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INTRODUCTION. 

In this paper a Monte Carlo calculation will be descr i 
bed to estimate the density of thermal neutrons starting from
a fas t neutron source embedded in paraffin. 

The practical purpose of this calculation is to obtain, 
if possible, a fast neutron counter Hi th almost cons tant effi
ciency (flat counter) of the "Ilalpern -Mann" type. We shall 
calculate therefore, to satisfy our purpose, the best location 
of the thermal neutron counters in paraffin. 

To simplify the calculations we have chosen a spheri
cal symmetry instead of a cylindrical one with the source pla
ced in the centre of a sphere with Rl = 54,5 gr/cm 2 crossed 
by a cylindrical hole (R o = 0,127 gr/cm 2 ) along the diameter. 
We have also chosen monoenergetic ~ources and the calcu l ations 
have been performed for different values of Eo (Eo = 8 MeV, 14,1 
MeV, 23 11eV, 35 MeV, 50 MeV). 

Because of the long time emp l oyed by the computer we 
have used (11311 1620) for a complete cycle from LO down to the 
thermal e nergy, the program has been broken in two parts. The 
first one is an ordinary Monte Carl o that stops every time a 
particle reaches an energy Ef .:: 1,5 MeV; the second one is 
an integral transformation that, starting from this final clas 
sification , gives the required density distribution as explai~ 
ned belm~. 

PART I 

Monte Carlo routine. 

As it is well known this metJloct consists in actua lly 
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following each one of a large numbe r of particles from the 
source throughout its life h is tory to its death in some of 
the t ermi n a l categorie s , if, of course , al l relevant probabi
lities for the e l ement ary events in the "life history" of such 
a particle are k nown. 

Le t us assume for the event X ' a probabi li ty Pj and 
let us pr od uce a random number r in t~e interval 0 ~ r < 1. 
The fun damental principle of the M.C.H . says that 

PI + ••• + p' 1 < r < PI + •.• J- -
+ p. 

J 

determines Xj' 

In the continuous case we have a probability function 
p ( x ). So the event x is determine d by 

x 

r = j PqJ d~ 
o 

Of course this way of de aling with problems of the kind we 
want to solve breaks up naturally into a we ll def inite set 
of subroutines, which we s hall briefly descrille here, corre
sponding to different eve nts in the random wa l k of the parti 
c le . -

Source routine. 

Thi s routine describes the path of th e neutron from 
the source t o the first collision, taking care of the hole a
round the source . 

Becaus e of th e spherical symmet ry we need only tw o 
parameters: the radial distance R a t t he point of co llision 
and the d irection cosine a between th e new direct ion and the 
vector OR . On starting we have a = 1. 

The free path is calculated by the usua l probability 
func tion 

"he re 

= numerical density (targe t partic le s / cm3 ) 
free path 

= total collision cross section. 

From this we obtain 

1 = - A In r 

where ~s the mean free path A = I/NGt • 

1 r r 
t:I .' 
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The presence of the hole carriers a term (Ro/~) whe
re Ro is the radious of the hole and ~ is the since of the 
angle between the first path of the neutron and the direction 
of the hole. 9 has been calculated in the usual way conside
ring the source isotropical. 

Collision routine. 

By the first routine the neutron has been led to the 
point of collision. Now in CH2 there are two different possi
bilities: 

a) a collision against a hydrogen nucleus with probability 
(2 HSt) / ( cOt + 2 Il't), 

B) a collision against a carbon nucleus with probability 
1- [(2 HOt)/(cOt + 2 HOt)l, 

where ~t iS,the total collision cross section interpolated 
among exper~mental data. 

In the a) case the collision can only be an elastic 
scattering. If the energy of the neutron is about 14 MeV (ac 
tually we have chosen 14,1 MeV), the angular distribution is 
isotropical in the center of mass system, so we obtain direc
tly 

~ = cos Q = 2r - 1 cm 

and 

If E > 14,1 MeV the angular distribution is no longer isotro
pical; we have fitted experimental plots by third ' degree po
lynomials (see Tab. I). 

TI\BLE I 

E Ao(E) 1\1 (E) 1\2(E) 1\3(E) 

1 4 ,1 r'leV -4,297 -0,954 -0,097 52,631 

17,9 -16,1.81 -19,886 -8,263 40 ,669 

27,2 1,854 5,834 -2,848 26,051 

28,4 55,637 -71,677 23,1 110 26,584 

42,0 -5,'146 2,633 0,833 1" ,349 

90,0 -1,857 7,293 -0,428 3,696 

1(;, 
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been 
for different energy values l inear interpo l ation 

performe d. The so lution of the equation 
A 3 1 .z. A Z (£) .A L '-.A 

-I ,-0 
= 

is not ob tainable in closed analytic form . Us ing s t ored I' (!: ) 
va l ues, th e problem ca n be solved by the discrete me thod . 

