Comitato Nazionale per L'Energia Nucleare ISTITUTO NAZIONALE DI FISICA NUCLEARE

Gruppo di Pavia 64/1

 $\frac{\text{INFN/BE} - 64/4}{3 \text{ Giugno } 1964.}$

D. Bollini, F. Fossati, A. M. Paolillo and S. Rovera: ENERGY SPECTRUM OF PROTONS FROM Cs AND I WITH 17.6 MeV INCIDENT **7**-RAYS.

185

Reparto Tipografico dei Laboratori Nazionali di Frascati Cas. Postale 70 - Frascati (Roma) Istituto Nazionale di Fisica Nucleare Gruppo di Pavia

> INFN/BE - 64/4 3 Giugno 1964.

D. Bollini, F. Fossati, A.M. Paolillo and S. Rovera: ENERGY SPECTRUM OF PROTONS FROM Cs AND I WITH 17.6 MeV INCIDENT \mathcal{T} -RAYS^(x).

Abstract. -

Energy spectra of protons from the $I^{127}(\mathcal{T},p)Te^{126}$ and $Cs^{133}(\mathcal{T},p)$ Xe¹³² reactions were measured at 17.6 and 14.8 MeV \mathcal{T} -rays energy. Pulse-shape discrimination has been used. The cross-sections for these reactions were estimated to be 2.5 \pm 0.8 mbarn. The spectra are consistent with the statistical theory for $E_p < 4.75$ MeV and present in the high region, effects of direct interactions.

This paper presents experimental results on the energy spectrum of protons emitted by Cs^{133} and I^{127} of a CsI(T1)-crystal, irradiated with 17.6 and 14.8 MeV \mathcal{O} -rays. The \mathcal{T} -rays are produced in the Li⁷(p, \mathcal{T}) reaction at the 440 KeV resonance.

The crystal acts both as target and as detector for p and \checkmark particles; moreover, exploiting the property of the crystal to present a fluorescence de cay time which depends on the particular particle detected, it is possible to discriminate between p, \checkmark and electrons produced by \mathcal{T} -rays.

The use of pulse shape analysis allows one to increase the γ -flux, to use relatively thick crystals, and therefore to reduce corrections not easy to estimate, for protons escaping from the crystal.

Although it is impossible to separate the Cs^{133} and I^{127} contributions to the observed reaction, it is reasonable to assume that both elements will behave similarly. In fact, the two nuclides are close together in Z and A values (I^{127} Z=53; Cs^{133} Z=55) and both contain an odd number of p and an even number of n. The (\mathcal{T} , p) reaction Q-values are pratically equal (-6.25 MeV and -6.37 MeV for I^{127} and Cs^{133}). Besides, the $4\overline{\mathcal{K}}$ -geometry of the target detector system, does not allow angular distribution measurements.

The work was carried out with a 560 KeV Cockroft-Walton accelerator with the radio-frequency source in a fixed magnetic field. The \mathscr{T} activity was monitored continuously during the irradiation with a Geiger-Müller counter

⁽x) - This work has been carried out under contract EURATOM-CNEN.

(20th Century Electronics G. 5H) calibrated with the $/3^+$ activity induced in a copper foils by the reaction Cu⁶³(\mathcal{T} , n)Cu⁶². With an ion current of 70 / A the \mathcal{T} -rays intensity was 1.2 x 10⁶ \mathcal{T} x sec⁻¹ over the whole solid angle.

The experimental arrangement is shown in fig. 1. The CsI(T1) crystal (a) has a diameter of 40 mm and a thickness of 3 mm. It is mounted, with a 10 mm high perspex light pipe (b), on a Dumont 6292 photomultiplier (c). An aluminium sheet of 0.18 mgr/cm² (d) covers the crystal and the light-pipe.

To avoid the counting of protons from (\mathcal{T} , p) reactions in the sorrounding metallic structures, a foil of polythene (e) of 2 mm thickness is placed over the crystal and absorbs protons with an ener gy up to 15 MeV.

The detector is screened by a 80 mm thick cylinder of Pb (f) with a 20 mm collimation hole (g) coaxial with the crystal (a).

The signals from the photomultiplier were sent to a discriminator circuit

plier were sent to a discriminator circuit Fig. 1 and analysed by a 100 channel pulse hight analyser. The block diagram of the electronic apparatus is outlined in fig. 2; it is similar to that used by Marcaz zan and al. (1).

Fig. 2 - Pulse shape discriminator circuit.

2.

