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INTRODUCTION.

In this paper a Monte Carlo calculation will be descri
bed to estimate the density of thermal neutrons starting from
a fast neutron source embedded in paraffin.

The practical purpose of this calculation is to obtain,
if possible, a fast neutron counter with almost constant effi-
ciency (flat counter) of the "Halpern ~Mann" type. We shall
calculate therefore, to satisfy our purpose, the best location
of the thermal neutron counters in paraffin.

To simplify the calculations we have chosen a spheri-
cal symmetry instead of a cylindrical one with the source pla=-
ced in the centre of a sphere with Ry = 54,5 gr/ecm? crossed
by a ecylindrical hole (R, = 0,127 gr/cm2) along the diameter.
We have also chosen monoenergetic sources and the calculations
have been performed for different values of E5 (E, = 8 MeV, 14,1
MeV, 23 MeV, 35 MeV, 50 MeV).

Because of the long time employed by the computer we
have used (IBM 1620) for a complete cycle from L, down to the
thermal energy, the program has been broken in two parts. The
first one is an ordinary Monte Carlo that stops every time a
particle reaches an energy Ef < 1,5 MeV; the second one is
an integral transformation that, starting from this final clas
sification, gives the required density distribution as explai-
ned below.

PART I
Monte Carlo routine.

As it is well known this method consists in actually
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2.

following each one of a large number of particles from the
source throughout its life history to its death in some of

the terminal categories, if, of course, all relevant probabi-
lities for the elementary events in the "life history" of such
a particle are known.

Let us assume for the event x5 a probability ps; and
let us produce a random number r in the interval O < r< 1,
The fundamental principle of the M.C.M. says that

pl +o-- +pj_1:r‘<pl +nao +pj

determines Xj'

In the continuous case we have a probability function
p (x). So the event x is determined by

r = J:P(f)dy

0f course this way of dealing with problems of the kind we
want to solve breaks up naturally into a well definite set

of subroutines, which we shall briefly describe here, corre-
sponding to different events in the random walk of the parti
cles

Source routine.

This routine describes the path of the neutron from
the source to the first collision, taking care of the hole a-
round the source.

Because of the spherical symmetry we need only two
parameters: the radial distance R at the point of collision
and the direction cosine o between the new direction and the
vector OR. On starting we have o = 1.

The free path is calculated by the usual probability
function

pt1dal = &~ Tt g 6, d1

where -
Cos -

N = numerical density (target particles/cm3) /

1 free path 7

64+ = total collision cross section. R I

From this we obtain

1 = =X Inop 0

where A is the mean free path A = 1/N6¥.
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The presence of the hole carriers a term (R_/Q) whe-
re R_ is the radious of the hole and § is the since of the
angle between the first path of the neutron and the direction
of the hole. 9 has been calculated in the usual way conside-
ring the source isotropical.

Collision routine.

By the first routine the neutron has been led to the
point of collision. Now in CHp there are two different possi=-
bilities:

a) a collision against a hydrogen nucleus with probability
(2 45e)/ (St *+ 2 45

B) a collision against a carbon nucleus with probability

where 6} is the total collision cross section interpolated
among experimental data.

In the a) case the collision can only be an elastic
scattering. If the energy of the neutron is about 14 MeV (ac
tually we have chosen 14,1 MeV), the angular distribution is
isotropical in the center of mass system, so we obtain direc-
tly

u cos Qc = 2r - 1

m

and

_—

=V(1+w)/2 =\r

a cos @

lab

If E > 14,1 MeV the angular distribution is no longer isotro-
pical; we have fitted experimental plots by third degree po-
lynomials (see Tab. I).

TABLE I

E Ag(E) A(E) | Ay(E) A4(E)
14,1 HeV -4,297 -0,954 -0,097 52,631
17,9 -16,181 -19,886 -8,263 40,669
27,2 1,854 5,830 -2,848 26,051
28 ,u 55,637 -71,677 | 23,140 26,584
42,0 -5,446 2,633 0,833 14,349
90,0 -1,857 7,293 | -0,428 3,696

i‘"l>
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For different energy values linear interpolation has

been performed. The solution of the equation
3

L ;
L2 i) plan

c=0

S5 ) plap

-~/ (=0

r -?&Q,f} =

is not obtainable in closed analytic form. Using stored P(L)
values, the problem can be solved by the discrete method.

