
Sottosezione di Firenze 
65/3 

r 
'1 
'. 

Comitato Nazionale per L'Energia Nucleare 

ISTITUTO NAZIONALE DI FISICA NUCLEARE 

INFN/BE - 65/6 
24 Novembrl'\ 1965 

P. G, Bizzeti and P. R. Maurenzig: ANALYSIS OF CROSS SECTION 
FLUCTUATIONS IN ISOSPIN FORBIDDEN REACTIONS. - \ 

\ 

Reperto Tipogreftco 

31 " 
dei Leborefori Nezioneli di Frosceti 

• 



Istituto Nazionale di Fisica Nuc1eare 
Sottosezione di Firenze 

INFN/BE- 65/6 
24 Novembre 1965. 

P. G. Bizzeti(+) and P . R. Maurenzig: ANALYSIS OF CROSS SECTION 
FLUCTUATIONS IN ISOSPIN FORBIDDEN REACTIONS(x ). -

1. INTRODUCTION.-

The statistical model of nuclear reactions has been proved to be very 
useful to interpret average values of the reaction cross section, as well as 
their fluctuating behaviour as a function of the energy(1, 2). In the last few 
years, cross section fluctuations have been extensively investigated, both 
experimentally(o) and theoretically( 2 - 9). 

The aim of this paper is to extend the theory of cross section fluctua­
tions to the "partially forbidde n" reactions; a typical example of this kind 
of reactions, though possibly not the only one, is supplied by transitions 
which do not conserve isospin. In a previous note(10) it was shown that an 
anomalous behaviour of cross section fluctuations may be expected in this 
case, with respect to the normal Ericson's theory(2). In the following sec­
tion 2 we give now a more complete report, while in section 3 the calcula­
tion is extended to take into account the influence of possible "coherent" 
effects in the reaction mechanism. Finally in section 4 some possible exp~ 
riments are proposed and discussed. 

Before going into details, a preliminary discussion of the mechanism 
of forbidden reactions is perhaps worthwhile. The simple, time dependent 
procedure by Morinaga(1l) and Wilkinson(12) may be used for this purpose. 

Suppose the initial c hannel has pure isospin Tl and a compound system 
is formed that may (in principle ) decay into a channel C2 of pure isospin 
T2 f Tl. If the interaction Hamiltonian were strictly charge independent, 
the reaction C 1 -+ C 2 would be of course forbidden. 

Obviously, the Hamiltonian contains a charge dependent term HC owing 
to Coulomb for ces. This in turn will induce transitions between state s of 

(+) - Now at Max Planck Institut fUr Kernphysik, Heidelberg. 
(x) - This work has been performed in the frame of the EURATOM-CNEN 

Contract for fundamental research in nuc lear physics. 
(0) - For a revue of the argument, see ref. (8). 
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2, 

diffe r e nt isospin, during the time of interactio n, If HC is small, this transi 
tion rate can be evaluated by firs t order perturbation, 

With some symplifying assumptions (s ee Appendix 
transition probability during time 0 t 

1), we obtain for the 

(1, 1) 
2 1T<J( T IIHC IT2)1 2 > S"t 

P(T1' T 2) St = 

where D2 is the mean spacing of compound l evels of isospin T Z (and ' given 
J1T) and the angular brackets indicate the average value of the squared e le­
ment of l-rc b e tween two states of differe nt isospin(x), 

The interar.tion time is 11/ 1~1' C'l being the mean l evel width (or "co­
herence width") for isos pin T1 states, The average cross section for a for­
bidden r eac tion is therefore reduced by approximately a factor of 

k-,f = -n P (~I,T 2 ) ,_ 21T(I(T1IHc l 'T 2 )12) 1 

11 D2 r1 

with respect to the prediction of a purely statistical theory, Clearly, the fac 
tor I ~< 12 may depend on quantum numbers J and 1T, so that the annular distri 
bution may be different from that given by Hauser and FeshRa0h 3), The 
energy depe nde nce of I { )2 has been discussed by Wilkinson 12 , 

Since P(T 1, T 2) i s finite, the isotopic sp!n cannot change abruptly: the 
"forbidden " part of t he state vector needs s ome time to grow up, As a con­
sequence , the time behaviour of the forbidde n transition cannot be the same 
a s for allowed ones , 

The outgoing fl ux u(t) following a ri instantaneous excitation of the co m ­
pound s yste m by channel C 1 is shown schematically in fig, 1, for both allo-

u(tf!:) 
iD 
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FIG. 1 - Time response fundtion u(t) for allowed channels (curve 
a ) and for a forbidd en channel (curve b, for the case 11 = i~2 ' 
unnormalized): 

(x) - Here and in the following, the angular brackets < ") are reserved to 
average values(i, e, "expectation values" of statistical quantities ), and 
round brackets will be used for state vectors I ) and matrix e l ements 
( 1 I ). 
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wed and forbidden channels. The decay is (approximately) exponential in the 
allowed channel. It is the combination of two exponential functions, with 
U{O) = 0, for the forbidden one. 

