$$
\frac{\text { INFN/BE }-64 / 4}{3 \text { Giugno } 1964 .}
$$

D. Bollini, F. Fossati, A. M. Paolillo and S. Rovera: ENERGY SPECTRUM OF PROTONS FROM Cs AND I WITH 17.6 MeV INCIDENT γ-RAYS.

Istituto Nazionale di Fisica Nucleare

$$
\frac{\text { INFN/BE }-64 / 4}{3 \text { Giugno } 1964 .}
$$

D. Bollini, F. Fossati, A. M. Paolillo and S. Rovera: ENERGY SPECTRUM OF PROTONS FROM Cs AND I WITH 17.6 MeV INCIDENT γ-RAYS ${ }^{(\mathrm{x})}$.

Abstract. -
Energy spectra of protons from the $\mathrm{I}^{127}(\boldsymbol{\gamma}, \mathrm{p}) \mathrm{Te}^{126}$ and $\mathrm{Cs}^{133}(\gamma, \mathrm{p})$ Xe^{132} reactions were measured at 17.6 and $14.8 \mathrm{MeV} \gamma$-rays energy. Pul-se-shape discrimination has been used. The cross-sections for these reactions were estimated to be $2.5 \pm 0.8 \mathrm{mbarn}$. The spectra are consistent with the statistical theory for $\mathrm{E}_{\mathrm{p}}<4.75 \mathrm{MeV}$ and present in the high region, ef fects of direct interactions.

This paper presents experimental results on the energy spectrum of protons emitted by Cs ${ }^{133}$ and I^{127} of a CsI(T1)-crystal, irradiated with 17.6 and $14.8 \mathrm{MeV} \gamma$-rays. The γ-rays are produced in the $\mathrm{Li}^{7}(\mathrm{p}, \gamma)$ reaction at the 440 KeV resonance.

The crystal acts both astarget and as detector for p and α particles; moreover, exploiting the property of the crystal to present a fluorescence de cay time which depends on the particular particle detected, it is possible to discriminate between p, α and electrons produced by γ-rays.

The use of pulse shape analysis allows one to increase the $\mathcal{\gamma}$-flux, to use relatively thick crystals, and therefore to reduce corrections not easy to estimate, for protons escaping from the crystal.

Although it is impossible to separate the Cs^{133} and I^{127} contributions to the observed reaction, it is reasonable to assume that both elements will behave similarly. In fact, the two nuclides are close together in Z and A values ($I^{127} Z=53$; $\mathrm{Cs}^{133} \mathrm{Z}=55$) and both contain an odd number of p and an even number of n. The (γ, p) reaction Q-values are pratically: equal $(-6.25 \mathrm{M} \mathrm{MeV}$ and -6.37 MeV for I^{127} and Cs^{133}). Besides, the $4 \sqrt{6}$-geometry of the target detector system, does not allow angular distribution measurements.

The work was carried out with a 560 KeV Cockroft-W alton accelerator with the radio-frequency source in a fixed magnetic field. The γ activity was monitored continuously during the irradiation with a Geiger-Müller counter

[^0]
2.

($20^{\text {th }}$ Century Electronics G. 5 H) calibrated with the β^{+}activity induced in a copper foils by the reaction $\mathrm{Cu}^{63}(\gamma, \mathrm{n}) \mathrm{Cu}^{62}$. With an ion current of $70 \mu \mathrm{~A}$ the γ-rays intensity was $1.2 \times 10^{6} \gamma \times \sec ^{-1}$ over the whole solid angle.

The experimental arrangement is shown in fig. 1. The CsI(T1) crystal (a) has a. diameter of 40 mm and a thickness of 3 mm . It is mounted, with a 10 mm high perspex light pipe (b), on a Dumont 6292 photomultiplier (c). An aluminium sheet of $0.18 \mathrm{mgr} / \mathrm{cm}^{2}$ (d) covers the crystal and the light-pipe.

To avoid the counting of protons from (γ, p) reactions in the sorrounding metallic structures, a foil of polythene (e) of 2 mm thickness is placed over the crystal and absorbs protons with an ener gy up to 15 MeV .

The detector is screened by a 80 mm thick cylinder of Pb (f) with a 20 mm collimation hole (g) coaxial with the crystal (a).

The signals from the photomultiplier were sent to a discriminator circuit

Fig. 1 and analysed by a 100 channel pulse hight analyser. The block diagram of the electronic apparatus is outlined in fig. 2; it is similar to that used by Marcaz zan and al. (1).

Fig. 2 - Pulse shape discriminator circuit.

The calibration of the proton energy scale was made with 3.9 and 8. $77 \mathrm{MeV} \alpha$-particles from a natural Th source. The energy calibration curves given by Dixon ${ }^{(2)}$ for α and p in a CsI crystal were used.

