Comitato Nazionale per L'Energia Nucleare ISTITUTO NAZIONALE DI FISICA NUCLEARE

Sezione di Milano 64/1

N.K.

INFN/BE-64/5 3 Giugno 1964.

A. Luccio, N. Merzagora e C. Succi: LA SORGENTE DI PROTONI POLARIZZATI PER IL CICLOTRONE DI MILANO. -Parte I^a: Il polarizzatore dell'idrogeno atomico. -

> Reparto Tipografico dei Laboratori Nazionali di Frascati Cas. Postale 70 - Frascati (Roma)

192

Istituto Nazionale di Fisica Nucleare Sezione di Milano

INFN/BE-64/5 3 Giugno 1964.

A. Luccio, N. Merzagora e C. Succi : LA SORGENTE DI PROTONI POLARIZZATI PER IL CICLOTRONE DI MI-LANO. - Parte I^a: IL POLARIZZATORE DELL'IDROGENO ATOMICO.

Riassunto. -

Viene descritto un polarizzatore del tipo a campo magnetico debole che impiega una lente sestupolare senza nucleo di ferro, per la pro duzione di un fascio di idrogeno polarizzato.

Il polarizzatore, che costituisce l'elemento principale della sorgente di protoni polarizzati che si sta realizzando per il ciclotrone dello Istituto di Fisica di Milano, produce un flusso di 10¹³ atomi/secondo, con un grado di polarizzazione, rispetto allo spin del protone, migliore del 90%.

I. - Introduzione.

L'interesse suscitato in questi ultimi anni dalle ricerche di Fisica Nucleare eseguibili con fasci di particelle polarizzate e la prospettiva di produrre direttamente tali fasci con acceleratori, hanno incoraggia to lo studio e la costruzione di sorgenti di ioni polarizzati.

I principi di funzionamento su cui si basa la costruzione del le sorgenti di protoni polarizzati sono ampiamente illustrati e discussi nel la letteratura⁽¹⁾.

Risultati incoraggianti si stanno ottenendo in particolare con i metodi basati sulle deflessioni prodotte da campi magnetici disuniformi al la Stern e Gerlach su fasci di atomi di idrogeno ottenuti con la tecnica dei raggi molecolari.

Queste sorgenti di protoni polarizzati si possono classificare in due categorie principali, a seconda che impieghino un campo magnetico debole o forte. Nel primo caso, selezionando una delle quattro componenti di struttura iperfina di un fascio di atomi di idrogeno separate con una lente magnetica quadrupolare o sestupolare, si può ottenere un pennello di atomi polarizzati al 100% rispetto allo spin del protone. Nel secondo caso, la separazione operata da un campo magnetico forte fornisce un fascio di atomi polarizzato al 50%, la cui polarizzazione può essere aumentata in ducendo transizioni a radiofrequenza in una cavità risonante.

Le difficoltà insite in queste tecniche sono notevoli, specie per quanto riguarda la produzione di fasci di intensità e geometria tali da renderne possibile con un buon rendimento la ionizzazione e la iniezione n<u>e</u> gli acceleratori.

Nel presente lavoro vengono illustrati i risultati sperimenta li conseguiti con una sorgente di protoni polarizzati fino a circa il 100% stu diata per il ciclotrone relativistico da 45 M^HV dell'Istituto di Scienze Fisiche dell'Università di Milano.

La sorgente è costituita da un polarizzatore di idrogeno atomico, del tipo a campo magnetico debole, e da un dispositivo di ionizzazio ne per la produzione dei protoni polarizzati da iniettare nella macchina.

Gli elementi principali del polarizzatore sono: una lente sestupolare di circa 3 metri di lunghezza alimentata da un generatore omopo lare, un dissociatore nel quale viene prodotto l'idrogeno atomico, e un con tenitore ad alto vuoto con i relativi gruppi di pompaggio differenziale per la formazione del fascio.

