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ABSTRACT,

A simple picture is given for direct (n, p) reactions, based
on the distorted wave Born approximation and on a single-particle mo
del of the target and residual nuclei. Several angular distribution cur-
ves have been calculated in the zero-range approximation for the reac
tion 28Si(n, p)ZBAl, induced by 14 MeV neutrons and leading to the grE
und state and to the first excited state of the residual nucleus, We ha-
ve shownthat, in our case, these two transitions give rise to the same
angular distribution and the cross sections are in the ratio 67/6%9=
= (2J1 + 1)/(2J2 + 1), where J; and J9 are the total angular momenta
of the two states,

The agreement with the experimental data turns out to be
rather poor for any reasonable choice of the optical model and bound
states parameters,

We have shown that the striking difference between the Born
approximation and the distorted wave Born approximation curves can
be explained interms of a definite change in the relation between linear
and angular momentum transfer,

(+) - This work has been supported in part by INFN, CRRN, CISE and
CSFN,



1 - INTRODUCTION,

In the last few years much work has been carried out on di
rect nuclear reactionsls 2), mainly in the distcrted wave Born approxi
mation, in order to get an understanding of both nuclear structure and
reaction mechanism, However, most of the calculations have been per
formed for inelastic scattering and stripping (or pick-up) reactions.

We point out that the reactions involving different nucleons
in the initial and in the final channels are, in certain respects, simpler
to treat, In fact, in this case it is easier to take into account the anti-
symmetry of the wave functions3); one can also avoid the complications
due to the optical model scattering from excited nuclei and to the descri
ption of the excited state itself, On the other hand, calculations without
the restriction of the zero-range interaction are rather difficult when
deuterons or £ particles are involved,

The aim of this papér is to present an analysis of (n, p) reac
tions in the distorted wave Born approximation and the theoretical fra-
mework is designed to include a finite range neutron-proton interaction
with exchange effects, In séc. 2 we give an account of this framework
and for convenience we first treat the case of spinless particles and
then introduce the spins In sec. 3 we investigate the particular case
of the reaction 283i(n, p)28 A1,

This reaction has been chosen due to the existence of expe
rimental data4) for the transitions leading to the ground state and to so
me low lying excited states of the residual nucleus; furthermore, in the
nucleus 28Si the state ldsfy is completely filled with neutrons and pro
tons, what simplifies the shell model description, Unfortunately, this
nucleus is not expected to be spherical, owing to the large positive qua
drupole moments of nucleid) with mass number 20 €A €30, On the other
hand, heavier nuclei like 40Ca, which is certainly spherical, do not
show any evidence of structures in the high energy proton spectrums).

The disagreement of the theoretical curves with the experi
mental one, which persists for any reasonable variation in the availa-
ble parameters, does not allow us to draw very definite conclusions
from the comparison of our calculations with the observed angular dis
tribution, Nevertheless, we think that our results are of some interest
in giving anew insight into the relation between the Born approximation
and the distorted wave Born approximation with zero-range effective
interaction, in the case of (n, p) reactions,

In particular, we have found that the optical model selec-
tion of important angular momenta in the initial and the final channel is
sufficient to explain qualitatively the distorsion effects in the angular
distribution,



2 - THE THEORETICAL SCHEME,

2.1 - Basic assumptions,

The main assumptions underlying our treatment of (n, p)
reactions can be summarized in the following statements,

The reactionis described as a single step transition from
the initial to the final optical model scattering states, i.e. according
to the distorted wave Born approximation3= 7.8,9, 10).

We can neglect the interaction of the incident neutron with
all nucleons, except with the least bound proton, since we are consi-
dering only transitions to states of low excitation energy. The effect
of the Pauli principle can also be neglected, provided we are only in-
terested in the shape of the angular distribution and not in the absolu
te value of the cross section, In fact, the antisymmetrization of the
wave functions changes the differential cross section only by a con-
stant factor3),

The initial states of a bound nucleon are classified by the
radial quantum number n, the orbital angular momentum k, the total
angular momentum j and its projection . The final states are label-
led by the corresponding primed quantum numbers,

The target is a closed shell nucleus both for neutrons and
for protons, Therefore the residual nucleus has a proton hole and an
extra-shell neutron,

The interaction which causes the transition is given by a
neutron-protoncentral potential, containing a Wigner and a Majorana
term,

2. 2 - Spinless particles,

On the basis of the assumptions of section 2,1, we give
here explicit expressions for the transition amplitude and for the dif-
ferential cross section; the spins of the three particles involved in the
reaction (neutron, proton and nuclear core) are not taken into account
in this section,

The differential cross section can be expressed in terms
of a transition amplitude Ry ! which can be written as

(1) Ryt =/\I‘(~)* (I_‘;)) W:rknwt(r-;l)%w(ﬂ( rn ) Vakk( ?p )dz,



where dT indicates a six dimensional integration over the neutron and
proton coordinates rp and F;) The operator Y, denoting the neutron-
-proton potential, is given by

