ) and the L bc(Ek1l2/N(EkL in the considered energy interval, de
creases, the function V( £ ) is still a very good approximation of the func
tion W( f. ) and the approximation r ~ r (E) becomes better. For example 
if the r (Ek ) vary as we have already assumed, but the terms [6' c(Ekl] 2/ 
/N(E k ) change only of a factor 2 in the energy interval LlE, the preceeding 
approximation would give an error of the order of 100/0. 

From the preceeding considerations one deduces that the approxi
mation a) is no good indeed, while approximation b) may, in some cases, 
be correct enough (in general for high values of the incident energy). In 
general however, once the average over the spins and parity is made, one 
should calculate r with expression (5) before comparing the theoretical 
previsions of the statistical model with the value obtained from an analy
sis of the experimental data. 

Average over spins and parity. 

The r (Ek) in formula (3) are given by a weighted average over the 
spins and parity of the different r j(E) of the C. N. levels interested in the 
reaction. In an energy interval E - (I:!, 'E/2), E + (I:!, 'E/2) the autocorrela
tion function F "'-ol' (E, E.) has the expression(l): 

( 6) 

2 2 

[ 
".~ ] ~ 2 

Fo/.C< ,(E, t)= (2i+1)(2I+1) Jls1's' (2J+1) 

. ) 2 

{l€J (E) \ 
o(.sl,""s'l' ) 

6 ... 
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01... and ...(, stand for the initial and final channel, i and I are the spins of 
the incident particle and of the target nucleus, J is the spin of the C. N. l~ 
vels, I and 1', sand s' are the orbital angular momenta and the channel 
spins in the entrance and exit channels. For a fixed value of 1 the possi
ble values of I' are limited by the spin and parity conservation laws. In 
(6) 't'J"" sl "" 's 'I' (E) is connected to the average statistical cross -section 
~(E) throiIgh the relation 

(7) s (E) = --,---,-:-::-::---:-
C (2i+l)(2I+1) 

and is given by 

( 8) 
J 

~,,:sl "" 's'I,(E) = - --
, D}E) 

2,.. 

L (2J+1) t: 1 01.' '1,(E) Jlsl's' s, s 

< r; sl (E)'>< r ,:,s '1,(E» 

r;(E) 

The partial widths < f.J sl (E) '> and < r ~'s'l olE) '> can be expressed by 
means of the transmission functions TI(o(, s, J) and TI'('>(',s',J) through 
the relations 

(9) and 

T
I
, (<1-', s', J) 

(10) DJ(E) = l/p(E, J}, with 

(11) pIE, J) = pIE) (2J+1) exp t -J(J+1)/2 8'21. 

r ;(E) is given by (1). 

By introducing expressions (8) (9) (10) (11) in (6) one obtains' 

(12) 

• exp [J(J+1)/1>2] "2 T~(oI., s, J)T~,("(,, s', Jl. 
sls'l' 
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F.,(.o(. dE, £: ) has the approximate shape of a Laurentzian curve of half width 
r (E); for each value of n, F""",-,(E, n r(E)) ~ (1/612 + l)Fo<..oI.,(E, 0). By i~ 
posing such a condition into (12), in the limit od n ~ 00, neglecting 
[r J(E)) 2 with respect to n 2 r 2(E) one obtains: 

L r~". 1]2 exp[J(J+1)/6-
2

} ~T~("I,S,J) L T~, (o()s',J) 

(13) 1 ~ J 1I .r(E) sl s'l' 

r 2
(E) - ~ exp (J(J+1) /6211T~(o(, s, J) ~,T~, (0<..' , s', J) 

We have tested the goodness of this method to derive r (E) as a function of 
the r J(E) in the case of various fictitious reactions on nuclei with 24 :s A ~ 60, 
for different excitation energies of the C. N. (from 13 to 20 MeV) and we h~ 
ve got good results in every case. 