Now, it has b~en shown by Brink(5) that the time response u{t) is just 
the Fourier transform of the function e ( e), occurring in the theory of cross 
section fluctuations. This function(3) is defined by 

<fK{E) f{E+E) > = <() e{f.). 

fIE) being the transition amplitude at energy E and < <S"> the average 
cross section; and the square modulus of e ( c) is proportional to the cross 
section correlation function 

< ["'{E) - (6") 1 [S{E+c)-(6->] > 
For allowed (statistical) reaction lilt) = exp (- t rj1i.) and e (E) = (1 - i f/r ) -1. 
In the case of forbidden transitions, u It) is quite different; therefore a diff~ 
rent C (£) is expected. The width of u It) being larger in this case with respect 
to the allowed one (fig. 1), we may expect a smaller width of I C (E) 12. More 
detailed predictions could be made. However, in view of their ' indirect cha­
racter we shall not insist on this approach furthe r. 

2. DETAILED CALCULATION WITH THE R-MATRIX THEORY.-

2.1. - Formal introduction of isobaric spin states. -

A good revue of the R-matrix formalism is given in a classic paper by 
Lane and Thomas(14). We shall adopt the same notation used in that paper 
whenever possible, and refer to it for any undefined symbol. We will need, 
however, some more symbols, which we now define: 

a) Total Hamiltonian. · - We put H = HO + HC , where HO is the charge in­
dependent part, and H C is a (small) perturbation term. 

b) Eigenstates for the "internal" region. - With proper boundary condi­
tions', the complete orthonormal set of eigenstates I Xn) of H may be defined 
as in Lane and Thomas: 

In addition, we define the complete orthogonal set of eigenstates I X~T') of 
HO and T2, with the same boundary conditions: 

HOlxo ) = EOlx
o 

) T
2

1xo ) = T'{T'+l) Ixo ) . 
nT' n nT' nT' nT' 

c) Channel region. - Channel wave functions are defined as in Lane and 
Thomas paper(14). Throughout this paper, the s y mbols c, c', ... , are in-
tended to specify the channel state completely (i. e. c = <t.J 1 s .... l. 

d) Surface region. - Surface functions f c are defined as in Lane and 
Thomas , so that reduced width amplitudes (r. w. a. ) are 

," u 
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(2. 1) 'Y = ('t'" X dS 
nc .'S c n 

We also define the amplitudes 

(2. 2) o -/Il" XO 
dS 'Ync - . 7 c nT' 

S 

o 
Clearly, 'Ync is zero if the component of channel state c with isospin T' va-
nishes. The width amplitudes 'Ync are real(14), when internal and channel 
wave functions behave in the same way under time reversal. The same argu 
ment also applies to 'Y~c' In addition, matrix elements (~ I HC I X~) are­
real and s ymm etric in this case(x). 

2.2 ... Eigenvalue expansion of the scatte ring matrix ... 

The collision matrix U is given in terms of R-matrix by the relations 

U = [1- W i l 
(2. 3) 

(for open c hannels only ). 

Here .. 0 .. represents the hard sphere scattering matrix, and P ~ ImL 0 

is the penetrability matrix. The matrices .. n and L O 
i S+iP are diagonal 

in the channel repre sentation, and their elements are slowly varying func­
tions of the e nergy. From now on, we assume that their change throughout 
the ener~ region of interest be small, and treat the matrix elements of 
.ll.. and L as strictly constant in our energy range. At high excitation ene!: 
gy this approximation appears to be usually in order, in the spirit of the 
stati stical a pproach. 

Now the energy dependent factor (1- L OR)-l R in W may be expanded in 
t erms of r. w. a., namely 

(2.4) I
.. 1 ~ 

(1 - LOR) - R I = 'J" 'Y A 'Y = 
_ ...icc ' - nc nm me' . nm 

Here 'Yc is a one column matrix in the leve l space, and 

[ 
"'f" }-1 A= e-s-E. 

(x) - In fact, HC is invariant under space rotation and reflections, so that 

(X~ I HC I X~) f a only if I n = J m ' Mn = Mm and" n = "m' In addition 

HC is also invariant under the time reversal 'r, namely 

(X::.rM I HC I X':JM) = (X~JM I L HCt: I X~JM) = 

= (_1)2J-2M(XO \HClxO )=(Xo \HclXo ) 
mJ-M nJ-M mJM nJM 

We have so proved that H
C 

= HC and therefore, He b eing Hermitian, 
mn nm 

it is also real in this representation. 
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where e is the (diagonal) Hamiltonian matrix in the representation of basis 
I X m ), E is the actual energy(of the system)times the unit matrix, and l' nm = 
= ~"Ync L~ "Ymc. The invariant matrix product ~cA"Y~1 can be evaluated in the 
more convenient representation with basIs I X~T)' in which HO reduces to its 
diagonal form eO. We get 

(2. 5) 

with 
~o _ '<;' 0 L 0 0 
'/ - L"Y nc c"Y nc nm c 

We may find a complex orthogonal transformation operating in the sub­
space with isospin T, which diagonalizes the submatrix (T DCIT) of 'Je connec 
ting states of equal isospin T 

a (T)(T I J(IT) a(T) = f (T) 

-;;:(T)a(T) = a(T);(T) = 1 

(diagonal) 

and define the transformation a as the direct product of transformation aCT) 
for all possible values of T. 