(2) W= (% +4) T (< +APy),

where P, is the Majorana operator and =\ and /A are real numbers,

The bound states for the neutron and the proton are repre
sented by the normalized wave functions:

(3&) ‘vn'k'k'( 1:;]_) = Wnlkl(rn) Yk'h'(q’q‘n: [Pn)

(3b) ik ( Fp) = vk (rp) Yiewt (Fp, Wp);

the indices ® and ®' are the projections of the orbital angular momen-
ta k and k' respectively, As usually, Vg ( P ) denotes the normali
zed spherical harmonic functionll), The uantltles w(+) (F3 ) and
wl=)( FB.) in eq. (1) are the optical modell2 scattering wave functlons
for neutrons and protons; the first has asymptotic boundary conditions
of outgoing waves, the second of incoming waves, They may be expan
ded inthe following form, when the optical potentlal is spherically sym

metr1013)
(4a) Wy =2, [417(21+1)] ity (1), ()
+1
(4b) W) = an 2 S ALY 0.4y, (4,9).

The functions fi(r) and gj(r) are solutions of the radial Schroedinger e
quation and are defined by the boundary conditions

lim r f (r) =0
r->0

lim fy(r) = & 9 M(k r)"! Sin (kpr - %h +d.)

Ir—>oo

lim r g(r) =

r—=>0

i(d 1+ 6 B
lim gi(r) = ell @ p1+ &) (kpr) ! sin (kpr- %1w+ Mlog2kpr+ d. pl+ ]

L

the complex quantities ‘rnl and crpl represent the optical model phase
shifts for neutron and protons; the real quantity 6] is the Coulomb
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phase shift 14) , given in terms of the Coulomb parameter 14) " by the
definition €3 = argr'(1+1+i“1 ). We have chosen the polar axis in the di
rection of the momentum H E’n of the incident neutron. The angles © and
¢ give the direction of the momentum * T{,p of the emitted proton,

We have expressed the amplitude (1) by using the expansion
of the potential U() ry, - 3l) in terms of Legendre polynomials

- AR
(5) U7 - Tf) = Z1=Uplrn, rp) Py = ).

Then, after substitution of eqgs, (2), (3), (4) and (5) into eq. (1), we can
express the angular integrals in terms of vector addition coefficients as
follows11);

l_(23+]) (2b+1) 1/-2
L 4w (2¢ + 1)

ngy(n Yy (2)Y¥qq (R)d2 =

(6)
* (ablc) (abolA] cy).

For the vector addition coefficients we use the definition of ref, 15) and
the notation (abo( s | abey) = (ab%Alcy); (aboolabco) = (ablec). The ex-
pression for the transition amplitude Ry ! is obtained from eqs. (1),
(2), (3), (4), (5), and (6); it is

(7) RK r' = R(KI)K)I + R(REK)I

(D) _ ot ,3/2 x!.1-1' 2k+1 e bl
Rn‘| - °(+/5 (4m) %'L(-) 1 (21+1)[(2k'+1)(21'+1)]

(8)
+ (IL|k")(KL|1")- (ILOK'| k"%') (KL R-%'/1"6-K")111, Y 10 (0 b ),

E® _ A 3/2 k- 1-1' . 2k+1 1/2.

Rewt = a4 E11'L(") 1 (21+1)I(2k'+1)(21'+1)]
(9)

+ (kL /k")(1L/1")- (kLx, n'-x/k'x')(1Lo.u-n'/1*n-n')KH,LYI,K_:,( 8 .%).

The quantities Ijji1, and Kjy17, are radial integrals defined as

Ce O
N 2 2
(10a) L_ll'L //gl,(rp) Wn'k'(rn)UL(rn’ rp)fl(rn)vnk(rp)rnrpdrndrp
00

by
-



S oe
3 | 2 2
(10b) Kll'L = ﬂgl,(rn) wn'k'(rp)UL(rn’ rp)fl(rn)vnk(rp)?nrpdrndrp.
09

The resulting differential cross section is given by

d& 1 M, M k 2
(11) o . s b & fR l
df2 2k +1  (27h<4) kn xk! Kx!

where M,, and Mp are the reduced masses in the initial and in the final
channel,

Inthe case of a pure Wigner force, the parameter/.’.- in eqgs.
(8) and (9) vanishes, and the cross section (11) reduces to

dé, oM .2 k ' ! 1/2
d__rz =(h2 ) kz Zlm (21+1)(2p+1) [(21'+1)(2p'+1)] / .

(12) < (1L /") (pP/ k") (KL /1) (kP/p")(1p/n)(1'p"/n) W(ILpP;k'n)*

*

. W(1'Lp'P; kn)- LII,LIPP,

PPn(COS e),

where the summation Z is extended over the indices 1, 1', p, p', L, P
andn; m=1+1'"+p+p'and M = (MM )1/2, This expression can be o
btained from eqs, (7), (8) and (11) using a well known property of sphe
rical harmonicsll) and the sum rule of Racahll:16) The quantitie;
W(a, b, c..d; ef) are defined as in refs, 11, 16).