One sees that the weighting factors of the different terms 1/r£'~(E)12 
depend not only on the spin distribution of the C. N. levels involved in the 
reaction, but also on the transmission functions of the incident and emitted 
particles. In fig. 2 the behaviour vs. J of the following quantities is repor
ted: 

2 "" 2 A(J) = exp (J(J+1)/& ).L TI (0<, s, J) 
sl 

L Tl~(oZ',S',J) 
s'l' 

B(J) = L T~ (0£, s, J) 
sl 

2. T2 (oZ', s', J) 
s'l' I' 

C(J) = (2J+1) exp t -J(J + 1)/2 t)2} 

for the reactions: 

a) 
26 26" 

Mg (p, P2)Mg at(Ep)lab. = 9.4 MeV, 

b) 
37 34" 

CI (p, 01. 1 ) S at (Ep)lab~ 11.5 MeV and 

76 76 
Ge (oi.,0I.) Ge at (Eo/,)l b = 12 MeV. 

o a . 
c) 

In each case the curves are normalized to give the same area. 

We c'Jnclude that, in the case of pure statistical reactions, before 
comparing the theoretical level widths with the coherence energy deduced 
from an analysis of the experimental integrated excitation functions, one 
has to average them over the spins, parity and energy by means of the foE. 
m ulas (13) and (5). 
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SECTION 3 -

0) 

J 

9. 

FIG. 2 - Behaviour, in function 
of J, of the quantities A(J), B(J), 
C(J) defined in the text for the 
following reac tions: 

a) Mg 26(p, P2) Mg
26X 

at 

(Ep)lab. = 9.4 MeV 

h) Cl 37 (p, ,,(1)S34
K 

at 
(Ep)lab. = 11.5 MeV 

c) Ge76(,,(,"':o) Ge 76 at 

(Eo( )lab. = 12 MeV 

The curves are normalized to the 
same area. 

When a non statistical effect contributes to the considered reaction 
expressions (6) and (3) we started from, to average over spins and energy, 
are to he modified. An interference term between the two effects is intro
duced(1) • 

In the case of integrated cross-sections, expression (6) is modified 
in the following: 

"'2}2 1T 2 

{ 

1TAc<, L 2 (rJ(E)) 
F ",,-.x. ,(E, i )= J 1 'l,(2J+1) 2 

(2t+1)(2I+1) SSt +( r 1T(E))2 
J 

( 14) 

6 
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The terms I <S:'Sl, :>{"s'l,>1
2 

are connected to the non stati stica1 process 

cross-section DI 
S~<>(' (E) by the relation: 

(15 ) 

2 
" Xo(. 

S oI~, (E) = .,-- ,-,---,
(2i+1){2I+1) 

~ (2J+1) I <SJ '»)2 
J sIs 'I' .,( sl, '-<!' s 'I' 

With the same tecnique already used to average over spins and parity, 
the analogue expression of (13) is 

.z... 2[ I J 12 J J 2] 
JSls'l,{2J+1) 2 <S"(sl,"('s'l.1 lolsl,a('s'l') + ( 'tsl,oI.'s'l') 

2:... 2" 2 [ 1< J ) I 2eJ + J 2] 
Jsls'l,{2J+1) (rJ{E)) 2 S",sl ,"('s'l' \ o<sl,o{'s'l' (t?"':sl,a('S'l') 

(16) 

while (3) is substituted by 

(17) 

with 

i 
F (~)tX::L 

tot k =l 

and expression (5) becom~s 
L 

( 18) 
~1 r 2{E

k
)A{E

k
) 

In expressions (14) (16) (17) (18) -e;Sl,aI.'s'l' is still given by (8), whi
le \ <'SJs l , a( 's '1'> \2 can be calculated in the framework of a particular mQ 
del.InAppe ndixl<sJ 1 ""'-'s'1;)\2 is calculated for stripping and pick-up rea£ 
tions, (d, p), (d, nJ,"'{p; d), (n, d), with the DWBA; the method can be generall 
zed to other types of reactions always within the DWBA, for example to i
nelastic scattering, knock-on reactions etc. 
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The i nterference between statistical and non statistical processes 
appears only when they proceed through the same channels. In some ca
ses the non statistical effects can proceed, at least partially, through cha!! 
nels which are different from the effective ones through which the statis~ 
cal effects proceed. In fact with good approximation, in most cases, one 
can think that only N uncorrelated channels contribute equally to a statisti 
cal reaction(12). It is possible to neglect the contribution to the reaction -
of U,e c hannels with negligeable transmission functions (corresponding to 
high values of the angular momenta of the incident and emitted particles). 
On the other hand, the particular mechanism of the non statistical effect, 
may favour channels characterized by angular momentum values larger 
than the ones of the statistical effect. In such a case the interference be
tween th!,! two effects will be small and, with good approximation, expre~ 
sion (3) and (6) will s t ill be valid. 