When the transformation a is applied to every factor of the invariant ma­
trix product;:~AO"Y0cl' eq. (2.5) becomes 

(2. 6) 

where 
"y' = a"y° 

l~=alta 

and A' is the inverse matrix of Jt,'-E. 

? I A' I 

- 'Ync nm 'Ymc nm 

I 

Non-diagonal elements of 1t- different from zero are now confined in the 
submatrices (T 1'l~ · 'IT') (T r T') and are assumed to be small if the is')baric 
spin has to be approximately conserved. As a consequence, A' may be expag 
ded around its diagonal part, giving 

(2. 7) 

I I 

"Ync "Ync I 
-<) E -n-

I I I 

"Ync den m'Ymc I 
(~-E)( lO:m-E) 

+ ...• 

If the second and higher order terms may be neglected with respect to the 
first one, eq. (2.7) is equivalent to the complex eigenvalues expansion by Ka_ 
putl andPeierls. Isospin selection rule als') follows, since the product 'Y "Y , 

nc ncr 

)2' d , 
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is zero when channels c and c' have definite and different isospin. "Forbidden" 
reactions may actually arise, though usually with a reduced rate, ')wing to 
the second terms in the eq. (2.7). 

2.3. - Consequences for statistical reactions. -

Till now, no statistical assumptions have been introduced. We specialize 
the calculati')n to the extreme case of many channels and overlapping levels, 
namely we assume: 

1) Levels with a definite slJn, parity and isospin are nearly equally spaced, with 
mean energy distance DT1T . . J 

2) Their widths are approxima_~ely constant, with rrean value r T1T . 
3) Mean values of both D and I are energy independent throughout the range of 

interest, which is assumed to be large compared to i"' 
4) For all values of J, 1T, T of practical interest, D <.< [-' • 

The above assclmptions are very reasonable at high excitation energy, at 
least if "intermediate struc~ure" effects do not play an important role in the 
mechanism of the reaction. Some more detailed hypoteses have now to be in­
troduced on the statistical distribution of amplitudes '1" and matrix elements 

:Jt ~m' The simplest correspond to the extreme randg~ phas'e assumption, 
namely: 

5) Quantities 'Y~c' ]~'nm may be considered as random variable and with zero 
mean; 

6) They are not correlated one tf) another(X). 

Obviously the last point is the most questionable among the six. We will 
drop it out in the next section, and substitute it with a less restrictive condi­
tion. 

Let us accept, for the moment, the absolute validity of the six points a­
bove. The eq. (2.7) gives now a very useful, strongly convergent expansion 
for the collision matrix, since the ratio of the root mean square value of the 
second term to that of the first is of the order of V 21TD/I-' or less, and hi­
gher order terms decrease as the corresponding power of this expression. 

Only the first non vanishing term has therefore to be taken into account. In 
the case of the allowed reactions we obtain: 

1/2 1/2 
W = 2 i } P c 'Y~c Pc' 'Y~c ' 

cc I - - .,~. _ E 
n ..... n 

c r c' 

which is the usual starting point for Ericson's theory of fluctuations, with­
out direct interactions. For instance, d : rect effects are automatically ex-, , 
eluded as l o ng as correlation between 'I' ,'I' , are neglec ted (see also nc nc 
part 3). We quote here just the result of the statistical theory for the parti-
cular case of single initial and single final cha;1nel (2, 3), spinless particles 

(x) - Apart from the obvious correlation among channels belonging to the 
same isospin multiplet (Only minor changes in the formalism are suf­
ficient to take this effect into account). 



and s waves 

(2. 8) 
, 2 2TT 

TTI\ D 

1 

(see ref. (2) for the angular momentum effects). 
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In the case of forbidden transitions, the first term of eq. (2.7) is zero 
and we have 

(2. 9) 

(T) 

" W,=-2i/ 
cc '-

n 

jT') , 
f-
m 

1/2 , ,1/2 
Pc 'Ync'le~m'Ymc' Pc' 

(r -E)( ~ - E) 
n m 

c r c' 

From eg. (2. 9) we get, under the same assumptions (see Appendix 2) 

(2. ]0) 

<. f(E) fiE + t) > = 0 

< ((E) fIE +£ ) ) = (:)' c '> 
(1 _ ~,t )( 1 _ ~~) 

<6"') = <~> 

'T IT' 

(~ ( I 'l\~c i 2 > Pc )<.\'1, ~m \ 2) (2 < hrhc '\ 2 > Pc') 

rT I-'T' 

If the random vari abIes 'Y' ,1t; are not correlated, values of the transi 
han amplitudes for different ,r,iergyTre distributed according to an approxi­
mately normal distribution, whose correlation functions are given by eq. (2. 10). 
As a conseqJence, the expectation value for cross-section correlation function 

F( t) = (',- (E) '~-(E+E) > _ ( _,)2 

for single initial and final channel reaction(x) , is given by 

(2.11) 

Alternatively eg. (2 . 11) can be derived directly from eg. (2.9) without 
explicit use of eg. (2. 10) and the result can be taken as a proof of the gaussian 
nature of the statistical distribution for f(El., at least to its fourth moment. 