After subdividing the (-1 1) u interval in twenty

parts and storing the Py (E) values of P(L) in the Ath subin
terval, the A value is chosen so that

r - Py(E) <0
and

P}s (E)=-r
TRV e o Cuy=ux )
E)-P E
A A -1

The corresponding final L’ value is given by the well known
formula

E* = 5 (1 + ) E
In the /) case we may have different possibilities to choose
according to the relative cross sections: elastic scattering,

anelastic scattering, neutron capture (np, n a, etec.) and, at
last, (n2n) reactions.

The elastic scattering case is quite similar to the
preceding one for hydrogen. Now the differential cross section
is fitted by 4t degree polynomials (see Tab., II).

TABLE II
E A, (E) A (E) A, (E) A4(E) A, (E)
2,7 MeV -0,001617 0,013343 0,185252 0,007061 0,063653
2,9 -0,209439 0,018976 0,620151 -0,000051 0,055464
3,08 0,223674 -0,010341 0,079080 0,002285 0,044661
Gk 0,571758 0,012545 0,030750 -0,088435 0,071290
5,6 0,146753 0,094525 0,039530 -0,070347 0,053255
7,0 0,068707 0,062369 -0,020586 0,010463 0,040522
14,0 0,655096 0,327870 -0,305728 -0,087674 0,037752
17,0 0,658317 0,583652 -0,269552 -0,200163 0,029079
95,0 216,791029 -731,011545  922,583130 =-516,435920 108,174163
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and E* = E (0,857 + 0,142 u ),

The anelastic scattering is more complicated because
experimental data are not available in all cases.

To simplify the calculation discrete energy values ha-
ve been considered only as far as they are experimentally known
( < 23 MeV); after continuous level density has been taken.

In both cases isotropical angular distributions have
been assumed, and energy distributions have been calculated
according to the statistical model.

In the discrete case, the energy levels have been sto-
red and the scattering level €. has been chosen using the
probability function 6 (E?!) foP the energy of the scattered
neutrons, ]

The E? value has been obtained by the cinematic formula

£ = £ [0,857 - (12/13) (ey/E) + 0,142 w[1-(13/12) (e;/E)

and G‘(Eg) by the well known statistical formula:

i 2 E-E)
E[ 6 (€)) V4

(1) e(e)) « L

m. - ’
Z ax 5/" 6; f&j’)&zld{f 6})

'I.n/

has been used with experimental 62 values (total cross section
for all the anelastic processes); a has been calculated by ex-
trapT}ation from the experimental level density above 23 MeV
in C*“, Epax is the energy corresponding to the highest level
we can excite by the given neutron energy.

In the continuous case Maxwellian distribution has been
found to be more convenient

- = . - Y .
P(X) = (X/X__) eXp[} (X/Xmaxi])where X = E* - 8

It can be shown indeed that the 6 (E) value obtained from (1)
using the 6, expression given by the continuum theory (ref.
n°® 2)

s, =1 RZa (1+(8/L)) where o= 0,76 + 0,22A7 173

is only slightly different from our Maxwell distribution pro-
vided that the right theoretical Xmay Value is taken

1
Xmax = a1 {[é(E+B) * O,ZQ]” - 0,5}
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The values X < 11 X have been rejected as less than 107"

of the total PaPthng are emitted in this energy range.

Quite similar is the calculation in (n 2n) case taking
care of the right Q value of this reaction (23 MeV).

So the energy will be (E-23 + B) for the first emitted
neutron, (E-23-E1 + B8) for the second one.

The multiplicity of the neutrons has been stored making
use of a weight L, which is never changed except in this routi-
ne where L becomes 2L. The pair of outgoing neutrons is con-
sidered as a unique neutron, with mean energy (E3j+E,)/2, coun-
ted twice.

Geometrical routine.