We want to show now the us e of formula (16) in the case of the reac 
tion A127(d, Po)A128; the terms I <S~Sl, <:>( 's'l') \2 have been calculated in
the DWBA following the method outlined in Appendix. 

In Tab. I the optical model parameterfused are reported; in Tab. II, 
for different values of the incident particle energy and for different J, are 

TABLE r 

DEUTERON NEUTRON PROTON 

V~)(MeV) ; 94. 83 V(x)(MeV) ; 95 V~)(MeV) ; 50 
R 

r
R 

(fm) ; 1. 15 r
R 

(fm) ; 1. 15 r
R 

(fm) ; 1.25 

a
R 

(fm) ; 0.81 aR (fm) ; 0.81 aR (fm) ; 0.45 

wi+) (MeV); 20 W(x) (MeV); 12 
r 

rr (fm> ; 1.34 rI (fm) ; 1. 25 

bI (fm) ; 1.469 aI (fm) ; 0.45 

rC (fm) ; 1. 15 rC (fm) ; 1.30 

Optical model parameters used in the calculation of the terms 
! (Sjls , <:>( '1 's ,) \2. For deuterons they are within the range of v~ 
lues suggested by ref. (13)' for protons they are similar to va.
lues given in the literature/14); for neutrons are similar to the 
deuterons parameters as suggested in ref. (15). 

(x) - Pote ntial well of Saxon-Wood shape. 
(+) - Potential well of Gaussian shape. 
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TABLE II 

~ 1/2 3/2 5/2 7/2 9/2 11/2 13/2 15/2 

-
2 0,878 1,940 0, 685 0, 701 0, 803 0, 160 

3 0,439 0, 614 0,656 0, 618 0,460 0, 137 0, 147 

5 0, 112 0,200 0 , 284 0,274 0,186 0,081 0, 081 

7 0,045 0,095 0,130 0, 130 0,095 0,053 0,035 0, 004 

9 0, 025 0, 067 0,067 0,074 0,049 0, 032 0,021 0, 004 

" The energies are in MeV. 

reported the ratios between the values of the statistical term 

J [ rr ~2 ] 2 2 J 2 
(19) S.T. (E) = (2i+1)(2I+1) (2J + 1) (t' .,\sl, o('s'l') 

and the interference term 

J rrJ:/ 
(20) I. T. (E) = 2 (2i+1)(2I+1) 

2 21 J 12'f J 
(2J+1) ~S.,(sl,,), 's'l'> 0< sl, <>< 's'l' 

In order to obtain the absolute value of the direct effect contribution 
to this reaction we proceeded as follows :the differential statistical cross
-section Cc((l,E) for the processes AI 27 (d, po) and AI27 (d, PI) at (Ed)lab. = 

= 2 MeV has been calculated in shape and absolute value by using the Blatt 
and Biederharn formula(16): the transmission functions were calcul a ted 
with the same optical model parameters of Tab. I and the level densities 
with the Lang and Le Couteur formula and the "a" parameters of ref. 7). 
The direct effect differential cross -sect ion 6" DI((l, E) for the two proces
ses has been calculated in the DWBA using the code TOBIA 2 developed at 
the University of Milano. The absolute value of SDI((l, E) is not known u!lc 
less the reduced width of the captured neutron is given. 