2.4. - The width at half maximum of the correlation curve. -

In particular the expected half width I~x of F(.:.) can be obtained from 
eg. (2. 11). It comes out smaller than the smallest of the two widths I'T and 

(x) - The usual damping factor l/N must be introduced- when more than one 
channel contribute to the reaction (2). 

J2 
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r " approaching this value when they are very different in magnitude. For 
T ,', f' ,-' 1" 4 r' the case I T ~ T' the expected value of . ex becomes ex ~ O. 6 T' 

The ratios \~x/rT and r~x/(1/2)( IT + IT'}' evaluated from eq. (2.11) 
for pure statistical reactions, are shown in fig. 2 as a function of r T,I r T' 

100 

080 

Q60r __ -----.::~ nx/f (rr +rr) 
Q40 

020 

QOO~ ____ _L ______ L_ ____ _L ______ L_ ____ _L __ __+ 

1.00 1.50 200 2.50 3.00 350 

FIG. 2 - Ratios rex/ rT and rexl k( r T + fT.J evaluated from 
eq. (2. 11) for pure statistical reactions, as a function of r~, I t'T' 

At leas t for I'T'/ f'T'v 2, the reduction in the w. h. m. appears to be large 
enough to be detected by a proper experiment(x). 

3. INCLUSION OF DIRECT EFFECTS. -

3. 1. - Possible failure of the random phase assumption. -

Let us discuss,in some more detail,assumption nO 6 in section 2.3, name 
ly, that 'Y~c are uncorrelated random variables with zero mean. As we shall 
see the first implication of this statement is that direct effects are excluded in 
this way, not only for the forbidden but also for the allowed reactions. In the 
R - matrix formalism, in fact, direct reactions are (somewhat artificially) ac 
counted for as the result of coherent contributions from many distant states(+I. 

To take direct effects into account, we must therefore assume long range 
correlation among the r. w. a., i. e. (I" 1" ,) r O,in contrast with previous 

nc nc 

(x) _ The statistical relative error(15) on the experimental value of \ is of the 
order of {(;r-;//:"E), so that an energy inter val 6E)" f' is ne-
eded to obtain a sufficient statistical accuracy. 

(+) - See section XI, 6 of ref. 14. 

,') 
J '" , 
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assumption 6. Clearly, this may happen only for allowed reactions, since 
'Y~c 'Y~c' = 0 for the forbidde n ones . But if we drop the random phase assump­
tion for the width amplitudes 'Y~' it is hard to maintain it for the elements of 
the matrix IV. We are inste a d forced to admit that non diagonal elements of 
Tt.' are possibly correlated( x ) to the r. w. a. , and to substitute the condition 
6 by a more reliable one. 

Quite reasonably, the random va riables 'Y' , 'l{' may still be assumed 
to have zero mean. Moreover, they are actuafl~ cor~W!ated, but probably not 
too much. We shall assume that the correlation coefficients of two random 
variables is small, of the order of Vn/r-; compared to the product of the 
root mean square values of the two variables. That is 

(3. 1) 

(3. 2) 
1< 'Y~c~~m)12 

'I , ,\2 1 '11" 12 ...: 'Y nc >.( <, ~ nm '> 

(3. 3) 

D 
r 

D 
r 

<-..... 
DI 

f' 1 

and so on. Under this condition, the series expansion (2.7) of the scattering 
matrix can still be used. We shall see (in the following section 3.2) that con­
dition (3.1) is compatible with a direct cross section having the same order 
of magnitude of the statistical one. It is therefore reasonable to expect that 
assumptions as (3.2) and (3.3) also hold , when the statistical process acco­
unts for a substantial part of the reaction. 

3.2. - Average cross section. -

We have now to evaluate the average cross section, starting from eq. 
(2.7) of part 2, namely 

L nrm 
, 'In, , 

'Ync ' , nm 'Ymc' 
(tm -E)( ~~ -E) 

+ .... 

(x) - In fact, from (2.5) and following equation we obtain 

1t' = a (eo + H C
) a - -<;? ' with...g' - "" , LO

c
" 'Yn' c" ~ ? mn - 1-" 'Ymc" c 

Since state i m) and 1 n) have diffe rent isospin T and T' , 
only channels cIt having both, isospin components T and T' can con-

. --e' I """ I tribute to ~ mn' Therefore"., mn'Y mc'> = 0, as long as the r. w. a. are 
assumed uncorrelated, but it is no longer so if the channel c is cou­
pled by a direct reaction to some channel cIt having no pure isospin. 
See also ref. (16) for possible correlation between r. w. a. and the 
Coulomb term H C

• 
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For instance, the average square modulus of the first term is 

/1> " -n 
'Yhc -Inc' 
1- -E 

n 

, , 
.. '" 'Ync 'Ync' 

" L -'-O=-==­
n "'f.-E 

n 

"i 
mrn 

, , 
'Ymc 'Ymc ' 
e -E 

m 
> + 

(3. 4) , , 2 ' " 2 

\

' , 2 
"'i 'Ync 'Y nc , ,' > 
L. c -E 

+ <. '2 i 'Y nc 'Y nc ' 
- \ t. -E 
n n 

\ > ,~ k '" 'Ync'Ync') \ + < 
. L t;-E 

n n n 

but for terms of the order of D/r (see ref. 2). 