Af t er s ubdividing the (-1 1) u inte r val in twenty 
parts ancl s toring the PA (E) values of p eL) in the A th s ubi.!:l 
terval, the A value is chosen so that 

r - PA (E) < a 

and 
P x ( E )- r 

u=u - (uA -u'>'_I) 
( E )- P > (E) 

F\ -1 
The corresponding final E' value i s give n by the we ll k n own 
formu l a 

E' = ~ Cl + u) E 

In the /!> ) case 've ma y ha v e d i ffe ren t possibilities to choose 
according t o th e re l ati ve cross sec tions : e las ti c scatte rine , 
anelastic sca tte rinG, neutron capture (n p , n a , e t c .) and , at 
last, (n 2n ) reac tio n s . 

The e l ast i c scatteri ng case is quite simi l ar t o the 
prececling one for hyclro~en . How the differential cross section 
i s fitted by 4th degree polynomial s ( see Tab . II) . 

TAIlLE II 

E Ao(!:) A1 (E) A2 (!:) A3 (E) A4 (!:) 

2,7 fleV - 0 , 00 1617 0 , 0 13343 0 ,18525 2 0,007061 0 , 06 3653 

2,9 -0, 209 43 9 0 , 0189 76 0 ,6 20151 - 0 , 000051 0,055464 

3,08 0,223674 - 0 ,0103 41 0,079080 0 , 002285 0,044661 

4,1 0 ,57175 8 0,0 12545 0 , 030750 -0,088435 0 , 0 712 90 

5,6 0,146753 0 , 09 4525 0 , 039530 -0, 070 347 0 , 053255 

7,0 0 , 068 707 0 , 062369 -0 , 020 586 0,010463 0,040522 

14,0 0,655096 0 , 327870 -0,305 728 - 0 ,087674 0 , 0 37752 

17,0 0 , 658317 0 ,58 3652 - 0 ,269552 - 0 , 200 163 0 , 029079 

95,0 216,791029 -731,011545 922 , 583130 -5 16 ,4359 20 108 ,174163 

16 , 

I 



and E' = E (0,857 + 0,142 ~ ). 

The dnelastic scattering is more complicated because 
experimental data are not available in all cases. 
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To simplify the calculation discrete energy values ha
ve been considered only as far as they are experimentally known 
( ! 23 MeV); after continuous level density has been taken. 

In both cases isotropical angular distributions have 
been assumed, and energy distributions have been calculated 
according to the statistical model. 

In the discrete case, the energy levels have been sto
red and the scattering level E. has been chosen using the 
probability function r,(E~) fo~ the energy of the scattered 
neutrons. ) 

The E~ value has been obtained by the cinematic formula 
) 

E~ = E [0,857 - (12/13) (Ej/E) + 0,142 ~11-(13/12) (£j/E) 

and beE!) by the well known statistical formula: 
) 

(1) 
~"'.' e) ~ (e;)l.Zfa.(~-e/) ,-, 

has been used with experimental ~ values (total cross section 
for all the anelastic processes); a has been calculated by ex
traP£1ation from the experimental level delisity above 23 l1eV 
in C , Em9x is the energy corresponding to the highest level 
we can exc~te by the given neutron energy. 

In the continuous case 11axwellian distribution has been 
found to be more convenient 

P(X) =. (XIX ) exp [l-(X/X )]. where X = E' - B max max I 

It can be shown indeed that the ~(E) value obtained from (1) 
using the 0c expression given by the continuum theory (ref. 
nO 2) 

where a= 0,76 + O,22A- 1/3 

is only slightly different from our t1axwell distribution pro
vided that the right theoretical xmax value is taken 

Xmax = a-I i [a(E+R) + O,2SJ ~ - a,s} 
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The values X ~ 11.X ax have been rejected as le ss than 10- 4 
of the total partlcTes are emitted in this energy range. 

Quite similar is the calculation in (n 2n) case taking 
care of the right Q value of this reaction (23 MeV). 

So the energy will be (E-23 + B) for the first emitted 
neutron, (E-23-E l + B) for the second one. 

The mUltiplicity of the neutrons has been stored making 
use of a weight L, which is never changed except in this routi
ne where L becomes 2[,. The pair of ou t going neutrons is con
sidere~ as A unique neutron, with mean energy (E1+E2)/2, coun 
ted tWlce. 

Geometrical routine. 

After every collision the neutro n must be led to the 
next point of collisi on . Takillg into account th e spherical sy~ 
metry only two parameters are needed to descri be th e geometri 
cal path: the distance R from the source and the cosine a of 
the angle between OR and the new direc tion. 

Knowing the previous a and R values we have 

where a = cos y and 

1 = - A. In r is the free path (the mean free path >-- is sto
red as function of the energy). Then 

a' = 

is the a value. 

A test is carried out to see if the line of flight cuts 
the outer boundary of the sphere. If thi s happens the neutron is 
classified as escaped. 

The second part of this routine is obvious and is con
cerned with the final direction parameter a of the particle af
ter scattering at an angle of cosine a in the laboratory system. 