After every collision the neutron must be led to the
next point of collision. Taking into account the spherical syn
metry only two parameters are needed to describe the geometri-
cal path: the distance R from the source and the cosine a of
the angle between OR and the new direction.

Knowing the previous a and R values we have
R' = R2 + 12 + 2R1l« where a = cos y and

1 == Alnr is the free path (the mean free path A is sto-
red as function of the energy). Then

S R'z+l2-R2

u =
2 Bv 1
is the a value.

A test is carried out to see if the line of flight cuts
the outer boundary of the sphere. If this happens the neutron is
classified as escaped.

The second part of this routine is obvious and is con-
cerned with the final direction parameter a of the particle af-
ter scattering at an angle of cosine a in the laboratory system.

Final classification.

All the neutrons which do not follow the events consi-
dered in the collision routine are classified as captured.

The output data have been given, by a particular rou-
tine, in form of a matrix (m n) which catalogues the density
y m R? of the neutrons that have reached the limit energy Ef
in the shel&.BRfm)(R/fm+1))] having their own energy contained

10«
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between (E/n) and (E/(n+l). Escaped and captured neutrons are

also counted separately (see Tab. III).

TABLE III
sy o
B tot.neutrons progr.| escaped neutrons | captured neutrons
8 MeV 665 32 8
14,1 MeV 1251 76 50
23 MeV 1314 158 63
35 MeV 1829 439 352
50 MeV 2451 750 321

The random number generator program, taken by ref. n°5H,
has been checked by generating 10000 random numbers and plot-
ting their frequency for every subinterval in (0 1). This test
has been found quite satisfactory. Also the real periodicity
of these quasi random numbers has been tested to avoid periodi-

cal repetitions.

PART 1I.

Numerical integration.

The final classification gives the neutrons with a u-
niform energy spectrum from 0 to Ef. We can now consider every
shell as a continuous distribution of point sources with a rec-
tangular energy spectrum. If ¢€5(E) 1is the neutron density
due to a monocromatic source of energy between E and E+dE, we

can write for small energy intervals
8,(E)AE = (a + DBE)dE

The §, value given by our sources is then

Eg Eg
8,(Eg) = J 9, (E)n(E)AE = ¢ B Q,(E)dE

0} O

By normalizing we have also

Er - _
l n(EYE = cEg = 1 c = 1/E,

o

QQ(Ef) = a + b(Ef/z)
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that is exactly the neutron density due to a monocromatic sour-
ce of energy

A source of this kind is Nj-y-Be; its experimental ¢, values
for epithermal neutrons have been taken from ref. n°3.

For every Lo value, the source distribution 4WR? Sl(R,E ) =
= X‘(R’Eo) is given a output of part. II.

We must now only perform an integral transformation
over X . The final density of the neutrons slowed from E, down
to the epithermal energy at the distance R' from the source is

@ (RY,B )= RIX(R £ yar [ | R2+R " 2-2RR"
yEg)==-3 »E)dR P, - cos® |d(cos®)

o -1
This integration is very difficult to perform with small error

because the )| and R, functions are given in form of hysto-
frams with few intervals.

We have chosen the Newton's method of four points by
an I.B.M. standard program of numerical integration on a compu=-
ter I.B.M. 650.

The hystograms obtained have been normalized so that
their area is equal to the ratio of the number of the neutrons
slowed down to 1,5 MeV in paraffin to the total number of neu-
trons outg01ng from the source. The units of length used are
(gr/em?) (1/M),where M is the molecular weight of the paraffin.

The integration gives a widening of,X(R Ey) owing to
the slowing of the neutrons down to the epithermal energy, 50
that we find a density of neutrons # 0 also at distances larger
than the radius of the paraffin sphere (dashed line in the hy-
stogram).

We have compared our theoretical distribution at 14,1l
MeV with an experimental one in H90 (ref. n°4), using the same
normalization.

The best location of the BF3 counters in the sphere
is obtainable by setting a counter at the distance R =
= 0,80 (gr/cm2) (1/M) and eleven others at R = 2,94 (gr/cm?)
(1/M).