The second term at the right hand side of eq. (3,4) was already found in 
section 2.3 and corresponds therefore to the statistical process. The resul­
ting average cross section is (neglecting angular momentum effects) 

(2 <h' ,2>p )(2<h' ,\2) P ,) 
nc c nc c 

(3. 5) r 

The other term, i. e. the square modulus of the expectation value, is in 
terpreted as a "direct" contribution. The corresponding cross section may-be 
estimated, as for the order of magnitude only(X), to about 

(3. 6) 1
" < 1" 1" "12 

(j .. d = ,,1. 2 4P
c

P
c

' r; nc' / 

In this case, the ratio of the direct to the statistical cross section is 

",- d " I' \ <.. 'Y nc 'Y nc , ) I 2 
""--

''> c 2D ( \ " 2 \ ' \ 12,> 
,'Y nc ,' " 'Y nc ' 

i. e. of the order of one if the condition (3. 1) holds. Then this condition is com 
patible with a direct cross section as large as the statistical one. 

The square modulus of the second t e rm in the series espansion (2.7) co­
mes out small (of the order of --..: i ~'nmt 2 > /D2 r2 compared to the first 

(x) - In fact, 

/ .. :,;.,: 

..... n 
, " 
'''Ync 'Ync l / 

This estimation however is not very satisfactory, since an important co~ 
tribution to the integral comes from rather distant states, and the corre ­
l ation coefficie nt < 'Y 'Y , ) can in principle depend on the energy 
E l1C nc 

n' 
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one(X)), and can therefore be neglected unless the first term is zero. 

When this happens, that is for a forbidden reaction (c --4- c ' ) the cross 

section is 

(3. 7) G" = 1T?( 4P P L L 
2 I ,, (T) '>: (T') 

c c' n m 

I'~c It nm I'~c I \ 2 

('f -E)('t -E) 
n ' m 

and for its average value we obtain (as for eq. (3.4)) 

(6") 
2 {'II ,, (T) "> (T') I'~c ,*~ml'~cl ,,-\2 

1T ~ 4Pc P c ' "L L. (! -E)(~ -E) / + 
n m n m 

= 

() I I ? I I \2 I / I ~D I '- \ 2 + l. T < I'nc 1u > \ )(TI) <.dtnml'mt ' ) + >(T) "I'nc '" nm-' 
If _E12 1- 7!. -E \- f_E 

n '-n m n1 . n '-n 

(3. 8) 

If the conditions (3.1) , (3.3) hold, the four terms in eq. (3.8) can reach 
the Same order 0; magnitude, smaller by a factor (\1t ~nI2)/(D2 1'2) with re­
spect to < (.;-) of the allowed reactions. We can try to interpret the four terms 
in eq. (3.7) as resulting from four different kind of reaction process. 

The term ~,dd is the modulus square of the average transition amplitude. 
We can consider it as a contribution from direct process, just as we did for 
the similar term in eq. (3.4). 

The structure of ~ dc and of its symmetric term (')-cd is not so simple. For 
instance, IS'dc contains a statistical "sum over resonances" of isospin T I, but 
the coupling to c is coherent, through the non vanishing average of I'hc lC hm. In 
this sense, the mechanism of isospin violation acts like an isospin impurity in 
the channel c, and will combine coherently with it, if this impurity actually ex­
ists. 

Finally, the term " cc, already -obtained in section 2, is clearly the re­
sult of a purely statistical process. 

(x) - Incidentally we observe that the second term in eq. (2.7) vanishes when 
channel c and c ' have pure and equal isospin, Tc=Tcl. Interference be­
tween first and second term ~_al¥ appear, but the contribution to the 

0\tnml> 
cross section is small (as~ I~D ). 

J 2 ~ 
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3.3. - Cross section fluctuations. -

Now the average correlation function F( Ii ) of the cross section can be 
calculated, with the same procedure used for the average value of the cross 
section. The cross section correlation function for allowed reactions, in the 
presence of direct effects, is given (e. g.) in ref. (2). For single initial and 
single final channel, we have 

F( ~_ ) = <6- (E) ',(E+ £ ) '> _ (&) 2 = <~c>(2 6'd+<'6" c» 1 

1+( ~ ) 2 

In the case of forbidden c -> c I reaction, we obtain from eq. (3. 7) 

< G"" (E) ',- (E+E.) '> = (1T ~24 Pc P c l )2 

(3. 9) 

I 
(T) (T') I ,,1 I \2 \ (T) (T') '''0 I I \2 . (;: L. 'Ync "" urn 'Ymc I 'L 'Ync #\, nm 'Ymc I 