With an opportune mixing of direct and statistical contribution, the 
experimental average angular distribution of the reaction 

27 28 17) 
Al (d, Po + PI)AI at (Ed)lab = 2 MeV 

has been then reproduced in shape and absolute value(+). In this way the abs£ 

(+) - The actual energy resolution do not allow to separate the doublet of 
Al28 
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lute value of the direct contribution to these reactions has been derived, 
The absolute value of ~ DI{I)) at the same energy, for the (d, po) transi
tion has then been deduced taking into account the non interference bet
ween the transitions to the two final states of Al28 and assuming the sa
me reduced width for the captured neutron in the different final states, 
The absolute value of 6' DI{I)) for the (d, Po) transition at higher energies, 
has been obtained by normalization, 

In fig, 3 the experimental points and the calculated curve, are plo.! 
ted for the differential cross -section of the reaction Al27 (d, Po + PI) lea
ding to the doublet 3+ and 2+ of Al28 at (Ed)lab = 2 MeV, 

!T(O) 
m~t.r. 

2 • 

• 
• 

• • 
• 

O.IL--'---'--_'--_.l.-_'--_'--_'--_.l.-_.l.-__ ~ 
20· 60· 100· 180· 8e .... , 

FIG, 3 - Angular distribution of protons emitted in the reaction Al27 (d, Po+ 
+ PI) Al28 at (Ed)lab, = 2 MeV, The experimental points are from ref, 17); 
the curve is calculated with a mi.xture of 53% of statistical effect and 47% 
of direct effect, 

Tab, II shows that, in this case, the interference term is always 
larger than the statistical one, In fig, 4, at different deuteron energies, 
the weight factors S, T, J and (I, T, J + S, T, J) as a function of J are repo!:, 
ted; (the istograms are normalized to the same area), The interference 
term tends to weigh more, in the average, the r j{E) corresponding to the 
highest J values : this behaviour seems to be emphasized as the energy incre~ 
ses, 

TABLE III 

E (MeV) 2 3 5 7 9 

rm,+C,N, 
0,985 0, 931 0,937 0,888 0,895 

l~ 
C. N. 



14. 

" 
10 

,0 

i_~ _ 

1ft '" I" " ." o'J ' IJ "II J 

~U) ItIJI 
A.U. A.U. 

,. ,I 
,. 

dl 

'0 ,. 
. ~" , .. ,~ ,; ,. ,. 

'. ~ ,. 10 

*" . . 
'" " " " 12"2 1J'2',,,'12 

'U) 
.. u. 

, .1 

I. 

,. 
,. , , 

~ ,-

" " '2 " , " "',, • 

FIG. 4 - Behaviour, as a function of J, of the weight factors S. T. J and 
S. T. J + I. T! for the reaction A127(d, Po)A1 28 for various values of the 
deuteron energy. The dotted line istograms are for the terms S. T. J; 
the full line istograms are for the terms S. T. J + I. T. J. They are all 
normalized to the same area. The different cases are: a) Ed= 2 MeV, 
b) Ed = 3 MeV, c) Ed = 5 MeV, d) Ed = 7 MeV, e) Ed = 9 MeV. 
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In Tab. III, at the same deuteron energies, the ratios between 
fDIJ-C.NJE) calculated with (16) and f'C.N,(E) calculated with (13) are r~ 
ported : although the interference is large , it weakly affects the values of 
rIEl. The case examined is a rather typic one so that it is plausible that 
for light nuclei (A -::::. 30) the presence of a non statistical effect, has ' 
a small influen~e on r ; however its importance should increase for he~ 
vier nuclei. 

SECTION 4 -

For experimental reasons, the excitation functions are often mea
sured for differential cross-sections, that is at some particular angle g. 
Be r (g, E) the coherence energy determined from the analysis of a diff~ 
re"ntial excitation function. It is an obvious question to ask wether this quan 
tity does depend on g and how the r (g, E) are related to the r deduced by -
the analysis of the corresponding integrated excitation function 

Let confine our analysis to the case of pure statistical reactions. 
Starting from formula (31) of ref. 1) one obtains the following expression 
for r (g, E) averaged over the spins and parity: 

(21 ) 

where 

1t = Z(ll J 11:;iJ 2;sL 1 )"Z (1 1 J 112J 2;S 'L1)Z(ll J 112J 2;sL 2)Z(li J 112J 2;S 'L2) 

J.. = Tl1(o( , s, Jl)TI'l(~" s', Jl)TI2(~' s, J 2)TI '2(C<" s', J 2 ) 

g(J) = 21T [r,;l /D J 

Here the non primed and primed quantities are respectively for the 
entrance and exit channels; Z are the Blatt-Biederharn and Huby coeffi
cients. 