Caratteristiche notevoli dell'apparecchiatura realizzata sono: la possibilità di variare il grado di polarizzazione del fascio tra il 50 e il 100% a mezzo di un diaframma regolabile, la possibilità di modificare en tro grandi limiti le proprietà ottiche della lente, e in generale una buona stabilità di funzionamento.

II. - Il dissociatore.

L'idrogeno atomico necessario per la formazione del fascio è prodotto per dissociazione di molecole in un tubo a scarica senza elettro di (v. fig. 1), eccitato per mezzo di una bobina alimentata da un generatore che fornisce una potenza massima di due KW ad una frequenza di 20 MHz. La bobina fa parte di un circuito oscillante in parallelo a presa intermedia; l'adattamento viene ottenuto regolando un condensatore variabile posto in serie all'uscita del generatore.

L'ampolla in cui avviene la scarica è costituita da un tubo di vetro pyrex lungo 30 cm con diametro interno di 26 mm. Essa termina ad un'estremità con una flangia che permette di fissarla a tenuta ad un sistema posizionatore; alla stessa estremità è fissato un disco di pyrex, nel qua le è ricavata la fenditura per l'effusione dell'idrogeno.

All'altra estremità l'ampolla è chiusa con un fondello, pure di pyrex, al quale sono connessi due capillari: uno permette l'immissione dell'idrogeno molecolare, l'altro, collegato con un manometro tipo McLeod, permette la misura della pressione del gas nell'ampolla durante il fun zionamento.

Un disco attaccato al fondello, sbarra la strozzatura del tubo

FIG. 1 - Il dissociatore dell'idrogeno.

-3.

FIG. 2 - Diaframma del dissociatore. a) sezione e vista; b) profilo della fenditura. (v. fig. 1) ed impedisce alla scarica di propagarsi lungo gli adduttori del gas. Tutte le tenute sono assicurate mediante O-ring di gomma al silicone.

La fenditura di efflusso (v. fig. 2) è anulare e viene pratica ta nel disco di chiusura dell'ampolla, di 3 mm di spessore, mediante una fresatrice ad ultrasuoni; la lavorazione viene eseguita impiegando successivamente due utensili cilindrici di acciaio inossidabile, che presentano se miangoli di taglio di 45° e 10°. Il diametro interno della fenditura è di 20 mm, la larghezza e la profondità sono di 0, 1 mm circa; il profilo della se zione trasversale è riportato nella figura.

Durante la scarica il flusso di idrogeno viene misurato per mezzo di un flussometro tipo Rotameter, e mantenuto intorno al valore di 50 cm³ al minuto. In condizioni normali la pressione nell'ampolla è di 0.2 torr. L'idrogeno, del tipo purissimo (al 99.99%), viene immesso nell'ampolla di scarica attraverso una serie di riduttori di pressione e valvole do satrici.

Per mezzo di osservazioni spettroscopiche della luce eme<u>s</u> sa dalla scarica si è stimato che il rendimento di dissociazione si mantiene normalmente intorno al 75%.

III. - L'impianto a vuoto e la collimazione del fascio.

Lo schema del contenitore a vuoto che serve per la formazione del fascio di idrogeno atomico è riportato nella fig. 4.

Esso è costituito da tre camere a tenuta, comunicanti tra l<u>o</u> ro attraverso i due diaframmi anulari $A_s e A_c$, allineabili per mezzo di un sistema di slitte mobili con l'orificio A_d del dissociatore. L'allineamento delle fenditure viene eseguito togliendo il fondello del tubo a scarica e tra-guardando con un cannocchiale affacciato all'uscita della lente una sorgente di luce diffusa posta al di là del dissociatore.

La camera S è evacuata con una pompa a diffusione di vapori d'olio da 1000 litri/secondo; la camera C con una pompa a diffusione da 10.000 litri/secondo; la camera della lente L, con due pompe da 1000 litri/ /secondo. Un'unica pompa preparatoria da 200 m³/ora serve tutte le diff<u>u</u> sioni.