We can estimate the efficiency of this structure sub-
dividing every counter in ten parts, calculating for each part
the contribution to the total efficiency and adding up all of
them.

The curve in figure gives the relative variation of
the efficiency with E, in arbitrary units. HNo account has been
taken of albedo. The calculation has been performed for BFgj

16



counters (4250m3 h 4Yocm).

The crossed points show the efficiency of our counters
at £ = 0,9 MeV (N, -y-Be) and E, = 6 MeV (Ra-et-Be) calculated
from the experimental curves normalized at 1, assuming that at
these energies there are neither escaped nor captured neutrons.
The absolute value of efficiency is about (1/100) of the one
in figure.

We wish to thank Dr. Rebolia for his constant help and
advice in programming.

Particularly we thank Prof. R. Malvano, who has sugge-
sted this work, for his continuous encouragement and many help-
ful discussions.

We are also indebted to Dr. Albino, Mr. C. Troiani,
Miss D. Olivari and Miss G. Pirola, of the Centro di Calcolo
dell'Universita di Genova for their useful help in numerical
work.

REFERENCES,

(1) - E.D. Cashwell and C.J. Everett, A Practical Manual on Mon
te Carlo Method for Random Walk Problems (Pergamon Press,
London, 1959).

(2) - I. Dostrovsky, Z. Fraenkel and G. Friedlander, Phys. Rev.
116, 683 (1959).

(3) - H, Goldstein, P.F. Zweifel and D.G. Foster, Proceedings
of the Second United Nations International Conference on
the Peaceful Uses of Atomic Energy (United Nations, Gene-
vas; 1958) vel. 16 pg. 379,

(4) - Holte, Arkiv Physik 8, 165 (1954).

(5) - A. Rotemberg, J. of the A.C.M. 7, 75 (1960).



4TTRP(R)

4NRP (R)

0.5

0.4 . E 04
m 141 mev ":'.;
o3 / — exp.in H,0 (refnth) S 03
‘ LY
|
0.2 ! 0.2
l‘"
01 ,," 0.
001/ A 001
042 1.26 R ”&(cm)
06
05
8 mev
04 © 04
o
[+ 4
03 % o3
0.2 0.2
3 ]_\—‘— 0.1
001 =2 Ricrm) 001
0.42 126 210 294 378 M Reem

35 mev
s e
042 126 210 294 378 a2 M Reem
23 mev
i ? :
R=Z Rcm)
042 © 126 210 294 378 462 M Reem



4TRP(R)

10

8
8 1 €,(2.94;E)
&
3 €,(0.80:E)

1 10 20 30 40 50 E(mev)
w
&
o
.
W'
*10[, X
L
oB [
- 1
=X
o
@.&
u.uv.2

0 10 20 30 ) 50 E (mev)
0.4
50 mev
03
0.2
e

0.1
001 I — R=L- Ricm)

042 126 210 294 378 462 M



start

|

introduction of data
and preliminary
operations

|

calculation of the initial

values of the parameters

of the neutron outgoing
from the source

:

random choice of the path

collision
against
H

is elastic

calculation of P (u)
by interpolation

]

calculation of i
by integration

l

L calculation of a and E' F—‘

print RE.L

calculation of P (u)

by interpolation

no

yes
L calculation of E' !-._

collision
against C

calculation of p
by integration

is it
a collision
(n2n)
2

add 1 to a counter of the
captured neutrons

it an anelastic

calculation, by the

P(X) Maxwelliam

function,of the
energy of the 'I: neutron

i

similar calculation ntth
the energy of the 2
neutron

l

calculation of the
mean energy E’

collision

random choice of the
direction parameters

resarch of the highest
energy level the C nucleus

can be excited to

calculation of E'=X+ B
by the Maxwelliam
distribution function P(X)

]

calculation of the final
direction parameters
of the particle

resarch of the effective
level to which the nucleus is

excited and calculation

of E’

l

calculation of the
parameters R and o
at the point of the next
collision

yes

print R.EL

..l calculation of a

F@

Y5 | add 1 to the counter of
theescaped neutrons

random choice of the
direction parameters