The value of f' (g, E) averaged over the energy, is straight obtained 
applying the same method as before. 

7 :... 



16. 

rll,E I 
A.U. . ) 

~ ____ L-____ ~ _____ L-

t ) 

-------<-------JJ .- -.. I _ 

10' 10' '0' 110' 1 JO' 10 O' 1c.14. 

FIG. 5 - Plot of r (g, E) vs. g for the reactions: 

a) Ge 7 6( "",0( 0) Ge 
7 6 

at (E"" )lab. = 12 Me V 

b) S32(oI., <>( 0) S32 at (E"")lab. = 13.35 MeV 

c) C 12(C 12 ,<><0) Ne 20 at(E
C

12)lab. = 23 MeV 

7 ... 
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By examining expression (21) it is evident that, when the incident 
and outgoing particles have zero angular momenta, r (g, E) does not d!:C 
pend on Q. When either the orbital angular momenta and the channel spins, 
may reach large values, there is a very large number of terms summed 
up in (21) and the coefficients of the Legendre polynomials can't behave 
in such a way to stress the importance of some particular couple (L1' L 2). 
Therefore, as the Legendre polynomials are oscillating functions of g and 
vary strongly with L, for a fixed g, it seems reasonable to think that 
r(g, E) does not depend very much on g. 

More difficulties arise in examining the case in which high values 
of the ingoing and outgoing orbital angular momenta are allowed, while the 
initial and final channel spins are zero, because the number of terms in 
expression (21) is strongly reduced. However this simplification allows a 
numerical calculation of the behaviour of r (g, E) with g for a given reac 
tion. We have examined some reactions of this type. In general r (g, E) 
does not show strong systematic variations with g; in some cases however, 
it shows oscillations which may be of the order of 20-25% around a cons
tant value. As an example in fig. 5 is plotted r (g, E) vs. g for the reac
tions: a) Ge 76( 01..)01. 0 ) Ge 76 at (Eo()lab. ; 12 MeV, b) S32(,,{~<Xo)S32 at 
(Eo/-)lab. ; 13.35 MeV, c) C 12 (C 12 , ""'0) Ne 20 at (Ec 12)lab ; 23 MeV. Let 
us note explicitly that r (g, E) is always symmetric with respect to 6;900 • 

Fig. 5 shows how, in the case of small channel spins, the g dependence of 
r (g, E) may be important. Values of l' (Q, E) determined at different an
gles, with good angular resolution measurements, may be different also 
by a factor 1.5. In these cases one should compare the experimental va
lues of r (g, E) with the theoretical expression given by (21), averaged 
over the energy. 

It is possible to show that the value of r (E) characterizing the flu£. 
tuations of the integrated excitation function at an energy E, is an opportu 
ne average of the r (g, E). In fact, if N(gi) is the quantity defined by Briclc 
and al. (18) as the inverse of the normalized variance of the differential cross
-section and €""c(gi) the average differential statistical cross-section at 
an angle gi' the value of r (E) determined from the integrated excitation 
function, is related to the r (g, E) through the relation: 

The interval separating two successive angles gi in the sums, is the 
coherence angle t:.. g. 

When r (g, E) is almost independent from g, the coherence ener
gies characterizing the integrated and all the differential excitation func-
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tions, are the same. So it is convenient to analyze the coherence energy 
determined from a differential excitation function by using formulas (5) 
and (13). 

The situation is more complicate when the presence of non stati
stical terms is taken into account in the expression of the auto-correla
tion function for the differential cross-sections (see formulas (30) and (31) 
of ref. 1)). Also in this case one can follow the mathematical methods 
outlined before to evaluate the diffe rent types of averages. The ex pression 
obtained for r (Q, E) is very complicated and it is difficult to predict its 
behaviour with Q; moreover a numerical calculation is practically impo~ 
sible due to the very large number of kinematics coefficients which should 
be taken into account. So, when a non statistical effect is surely present, 
in order'to determine the coherence energy r, we suggest to analyze the 
integrated excitation functions utilyzing the formulas and the methods pr~ 
viously shown, or to analyze differential excitation functions at angles 
where the non statistical contribution is surely small. 