Le dimensioni principali dell'apparato sono rilevabili dalla fig. 5 che ne mostra una sezione verticale.

Il vuoto raggiungibile nella camera S dipende prevalentemen te dal numero di particelle che nell'unità di tempo pervengono dal dissocia tore e dalla velocità di aspirazione della pompa impiegata. Il numero di particelle che lasciano per effusione il dissociatore è dato da⁽²⁾:

$$\phi_{s} = \frac{1}{k} \frac{1}{4} n_{d} A_{d} \overline{\nabla}$$
,

FIG. 3 - Veduta del dissociatore e di parte del contenitore a vuoto.

FIG. 4 - Schema del contenitore a vuoto.

FIG. 5 - Sezione del polarizzatore. - 1) contenitore a vuoto; 2) dissociatore; 3) lente elettromagnetica; 4) rivelatore.

5.

dove n_d rappresenta la densità di particelle nel dissociatore, A_d l'area del l'orificio, \overline{v} la velocità media di agitazione termica e k è un coefficiente che dipende dalla forma della sezione della fenditura.

Nelle condizioni sperimentali impiegate, per le quali 1/k a<u>s</u> sume il valore di 0.67, risulta:

$$\phi_{c} = 2.5 \times 10^{19}$$
 particelle/secondo ≈ 0.7 torr-litri/secondo.

Se nella camera S esiste un vuoto tale che il libero cammino medio delle particelle risulti superiore alla distanza L_s dei diaframmi A_d e A_s , la maggior parte degli atomi diretti verso il diaframma A_s penetrano nella camera di collimazione, mentre i rimanenti debbono venire aspor tati dalla pompa.

Il flusso ϕ_c delle particelle che entrano nella camera di col limazione, tenendo presente che la distanza tra i diaframmi è di 2 cm e che la superficie della fenditura anulare A_s è di 0.25 cm², risulta:

$$\phi_{\rm c} = {\rm k}\phi_{\rm s} \frac{{\rm A}_{\rm s}}{\pi\,{\rm L}_{\rm s}^2} = 1.2\,{\rm x}\,{10}^{-2}\,\phi_{\rm s}$$

La pompa dovrà pertanto asportare praticamente tutte le particelle che penetrano in S. Alla portata di 0.7 torr-litri/secondo, la pompa impiegata mantiene una pressione di 4×10^{-3} torr, alla quale il libero cammino medio dell'idrogeno atomico è di circa 3 cm, sensibilmente superiore alla distanza tra i diaframmi.

Se si tiene conto dell'attenuazione γ del fascio per le collisioni nella camera S, si ottiene per il flusso di particelle che penetrano nel la camera di collimazione:

 $\phi_c = 1.5 \times 10^{17}$ particelle/secondo.

In presenza di fascio,nella camera C la pompa da 10.000 li tri/secondo mantiene un vuoto di 5 x 10^{-6} torr e l'attenuazione risulta trascurabile. Indicando con $A_c = 0.05 \text{ cm}^2$ l'area della fenditura A_c e con $L_c =$ = 45 cm la distanza tra A_s e A_c , per il flusso che penetra nella camera del la lente si ottiene:

$$\phi_{\rm L} = k \, \gamma \, \phi_{\rm s} \, \frac{A_{\rm c}}{\pi (L_{\rm s} + L_{\rm c})^2} = 5.5 \times 10^{-6} \, \phi_{\rm s}$$
.

Il fascio così formato è praticamente cilindrico; all'ingresso la sua sezione è una corona circolare di 20 mm di diametro e di 0.1 mm di spessore; lungo la lente il fascio diverge lievemente e all'uscita la sua sezione ha un diametro medio di 20 mm e uno spessore si 1.5 mm circa.

6.