Experimental results and discussion.
The experimental spectrum of protons, representing a total of 22700 counts, is shown in fig. 3. This spectrum was obtained in a series of successive runs for a total irradiation time of 260 hours.

Fig. 3 - Experimental spectrum of protons.

The following corrections were applied to the spectrum:
a) correction for protons escaping from the crystal, due to its particular geometry;
b) correction for the protons due to (n, p) reactions in Cs and I and the recoil protons in polythene. Neutrons are produced by a $\mathrm{Li}^{7}(\mathrm{~d}, \mathrm{n})$ reaction, with deuterons from our unanalysed proton beam.

The correction (a) was calculated assuming an isotropic angular distribution of protons; and was found to change from 5% for 6 MeV protons to 10% for 10 MeV protons.

For correction (b), the number of protons due to neutrons from Li^{7} $(d, n$) was determined from the yield of the reaction and the ($n ; p$) cross-sec tion in CsI. They do not alter substantially the spectrum shape.

The corrected spectrum seems to be in agreement with that of Sébaoun ${ }^{(3)}$ and Bormann-Neuert ${ }^{(4)}$.

Fig. 4 shows an analysis of the spectrum made according to the sta tistical theory. We plotted $\ln N(\varepsilon) / \varepsilon \times \sigma_{C}(\varepsilon)$ versus ε, where $N(\varepsilon)$ is the number of protons of energy ε, and $\sigma_{c}(\varepsilon)$ is the cross-section for the re verse process. Values of $\sigma_{C}(\varepsilon)$ were taken from Shapiror ${ }^{(5)}$ work, assuming $r_{o}=1.5 \times 10^{-13} \mathrm{~cm}$. The plot shows that the spectrum in the lower energy region corresponds to a nuclear evaporation process of the form: $N_{p}(\varepsilon)=\operatorname{cost} \varepsilon \cdot \sigma_{c}(\varepsilon) \mathrm{e}^{-\varepsilon / \theta}$ with a nuclear temperature $\theta=0.23 \mathrm{MeV}$.

The high energy part of the spectrum, can be attributed to direct in teractions, possibly two peaks are separable, one at 7 MeV and one at $\overline{9}$ MeV , in spite of the poor resolving power of the apparatus.

The analysis of the experimental spectrum shows that the protons \mathbb{e} mitted from the statistical process are about 21% of those produced by the resonance direct mechanism.

According to Wilkinson's ${ }^{(6)}$ theory for elements with $Z=53-55$, the ratio of proton emission to total absorption is 0.85% in the case of a brems strahlung beam with 23 MeV maximum energy. The same ratio, calculated by Weinstock ${ }^{(7)}$ with the statistical theory for bremsstrahlung of 22 MeV maximum energy is 0.2%. Therefore the ratio between the evaporative pro cess and the Wilkinson theory should be about 23%. This value is in good $a=$ greement with our experimental value of 21%.

To calculate the $\sigma(\gamma, p)$, it was assumed that Cs^{133} and I^{127} were identical in behaviour, and that the cross-sections with 14.8 MeV incident γ-rays was equal to that with $17.6 \mathrm{MeV} \gamma$-ray. The last assumption is rea sonable because the maximum of the giant resonance is at 15.2 MeV for Io^{-} dine and at 16.0 MeV for Cesium.

We estimated that the cross-sections for $\mathrm{Cs}^{133}(\gamma, \mathrm{p})$ and $\mathrm{I}^{127}(\gamma, \mathrm{p})$ reactions were: 2.5 ± 0.8 mbarn.

This value is to be compared with 1.5 mbarn obtained by Sébaoun ${ }^{(3)}$ and Kestelyi-Eron ${ }^{(8)}$ for the same reactions.

6.

Bibliography. -
(1) - G. M. Marcazzan, E. Menichella Saetta and F. Tonolini, Nuovo Cimento 20, 903 (1961).
(2) - W. R. Dixon, Nuclear Phys. 42, 27 (1963).
(3) - W. Sébaoun, J. Phys. Radium 22, 735 (1961).
(4) - M. Bormann und H. Neuert, Z. Naturforsch. 14a, 922 (1959).
(5) - M. M. Shapiro, Phys. Rev. 90, 171 (1952).
(6) - D. H. Wilkinson, Physica 22, 1039 (1956).
(7) - E. V. Weinstock, Phys. Rev. 94, 1651 (1954).
(8) - L. Kesthelyi and J. Erón, Nuclear Phys. 8, 650 (1958).

[^0]: (x) - This work has been carried out under contract EURA TOM-CNEN.