APPENDIX -

Let us consider a stripping reaction in which, due to the selection 
rules governing the process, the captured particle of spin i c , is in a sta
te characterized by the quantum numbers lc and jc (19). 

In the DWBA with the zero range approximation, the differential 
cross -section for such a process , neglecting spin orbit interactions, can 
be written(20): 

(AI) 6"1 ' , (Q) = A 
c1cJc 

A being a coefficient depending on the energies and the masses of 
the partic:jes involve d in the reaction, but independent from the emission 
angle Q; Bl1cJc (Q) are matrix elements given by 

cA. c 

(A2) Y
l 

>.. (Q,O) 
e c 

with 

V 21 + I' (l - >- 1 ), \ 1. 0)(1 0 lc 0 \ 1. 0) 
e e cc c 1 e 1 

(A3) 

• 
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Here MT and MR are the masses of the target and residual nuclei; Ii 
and Ie the orbital angula: mom(!ntum qua~t'lm numhers of the incident 
and emitted particles; f1~)(r), f~cJc (r), fle, (MTr/Mr) are the inci
dent, captured and emitled partfcles radia1 wave functions calculated 
taking inb acc')unt the disbrtions intr'Jduced by the optical m'Jdel ce!! 
tral potentials. 

The integrated cross -section is given by the expression: 

(A4) 

Substituting (A. 2) in (A. 4), with a simple calculation, one gets: 

x 

(A5) 

Expression (A5) has to be compared with the cross-section expression 
given by the general theory of nuclear reactions(1): 

2 
"Xi 

(A6) ~l .. ; (2' 1)( I 1) c 1cJc 1i+ 2 T+ 

where 'A i is the wave length of the incident particle. J is the total ang!:1. 
lar momentum quantum number for the incident particle plus target nu
cleus system; all the other symbols have the usual meaning for the ini
tial (i) and final (e) systems. 

Comparing expressions (A. 5) and (A. 6) it comes out 

2 
icjc "\ 

A F ; ~"--:-:7::-::---:-: 
lilelc (2ii+1)(2IT -i:1) 

(A 7) 

By means of (A 7) the quantities I <S~iSili. <>I..eSele> \ 2 can be cal
culated assuming that they are almost independent on J, si, se. assump
tion quite reasonable in the case of stripping reactions which are well de~ 
cribed by the DWBA neglecting spin orbit interactions. In such a case o
ne obtains: 
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(A8) 

where ?<><-i<>< elile{J, si ' se) gives the number of terms \ <s>12 
whic h, in 

the transihon <>(i ~ C>( e correspond to a given J value for a fixed cou 
ple of values Ii and Ie' 

The coefficient A in (A5) (A7) and (A8) depends on kinematic fac
tors and on the reduced width(19) of the captured particle: this can be cal 
culated assuming particular models describing the structure of the resi
dual nucleus (for instance shell model with j-j coupling). 

In a more simple way the value of A can be derived empirically by 
imposing to the expression (A5) to give the experimental absolute value. 
This is the method we followed. 

This mcthod for calculating the terms \ <.S~o 01 0 <>( s 1 ") 12 can be 
10 d t th 0 h 0 h d nf° 0 J S l 1 , 0 eo e e h t genera lZe 0 e case In w lC, ue to co IguratlOn mlxmg; t e quan um 

numbers lc and jc of the captured particle can assume different values: 
in such a case the stripping cross -section is given by: 

This type of calculation can be immediately extended to pick-up 
reactions and to other direct reactions, as inelastic scattering, knock-out, 
etc. whose differential cross -section can be expressed by a formula fo!:. 
mally analogue to (AI). 

The numerical calculation of the terms AFi~{Cl has been done by 
using the code TOBIA 2. 1 e c 
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