Nelle condizioni descritte si hanno perciò all'ingresso della

lente :

$$\phi_{\rm I}$$
 = 1.4 x 10¹⁴ particelle/secondo.

Tenendo presente che il rendimento di dissociazione è del 75% e che, data la bassa pressione esistente nella camera della lente, $< 10^{-6}$ torr, il fascio non è praticamente attenuato, si potranno raccogliere sul bersaglio ri velatore circa 10^{14} atomi di idrogeno/secondo.

IV. - La separazione delle componenti di struttura iperfina dell'idrogeno atomico.

Nella camera di polarizzazione, il campo d'induzione magne tica necessario per la separazione delle componenti di struttura iperfina dell'idrogeno atomico è generato da una lente elettromagnetica sestupolare, costituita da sei tubi di rame di 300 mm² di sezione utile e 2,75 metri di lunghezza, disposti parallelamente ai vertici di un esagono regolare e percorsi successivamente in verso opposto da una corrente di circa 2000 A.

I tubi sono refrigerati a circolazione di acqua e sono sostenuti da tre anelli di alluminio mediante un sistema di tiranti che permettono di variarne entro larghi limiti la distanza, consentendo di modificare sia radialmente che longitudinalmente le proprietà magnetiche del sestupolo. U na coppia di rotaie facilità l'introduzione e l'estrazione della lente della ca mera di polarizzazione e la sua centratura. La fig. 6 mostra l'estremità del sestupolo con gli adduttori di corrente.

Il campo di induzione magnetica generato dal sestupolo descritto è espresso dalla relazione⁽³⁾:

$$B = \frac{3}{\pi} \mu \frac{i}{a} \left(\frac{r}{a}\right)^2 \left\{1 - 2\left(\frac{r}{a}\right)^6 \cos 6\psi + \left(\frac{r}{a}\right)^{12}\right\}^{-\frac{1}{2}}$$

dove i è l'intensità della corrente che percorre i conduttori, a la distanza dell'asse di ogni barra dall'asse del sistema, r e \forall le due coordinate cili<u>n</u> driche del punto che si considera.

Se r è sensibilmente minore di a, si può scrivere approssimativa**m**ente:

$$B \cong \frac{3}{\pi} \mu \ i \ \frac{r^2}{a^3} = 1 \cdot 2 \frac{i}{a} \left(\frac{r}{a}\right)^2$$
.

B risulta espresso in gauss, se i è misurato in ampère e a in cm.

Indicato con $\rm B_{0}\,$ il valore del campo ad una distanza $\rm r_{0}$ dall'asse della lente, si ha:

8.

$$B = B_0 (\frac{r}{r_0})^2 = B_0 y^2$$

e l'espressione del gradiente del campo assume la forma:

$$\operatorname{grad} B = 2 B_0 \frac{y}{r_0}$$
 .

Nelle condizioni sperimentali adottate, le particelle vengono iniettate parallelamente all'asse della lente ad un raggio $r_0 = 10$ cm; a è di 26 mm e l'intensità della corrente di 2000 ampère circa. In r_0 si ha quindi:

$$B_0 = 136 \text{ gauss}$$
 grad $B = 372 \text{ gauss/cm}$.

Come è noto in un campo di induzione magnetica debole (B< \leq B = 507 gauss) gli atomi di un fascio di idrogeno atomico si ripartiscono in quattro stati per i quali il momento magnetico efficace è espresso dalla formula di Breit e Rabi:

$$\mu_{\text{eff}} = m_{\text{F}} g_{\text{I}} \mu_{\text{B}} + \frac{1}{2} (g_{\text{I}} - g_{\text{J}}) \mu_{\text{B}} \frac{m_{\text{F}} + x}{\sqrt{1 + 2 m_{\text{F}} x + x^2}}$$

nella quale g_I è il fattore di Landé nucleare, che vale 3.0419 x 10⁻³; g_J il fattore di Landé elettronico, che vale 2.00206; $\mu_{\rm B}$ il magnetone di Bohr, che vale 0.9732 x 10⁻²⁰ joule/gauss; e