- Ci: -E)(~ -E) - ~ -E-f. )("€ -E-£) 
n m n m I k ''-1 k 

The average value can be obtained by standard, though tedious algebra, 
as shown in Appendix ~. The assumption (3. 1) to (3.3) can be used now, to 
discord higher order terms in D / r. The final result is (for single initial 
and single final channel) 

<o (E) o (E+ ,,_)- <0->2= <(5cc>t<.cr-cc> + 2 <s-dc> + 2 Z(,)-cd > + 

(3. 10) 

( 

+ / S dc '> ) ( r-;-dc -, + 
<.... " l -' " 

3.4. - The expected width of the correlation curve. -

Now we discuss how the conclusions of section 2 are modified by the ap­
pearence of direct contributions in the eq. (3. 8) and (3.10). Firstly, we obser 
ve' that the (presumably small) direct term (.,- dd does not alter the shape of­
the correlation curve, just as it happens in the usual fluctuation theory. The 
shape of the curve changes, however , if terms (,,;- cd ') or ,,,,-;-dc '> substan­
tially contribute to the total cross section. For comparison, the values of 
r ex/ r'T' for r T = I'TI and (,;-.cd > = 0 are shown in table I as a function of 

the cross sections ,<>-dd, <6" CC ) and «" dc/ . The same comparison, but 
with <"dc) = <er- cd ) , has been done in table II. The change in rex/ f iT is 
not large, when .(o cd > and «"dd \. are smaller than «(., CC) , ranging from 
0.64 in the purely statistical case to 0.75 in the (rather improbable) case 
~cd = o dc = ")dd = ,,,cc. It is however clear from eq. (3. 10) that r 

f . d ' d ex 'should approach f' T or 'T' when either <"E;'-c ) or <,,- c '> dominates over 
the other cross sectionS. 



'1'/1 BI ·E' I - V 1 f r / 'I~ f t' f ~elel/< cc> d - a ues 0 ex T a s a unc lOn 0 ~ 6' an 

.(r:;elc>/ <: "cc). for r T ~ I~T' and < cr cel > ~ O. 

- ~dd <. f>dc ) E) 0 O. 5 1 2 
<flcc> <<Scc> 

0 O. 64 O. 64 O. 64 O. 64 

O. 5 O. 67 O. 68 0.68 O. 69 

1 0. 71 0.72 0. 72 0.72 

2 0,77 O. 77 O. 78 O. 78 

TABLE II - Values of r'ex/ rT as a function of 'i'jdd/<"cc> and 

<()dc)/<Scc) . for l'T ~rTI and<Gcd>~<Sdc>. 

~" <c) dc> G 0 cc, 
<G CC ) <G /' 

0 0, 64 

0: 5 0, 68 

1 O. 72 

2 O. 77 

O. 5 

0.64 

O. 70 

O. 74 

O. 79 

1 " • 
~ t. \ 

1 2 

O. 64 0.64 

0,71 O. 72 

O. 75 0.76 

O. 80 O. 82 

13. 
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4. CONCLUSION.-

We now discui5!! the results of the calculation, in connection with possi­
ble experiments. 

From the comparison of experimental correlation function for allowed 
and forbidden reactions, we could obtain either (a) a general check of the 
theory or (b) informations on the amount of "coherent" contribution to the 
isospin mixing process. For this purpose, experiments are most significant 
in th e following two cases: 

a) r T ,>;; rTo (within a factor 2). The w. h. m . rex of the experimental corre­
lation curve for the forbidden reaction will be smaller than both IT and "To, 
if the isospin mixing is mainly statistical. The shape of the correlation 
curve is not significantly different from the usual Lorentzian shape. Small 
amounts of coherent isospin mixing and/ or isospin impurity in channels c 
and c ' do not alter significantly the theoretical estimates, and are therefore 
hard to be detected. Measurements in the situation r T ;>~ \' TO are therefore 
suitable mainly as a global test of the theory. 

b) IT») rT , : in this case the e;pected i'ex is very near to i'To but 
another, structure with width I T also exists, when the contribution from the 
coherent mixing process in channel c is large enough. This intermediate 
structure can be made apparent by the procedure proposed by Pappalardo(17). 

For a test of the theory, the most favourable case is that of (d, ,J.. ) or 
(col, d) reactions on light, s elfconjugate nuclei, from Mg24 to Ca40. 
A 11 final nuclei from these reactions show a typical triplet of low lying levels, 
including the ground state. One of them, is a 0+, T=l level, i. e. the isospin 
analog of the g. s. of neighbour nucl ei. Since the first 0+, T=O state will 
appear only at rather high excitation, the low lying 0+ state is expected to 
have very pure isospin. Unfortunately, this state is very closed to the others 
in the triplet, so that it may be difficul t to distinguish in the energy spectrum 
the small "forbidden" peak from the tail of the large "allowed" one. A broad 
range magnetic spectrograph, or possibly an advanced solid-state counter 
techi1~que,can in principle allow this eXReriment to be done at least in the 
easiest cases, Si2B (d, .J.. )A126 and Ca40(d, . .( )K3B. Additional troubles may 
take place in the measurement of r T=l since I'T=O can be obtained from 
the analysis of allowed (d, ,", ) reactions, but i' T=l can not. We are there­
fore forced to use the (p, -.z) reaction to the : T=l state, i. e. an initial 
channe l having no pure isospin. The forbidden contribution from the T=O 
part of the proton channel will therefore interfere with that from T=l. As a 
consequence, the correlation function f(E) will contain not only a J.~orentzian 
term with rT=l' but also another ~ith rT=O (though the relative impor­
tance of the s econd term is .-:; 2 \ .z\ ). If this fact is not carefully taken into 
account, an erroneus f'T=l is likely to come out, particularly if i'T =O <-
-'- rT=l . 
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APPENDIX 1 