187

The calibration of the proton energy scale was made with 3.9 and 8.77 MeV \propto -particles from a natural Th source. The energy calibration curves given by Dixon⁽²⁾ for \propto and p in a CsI crystal were used.

Experimental results and discussion. -

The experimental spectrum of protons, representing a total of 22700 counts, is shown in fig. 3. This spectrum was obtained in a series of successive runs for a total irradiation time of 260 hours.

Fig. 3 - Experimental spectrum of protons.

The following corrections were applied to the spectrum:

- a) correction for protons escaping from the crystal, due to its particular geometry;
- b) correction for the protons due to (n,p) reactions in Cs and I and the recoil protons in polythene. Neutrons are produced by a Li⁷(d, n) reaction, with deuterons from our unanalysed proton beam.

The correction (a) was calculated assuming an isotropic angular distribution of protons; and was found to change from 5% for 6 MeV protons to 10% for 10 MeV protons.

For correction (b), the number of protons due to neutrons from Li⁷ (d, n) was determined from the yield of the reaction and the (n,p) cross-sec tion in CsI. They do not alter substantially the spectrum shape.

The corrected spectrum seems to be in agreement with that of Sébaoun⁽³⁾ and Bormann-Neuert⁽⁴⁾.

Fig. 4 shows an analysis of the spectrum made according to the statistical theory. We plotted $\ln N(\varepsilon)/\varepsilon \times \mathfrak{S}_c(\varepsilon)$ versus ε , where $N(\varepsilon)$ is the number of protons of energy ε , and $\mathfrak{S}_c(\varepsilon)$ is the cross-section for the reverse process. Values of $\mathfrak{S}_c(\varepsilon)$ were taken from Shapiro's⁽⁵⁾ work, assuming $r_0 = 1.5 \times 10^{-13}$ cm. The plot shows that the spectrum in the lower energy region corresponds to a nuclear evaporation process of the form: $N_p(\varepsilon) = \cot \varepsilon \cdot \mathfrak{S}_c(\varepsilon) e^{-\varepsilon} \varepsilon/\mathfrak{S}$ with a nuclear temperature $\mathfrak{S} = 0.23$ MeV.

The high energy part of the spectrum, can be attributed to direct in teractions, possibly two peaks are separable, one at 7 MeV and one at $\overline{9}$ MeV, in spite of the poor resolving power of the apparatus.

The analysis of the experimental spectrum shows that the protons \underline{e} mitted from the statistical process are about 21% of those produced by the resonance direct mechanism.

According to Wilkinson's⁽⁶⁾ theory for elements with Z=53-55, the ratio of proton emission to total absorption is 0.85% in the case of a brems strahlung beam with 23 MeV maximum energy. The same ratio, calculated by Weinstock⁽⁷⁾ with the statistical theory for bremsstrahlung of 22 MeV maximum energy is 0.2%. Therefore the ratio between the evaporative process and the Wilkinson theory should be about 23%. This value is in good a-greement with our experimental value of 21%.

To calculate the $\mathfrak{S}(\mathfrak{T},p)$, it was assumed that Cs^{133} and I^{127} were identical in behaviour, and that the cross-sections with 14.8 MeV incident \mathcal{T} -rays was equal to that with 17.6 MeV \mathcal{T} -ray. The last assumption is reasonable because the maximum of the giant resonance is at 15.2 MeV for Io-dine and at 16.0 MeV for Cesium.

We estimated that the cross-sections for $Cs^{133}(\mathcal{T}, p)$ and $I^{127}(\mathcal{T}, p)$ reactions were : 2.5 ± 0.8 mbarn.

This value is to be compared with 1.5 mbarn obtained by Sébaoun⁽³⁾ and Kestelyi-Erö⁽⁸⁾ for the same reactions.

4.

100

5.

Bibliography. -

- G. M. Marcazzan, E. Menichella Saetta and F. Tonolini, Nuovo Cimento <u>20</u>, 903 (1961).
- (2) W. R. Dixon, Nuclear Phys. 42, 27 (1963).
- (3) W. Sébaoun, J. Phys. Radium 22, 735 (1961).
- (4) M. Bormann und H. Neuert, Z. Naturforsch. 14a, 922 (1959).
- (5) M. M. Shapiro, Phys. Rev. 90, 171 (1952).
- (6) D. H. Wilkinson, Physica 22, 1039 (1956).
- (7) E. V. Weinstock, Phys. Rev. 94, 1651 (1954).
- (8) L. Kesthelyi and J. Ero, Nuclear Phys. 8, 650 (1958).