$$x = (g_I - g_J) \frac{B}{2\overline{B}} \cong - \frac{B}{2\overline{B}}$$

I momenti magnetici efficaci dei quattro stati di struttura iperfina dell'atomo di idrogeno, si possono scrivere:

$$\mu_{eff, 1} = -\mu_{B} \qquad \mu_{eff, 3} = -\mu_{B} \frac{x}{\sqrt{1 + x^{2}}}$$

$$\mu_{eff, 4} = +\mu_{B} \qquad \mu_{eff, 2} = +\mu_{B} \frac{x}{\sqrt{1 + x^{2}}}$$

Nel campo della lente, le forze che si manifestano sugli at<u>o</u> mi del fascio sono espresse dalla:

 $F = -\mu_{eff} \text{ grad } B$

e quindi gli atomi degli stati 3 e 4 sono sollecitati ad allontanarsi dall'asse del sestupolo, mentre gli atomi degli stati 1 e 2 sono sollecitati verso esso. Poichè F₂ è minore di F₁, gli atomi dello stato 1 sono deflessi verso l'asse più efficacemente di quelli dello stato 2, e quindi con un'opportuna dispo

FIG. 6 - Estremità di uscita della lente congli adduttori di corrente.

sizione di diaframmi sarà possibile intercettare la componente 2 e conservare solo la componente 1, polarizzata rispetto allo spin del protone.

L'ampiezza dei diaframmi si può determinare partendo dalle equazioni di moto degli atomi. Avendosi:

$$F - r_0 m \ddot{y} = 0$$

se z rappresenta la distanza percorsa dagli atomi, misurata lungo l'asse della lente, dalla:

$$\dot{y} = v^2 \frac{d^2 y}{d z^2}$$

con la posizione: s = z/L (L, lunghezza della lente), e quindi dalla:

$$y = \frac{v^2}{L^2} \frac{d^2 y}{d s^2} = \frac{v^2}{L^2} y''$$

l'equazione per la componente 1 assume la forma :

$$y'' - \gamma^2 y = 0$$

e per la componente 2 :

$$y'' + \frac{\gamma^2 - 2}{\sqrt{1 + \xi^4 \gamma^4}} y^3 = 0$$

con i seguenti valori dei parametri:

$$\gamma^{2} = \frac{\mu_{B}B_{o}}{\frac{1}{2}mv^{2}} \left(\frac{L}{r_{o}}\right)^{2} \qquad \mathcal{E}^{2} = \frac{B_{o}}{B} .$$

L'equazione per la componente 1, nell'ipotesi di un fascio in finitamente sottile e parallelo all'asse della lente all'iniezione, si integra immediatamente e fornisce :

$$y_1 = \cos(\gamma s)$$
.

L'equazione per la componente 2 è di tipo ellittico e può integrarsi numeri camente. Una soluzione sufficientemente approssimata può ottenersi trascu rando il termine $\mathcal{E}^4\gamma^4$ rispetto all'unità e ricercando un'espressione della forma :

$$y_2 = \cos(k\gamma \mathcal{E}s)$$
.

Si trova per k 2 l'espressione k $^2 \cong 1/\sqrt{1+\gamma^2 \, {\mathcal E}^2 {\rm s}^2}$ e la y $_2$ si

10.

scrive allora:

$$y_2 \cong \cos \frac{\gamma \varepsilon S}{\sqrt{1 + \gamma^2 \varepsilon^2 s^2}}$$

Se si tiene conto della distribuzione delle velocità degli atomi uscenti dal diaframma del dissociatore (2):

$$I(v)dv = \frac{2I_0}{\alpha} \left(\frac{V}{\alpha}\right)^2 e^{-\left(\frac{V}{\alpha}\right)^2} dv$$

(dove I_o rappresenta il flusso totale e \checkmark la velocità più probabile) per mez zo delle espressioni trovate per y₁ e y₂ (e le analoghe y₄ e y₃), si determi na l'andamento del numero di particelle infunzione della distanza dall'asse all'uscita della lente.