We want to discuss the time evolution of a highly excited nuclear system, 
that at time a has pure isospin T l , following the procedure firstly proposed 
by Morinaga( 11). Suppose the total Hamiltonian is H = HO + HC

, with HO charge 
independent and He small. We may define eigenstates I X~T) of HO and T2 
in a closed region of nuclear dimensions, with proper boundary conditions. 
For t = 0, the state vector /ll (t) ) of the system is described by a proper su­
perposition of states I X~T)' For symplicity sake, we assume 1\1'(0) ) ac­
tually coincide with a particular jX~Tl) and neglect decay. This is indeed a 
very crude assumption, since isospin mixing may occur through the coupling 
to the continuum, if Some of the channels have not pure isospin. 

The transition amplitude from state Ixo
T ) to a state IX~T2) in the 

time inte rval a ~ l is, to the first order, p 1 

A (t) 
p,n 

• t 

i~1j (nT:olnclpTl)exp 
i(EO - EO) t' P n 

ti 
a 

1 
c exp litE]? - Eg)t/h \ - 1 

= (nT
2 

H \ pT
l

) 
EO _ EO 

P n 

dt' 

Now we assume that the matrix elements (nT 2 I H C I pT 1) (for the given p 
and all n) are random uncorrelated variables with zero mean and their va­
riance ';s independent from EO - E~ within an energy interval of the order 
of tilt. p 

Under these assumptions, the total transition probability to states of 
isospin T 2 is 

P T T (t) 
1 2 

= ) \ a (t) 12 = 
- pn 
n 

.. 
I sin (EI? - Eg) t/2h 

L (E O _E o)/2 
p n 

Substituting the squared matrix elements by their expectation value 
< I (T 2 I H C I T 1) 12 > and the sum on n by an integral, we get 
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< P T T (t) '> = 
1 2 

APPENDIX 2 

2TT 
(I (T 21 HC I Tl) 12.> 

D2 

t 
1i 

For the forbidden transitions (without coherent effects) the transition a~ 
plitude is 

f = A :> (T) 2: (T') 

n m 

'Y~c 1(' ~m 'Ykc ' 
CC: -E) (~ -E) 

n m 

whe re A is a kinematic constant. We have therefore 

(T) (T') < I IX T(' I 'Til l" I I '> 
<X . \ 12 '" "> . 'Ync 'YnlcIlVnm ''''ri'ml 'Ymc l 'YmKtc l 

f (E ) f( E + ,E ) > = A /: L 
;;;1 mml ('ix_E)(lX_E)('t . -E-C:)(~ -E-c) 

n' ml n ' m 

But the average value at the right hand side is zero unless n = nl, m = ml ; 
ther efor e 

< fK(E ) fe E + E..) > I 1
2 - (T) 1 

= A > ------~----­
n (~X _ E) (-i _ E _ c.) 

n n 

If the level spacing is small compared to the level width, we may treat each 
sum as an integral and extend the integration on the real axis from - CD to 
+ CD . 

> 
(T) 

n 

" (T) 
L 
n 

1 

1 2 '11' :1 



Finally 

2 1T 2 1T 

DT , IT' 
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1 

(1- iE. )(1- i~ ) 
IT IT' 

The same procedure shows that < f(E) f(E + t) '> = 0, since in this case both p£ 
les are on the same side of the real axis. 

APPENDIX 3 

We want to evaluate the average value of the cross section correlati on 
function, in the case of forbidden reaction. From eq. (3. 9) we get 

4 (T) ~(T') 
, ,x,o, "In ,x , , l( 

'Ync 'Yn'c'''- nm f<"n'm''Ymc "m'c' 
<.s-(E) E>(E +.t )r= I A \ 2... L 

nn'll' mm'kk' 

(A.3.1.) 

, ,x,o, '1p,J< , ,J< 

'Ylc 'Y1'c' ~lk 6"-l l k ' 'Ykc 'Yk'c' 
('e-E-C)('E'''-E-£)(-t -E-t)('~" -E-£) 

1 l' k k' 

For the moment we only consider these terms in the sum for which none 
of the indices n, m, n', m' .coincides. with one among k, 1, k I, I'. 