Final classification. 

All the neutrons which do not follow the events consi
dered in the collision routine are classified as captured . 

The output data have been given , by a particular rou
tine, in form of a matrix (m n) which catalogues the de nsi ty 
4 • R2 91 of the neutrons that have reached the limit energy Ef 
in the shell [(Rim) (R/(m+l»} hilving their own e nergy contained 
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between (E/n) and (E/(n+l). Escaped and captured neutrons are 
also counted separately (see Tab. III). 

TABLE III 

~~ tot.neutrons progr. escaped neutrons captured neutrons 

8 MeV 665 32 8 

14,1 MeV 1251 76 50 

23 MeV 1314 158 63 

35 HeV 1829 1139 352 

50 MeV 2451 750 321 

The random numbe r generator program, taken by ref. nO 5 , 
has been checked by gene rating 10000 random numbers and plot 
ting their frequency for every subinterval in (0 1). This t est 
has been found quite satisfactory. Also the real periodicity 
of these quasi random numbers has been tested to avoid periodi
cal repetitions. 

PART II. 

Numerical integration. 

The final classification gives the neutrons with a u
niform energy spectrum from 0 to Ef • We can now consider every 
shell as a continuous distribution of point sources with a rec
tangular energy spectrum. If q2(E) is the neutron density 
due to a monocromatic source of energy between E and E+dE, we 
can write for small energy intervals 

The ~2 value given by our sources is then 

By normalizing we have also 

JE f n(E)dE = cE f = 1 

o 

16 -

C IE of J ~2(E)dE 

-
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that i s exac tly t he ne utron density due to a monocromatic sou~
ce of energy 

(E f = 1,5 Me V) • 

A s ource of thi s kin d i s Na -y- l3e j its e xperimental ~ 2 value s 
for epithennal ne utrons have been taken from ref. n0 3 . 

= X 
over X 
to the 

e very [0 va lue , th e 
i s given as o ut put of 

source distribution 1I ilR2 '? 1 (R , Eo ) = 
part. II. 

We must now only perform an inteGral tra ns f ormation 
The final density of the neutrons slowed from E" down 

epi th e.l 'ma l energy at the clistance i{ ' from the ~o ul'ce i s 

f ( R' ,Eo)=-~ fl X (R,Eo )d R Jl f2 (~R2+R,2_2RR'COSQ )d(COSQ) 

o -1 

This integrati on is very diffic ult to perform with small error 
because the X and R2 f uncti o ns are given in f orm of hysto
g ram s with few intervals . 

We have chosen the Newton ' s method of four po ints by 
an 1. 8. M. standard pror,ram of numerical integration on a compu
ter 1. 8.M. 650. 

The h ystograms obtained have been normalized so th at 
their area is equal to the ratio o f the number of the neutro n s 
slowed down to 1,5 ~leV in paraffin to the total ntlmber o f neu
trons outgoing f rom the s ource. The units of length use d are 
(gr/cm 2 ) (l/M),where M is th e molecular weight of the paraffin. 

The inte gration gives a widening of X(R,E o ) owing to 
the slowing of the neutrons down to the epi thermal energy , so 
that we find a de nsity of neutrons F a also at distances larger 
than the radius of the paraffin sphere (das hed l i ne in the hy
stogram ) . 

We h ave compared our the oretical d i s tri bution at 14,1 
MeV with an experimental one in H20 (ref. n04 ), using the same 
norm a lization. 

The best location of the 8F3 counters in the 
is ob tainable by se tt ing a counter at the distance 
= 0 ,8 0 ( gr/cm2 ) (11M) and eleven others at R = 2 , 94 
(l!t1) . 

sphere 
R = 

( gr/ cm2 ) 

We can estimate the efficiency of this structur e s ub
dividing every counter in ten parts, calculat i ng for each part 
the contribution to the total efficiency and adding up al l of 
them. 

The curve in figure gives the relative variation of 
the effic iency with [0 in arbitrary !lnits . lio account has been 
taken of albedo. The calculation lias been performed for 13F3 
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counters (15cm i h 40cm). 

The crossed points show the eff iciency of our counters 
at Eo ~ 0 ,9 M~V (Na-r-Be ) and Eo =,6 !leV (Ra-~-Be),calclulated 
from the experlmental curves normallzed at 1, assumlnG tlat at 
these enerGies there are neither escaped nor captured neutrons. 
The absolute value of efficiency is about (1/100) of th e one 
in fiGure. 

We wish to thank Dr. Rebolia for his constant help an d 
advice in programming. 

Particularly we thank Prof. R. Malvano, who has sugge
sted this work, for his con tinuous encouragement and many hel p
ful discussions. 

We are also indebted to Dr. Albino, Mr. C. Troiani, 
Miss D. Olivari and Miss G. Pirola, of the Centro di Calcolo 
de ll'Universita di Genova for their useful help in numerical 
work. 
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