Nel grafico della fig. 7 è riportata la distribuzione radiale degli atomi di idrogeno nelle 4 componenti, calcolata per due valori della corrente di alimentazione della lente, nell'ipotesi di un pennello di sezione infinitesima iniettato parallelamente all'asse, per una temperatura della sorgente di 400° K.

Come appare dalle curve, il numero di atomi che subiscono grandi deflessioni è maggiore in corrispondenza al valore più alto della corrente; tuttavia, a parità di deflessione, il rapporto tra le intensità delle componenti 1, polarizzata rispetto allo spin del protone, e 2, non polarizzata, è più alto per la corrente minore.

I risultati che le curve della fig. 7 rappresentano, costituiscono la base per il calcolo delle distribuzioni radiali delle particelle, che si possono ottenere nelle diversi condizioni sperimentali realizzabili con l'apparecchiatura costruita.

Nella fig. 8 sono riportate le curve di distribuzione radiale degli atomi di idrogeno negli stati 1 e 2 deflessi verso l'asse, calcolate per le correnti di alimentazione già considerate nella fig. 7, per il fascio di se zione anulare iniettato nella lente con il diaframma di 0.1 mm di larghezza.

Tenendo conto della distribuzione degli atomi nelle componenti 1 e 2, si può rilevare che è possibile ottenere un fascio di atomi di <u>i</u> drogeno con una polarizzazione variabile dal 50 al 100% circa, limitando il fascio all'uscita della lente con un diaframma di diametro regolabile.

Nella figura 9 sono riportate, in funzione dell'ampiezza del diaframma corrispondentemente ai due valori della corrente di alimentazione della lente di 1500 e 2500 ampère, l'andamento della percentuale di polarizzazione, e la percentuale di utilizzazione del fascio che entra nella lente. Si rileva subito che, a parità di diaframma impiegato, un elevato gra do di polarizzazione comporta una riduzione dell'intensità del fascio in uscita.

FIG. 7 - Distribuzione radiale delle 4 componenti di un pennello di idrogeno di sezione infinitesima.

FIG. 8 - Distribuzione radiale delle componenti 1 e 2 nel fascio del polarizzatore.

FIG. 9 - Polarizzazione e intensità percentuale del fascio in funzione del diametro del diaframma.

V. - Risultati sperimentali.

12.

All'uscita della lente, il fascio di idrogeno atomico viene ri velato osservando la traccia prodotta su di una lastrina ricoperta da un sot tile strato di triossido di molibdeno, disposta ortogonalmente all'asse del sestupolo in una apposita camera che ne permette l'esposizione al fascio e l'estrazione, senza distruggere il vuoto esistente nella camera della lente.

In assenza di campo magnetico, la traccia del fascio consiste di una corona circolare di 20 mm di diametro medio e di circa 1.5 mm di spessore.

Una buona separazione delle componenti del fascio si ottiene già eccitando la lente con una corrente di circa 1000 ampère. Nel corso delle prove l'intensità della corrente è stata normalmente mantenuta in torno ai 2000 ampère. A questa intensità, le tracce prodotte dalle componenti 2 e 3 sul rivelatore appaiono separate tra di loro di circa 2 mm, e la componente 1, polarizzata al 100%, produce un'immagine diffusa.

Benchè la tecnica di rivelazione dell'idrogeno atomico con l'ossido di molibdeno sia quella normalmente utilizzata in questo tipo di analisi del fascio, le informazioni che con essa si possono ottenere hanno ca rattere qualitativo⁽⁴⁾. Allo scopo di aumentare la sensibilità del rivelatore e per renderne agevolmente riproducibili le caratteristiche, si sono sperimentati diversi procedimenti di deposizione dell'ossido di molibdeno.