The two fractions at the right hand side of eq. (A. 3. 1) are statistically 
independent in this case, and the result is therefore 

{ 

(T) (T') , IX "IV' ..,0 ,H , I H 12 
\
AI2) .;:::: '7 'Ync 'Yn ' c "'nm "'n'm' 'Ymc' 'Ym'C') = 

'- .L ,_ (1: _E)(~H -E)(~ - E)( ~x - E) ~ 
nn' mm' n n ' m mt 

2 
<£" ) 

Additional terms of the same order of magnitude come from the cases 
we neglected till now, that is 

1) n=1' or n' = 1 

or m = k' or m ' = k 

2) two of the above equalities hold simultaneously; 

3) three of themhold; 

4) all four hold at the time. 

-, '3 J 
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The terms with n = 1, or m = k, "" " " have zero mean (within the limits 
ofD/1 ). 

Case 1 - For n = l' and (m, n', m') r (1, k,k') we get 

, , 11 

\ 
A \ 2 (") -="_'Y-,,n::..::;c.,.-'Y~nii-c_--:='7 

L (~ -E)('fll_E_ t: ) 
n n n m 

,X IX ,x 
'Yn'c "Rn'm' 'Ym'c' 

n'mt (~~, :E )(YC~'_E) 

",,' , 
l"nm 'Ymc' 
(~ -E) 

m 

~ ,1I ,11 

1~nk' 'Yk'c' 

~, ~:,-E-t) 

'2 
"U.' I 

'l1c ''1k 'Ykc' 

lk 

Apart from higher order terms in D /,' , the average of the product is equal 
to the product of the average values of each sum, Moreover, the average va­
lues of the 3rd jl.nd 4th sums are equal to the complex conjugate of the 2nd 

and 5th respectively, Taking into account the results of appendix 2, we obtain 

n 

If n' = I instead of n = 1', we obtain the complex conjugate of this expression, 
But 

The contribution of case 1 coming from the two terms (m = k', k = m') add two 
similar terms, but with (:" dc), \'2 instead of < (-; cd>, "I' is therefore 

2 Qdd « 0'cd > lc
1

\2 + ( \'5"dc) icl), 

Case 2a - For m = l' and n' = 1; (m, m') f (k, k') we get 

, ,11 

\ \
2 / ',: 'Y nc 'Ync 

A <....~ (~ -E)('tll_E_~) 
n n n 

, ' 
I( nm 'Ymc ' 

(1': - E) 
m 

~ 11 
'r i' , , 
'vIm' 'Ym'c' 
~x -E) 

m' 
= 

m' k' 

33, 
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/ \ I \2 \ 2 \ I I \ 4 2 
=112\ 5 <... 'Ync > ' (~2Jt nm'Ymcl> = (6_cd., I \2 
A_ ff _E)('tK_E_£.) \ - (-t. -E) ./ C 1 

n n n m m 

A term with <.c,dc >, r ins t ead of .( ",_cd >, r' comes from m = k', m' = k. 
2 1 

Case 2b - For n = I', m = k': (n', m') r (1, k) 

\ ' 121-'" \2 \' \ 2 
/ " 'Ync , "'nm 'Ymc' , 
'--L (c -E)('f K -E- f.)( i -E)('t" -E- t) 

nm n n m 1fn 

> /-

n'm' 

, , , 
":: 'Ylc 1t-lk'Ykc ) / _cc> _ dd 
L- = <-.'> 6 - (t! -E-i.)('f -E-£) 
Ik 1 k 

Taking also into account the three possible choices (n = I', m' = k) ; (n' = 1, 
m = le') and (n' = 1, m' = k) we obtain for the case 2b 

= < <scc '- ()dd (C + C K
) (C + C K

) = 
./ 1 1 2 2 

s-dd( C c \2 
1 2 

fase ~- For n=l', n'=l, m=k' and m'fk 

nm 

I 'Y ~c \ 2 \ 1t-~m ! 2 i 'Y 'mc' \ 2 
('-'~~_E::::_ ):""'('~K_-E_ t)( ~ -ElCP -E- t) 

n n m m 

= < s-cc" C K C K < S-cd ') C 
/" 1 2 ' 1 

Taking into account the terms (m r k')' (n =/1') and (n' f 1) we finally obtain 

< <;-_cc > [ <sCd>\ C
1

\2 (C;+C
2

) + ( s-<lc) \c
2

\2 (C~ + C
1
)] = 
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Case 4 - For n=l', n'=l, m=k ' , m'=k we obtain 

I 
I l' 2 'Ir, I \ 2 I I I' 2 'Ync IV nm 'Ymc I 

nm 
(c -E)("i"" -E- £)( 't -E)(-Z;" ,-E- f.) 

n n m m 

Combining the results for cases 1 to 4, we finally obtain (for the single 
c ~ c I transitiqn) 

<::f> (E) 6"(E+£) _ <.S-2)= < 8-
cc> [<6'"cc> + 2 <,,_c d > + 2 < e-dc > + 

+4 S-dd J ICIC212 + < \;'"cd>L< 6-C d > +2 S dd] IC
1

\2 + 

+ < 6'"dc ) [<SdC ) + 2 S dd J \c
2

\2 • 
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