Risultati soddisfacenti sono stati conseguiti facendo sublim<u>a</u> re l'ossido da un filo di molibdeno di 0.5 mm di diametro, riscaldato in <u>at</u> mosfera d'aria a 5 torr di pressione.

Le tracce del fascio fornite da questi rivelatori sono state <u>fo</u> tografate ed esplorate con un microdensitometro; anche se con questo met<u>o</u> di si è ottenuta solo una conferma qualitativa dei risultati previsti teoricamente, data la buona riproducibilità dei dati, non sembra improbabile che, tarando i rivelatori confasci di idrogeno atomico la cui intensità sia stata determinata per mezzo di un vacuometro differenziale, si possa pervenire a risultati quantitativi.

Per valutare l'intensità del fascio incidente nelle nostre con dizioni sperimentali sul rivelatore, si sono confrontati i nostri tempi di pri ma apparizione dell'immagine con quelli di altri autori⁽⁵⁾; l'intensità del fa scio stimata in questo modo è risultata di 10¹⁴ atomi/secondo, in buon accordo con il valore calcolato.

Prevedendo per lo ionizzatore del fascio, attualmente in cor so di realizzazione, un rendimento dell'ordine di 10^{-3} e supposto che il ciclotrone sia in grado di accelerare l'1% dei protoni prodotti, si potrà ottenere un fascio di circa 10^{8} protoni al secondo accelerati, con un alto grado di polarizzazione.

Per aumentare l'intensità del fascio, il diaframma del dissociatore verrà sostituito con un eiettore a getto supersonico. In questo mo do il guadagno potrà essere di un fattore 10 almeno ed è pertanto ragionevole prevedere una corrente di 10⁹ protoni polarizzati accelerati al secondo.

Ringraziamenti. -

La costruzione del polarizzatore è stata iniziata presso il Centro Ricerche Nucleari di Ispra e completata nell'ambito dell'Istituto di Scienze Fisiche dell'Università di Milano con i finanziamenti della Sezione di Milano dell'Istituto Nazionale di Fisica Nucleare.

E' nostro gradito dovere ringraziare il Prof. G. Tagliaferri per averci suggerito l'argomento del lavoro e averne seguito con costante interesse lo sviluppo.

210

Un sentito ringraziamento vogliamo pure esprimere al Prof. C. Salvetti, già direttore del Centro Ricerche Nucleari di Ispra, al Prof. P. Caldirola, direttore dell'Istituto di Science Fisiche dell'Università di Milano e al Prof. G. P. Occhialini, direttore della Sezione I. N. F. N. per i numerosi aiuti accordatici.

Siamo infine particolarmente grati al Dott. M. Castiglioni per la collaborazione offertaci durante la fase di progettazione e ai Sigg. R. Finardi e C. Fumagalli, tecnici del laboratorio.

Bibliografia. -

- (1) R. Keller, Rapport CERN 60-2 (1960);
 F. Duimio, A. Luccio e C. Succi, Ispra CNI-35(1960); Proc. Symp. on polarization phenomena of nucleons; Helv. Phys. Acta, Suppl. VI(1961);
 R. Fleischmann, Nuclear Instr. and Meth. <u>11</u>, 112 (1961);
 G. H. Stafford et al., Nuclear Instr. and Meth. <u>15</u>, 164 (1962);
 E. R. Collins, H. F. Glavish and S. Whineray, Nuclear Instr. and Meth. 25, 67 (1963).
- (2) N.F. Ramsey, Molecular beams (Clarendon Press, Oxford, 1956).
- (3) H. Friedburg, Z. Physik 130, 493 (1951).
- (4) G. Clausnitzer, Z. Physik 153, 609 (1959).
- (5) G. Clausnitzer, Proc. Int. Symp., Basel; Helv. Phys. Acta, Suppl. VI 43 (1961).