In the particular case k' = 0 (which is of interest for the
reaction 28Si(n, p) 8A1), the matrix element given by eqgs. (7), (8), and
(9) simplifies to

3/2 -1 2k+1 1)/2
Ryo = (a0 2 1, R P o amw

¢ Frio Yo (€,%) (k' = 0).

with the definition

21+1
+
P 2k+1 Kll'k )

1 <4
Fll,-(o(+/5) (D(IH,I

We note that in this case the direct and the exchange integrals have a



common geometrical factor, The cross section takes the form

d 67 2am .2 kp ks, ; , 1/2 ,
i = (5 R Z e [erneen ]2 ae

(15} « (pk/p")(1p/n)(1'p'/n): W(11'pp"'; kn) Fll'F;p'Pn(COSQ)"

(k' = 0)

where the summation Z is extended over the indices 1, 1', p, p', n, and
q=1-1'"-p+p'.

2.3 - Particles with spin,

We now introduce the spin of the particles, Let & be the pro
jection of the proton spin on the Z axis and A the corresponding eigen-
function, Then, according to section 2, 1, we can write the proton bound
state wave function as

1
» = ‘\_\-' — 1 )
Vaciy Fp Ve 2 e 386/ Yol v ) A

and a similar expression for the neutron wave function ‘anklj'yl(?ﬁ).
The spins of the unbound particles are left uncoupled.

The transition amplitude Rgg'pp! from a state (J, ™) of the
target nucleus, characterized by the total angular momentum J and its
projection I , to a state (J', I™') of the residual nucleus, can be expres
sed in terms of the amplitude (7). If the core is ir an angular momen-
tum state (jov,) we have '

Rss-lrur\l = z

kr'
(14) 'Y'Y"Yo

(e 306/ jy)lic' 3 Ko/ iy ij vy [I0) -

e (V3 At 1t
(30307 —yo/J P )RKR,.
The cross section is then

d&=;q 1 2 k 2
B - e \R {
day 2(2J+1) 22 k, “egrp!leerr 1 -

(15)

Of course, the angular distribution given by eq. (15) is different in gene
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ral from that given by eq. (11), because the sum over x and k' is ma
de in eq. (11) after squaring the amplitude and in eq. (15) before do-
ing this, Nevertheless the two angular distributions are equal when
Rgw'does not depend on 6 or &' and at least one of the quantum num
ber jo, k, k' vanishes, This can be seen from eq. (14), using the or
thogonality of the vector addition coefficients, In the case k'=0 we ha
ve

P lR ' lZ:(ZJ'+1)(2J+1) 'IR lz
66'rr | e (2k+1)(2j,+1) "® ! xo

—~
ok
D

—

(k' = 0).

According to eqs. (11), (15) and (16), the cross section d&yy1/dn is
therefore proportional to d G—O/d.(l. One finds

d6&y g1 _2J"E—1 d 6%

= ': -
dn  2(2jo*1) aw F=)

(17)

In the other two cases we get

dG'JJl _ 2J' + 1 dﬁ‘o ( <5
TdJr 2(2k'+1) ddg Jo™0)

ds g 2J'+1 d6\0

dn T 2(ekD)(2jgr1) dw (k=0} +

One should note that in the general case, if we sum over all values of
J', such that lj'-jo| =J'< j'+j,, we get the same result as in the ca-
se jo = 0. This can also be easily derived from egs. (14) and (15), u
sing the orthogonality property of the vector addition coefficients

el 2J' '_,,(j'jo'y"yO/J' l-”)(j'jo £ 20/JT e J‘}" g J;o Eo §



3 - THE REACTION 25Si(n, p)28A1.

3.1 - General considerations.

Letus consider now the reaction 28’Si(n, p)28A1, at 14, 1 MeV
neutron energy in the laboratory system. We have calculated the angu
lar distribution of the protons emitted in the transitions to the ground
state and to the first excited state of the nucleus 28Al. In the previou-
sly discussed scheme, this angular distribution is given by eq. (13).

Inthe nucleus 28Si we have 14 neutrons and 14 protons fil-
ling all states up to the 1dg/5-shell. In the nucleus 28Al a proton is
missing from this shell and a neutronis added in the 2sj/g-shell, For
this reason the ground state of 281 splits actually into two states, with
angular momenta J1=3 and J9=2, In fig, 1 is shown the level scheme
of the nucleus 28A1 (ref, 17)), According to eq. (17) the two transitions
give rise to the same angular distribution for protons and the integra-
ted cross seciions are in the ratio 67/ 69 = (2J1+1)/(2J9+1) = 7/5, It
is imvportant to point out that this result depends neither on the parti-
cular choice of the optical model parameters, nor on particular assum
ptions about the neutron-proton force, provided that the amplitude Ryy!'
does not depend on the spin projections & or &', It depends indeed on
our picture of the bound states and on the fact that k' = 0, It is also pe
culiar of (n, p) (or (p, n)) reactions; in inelastic scattering two such le-
vels would give different angular distributions!8) for k' = 0, In the ca-
se of a non-spherical core, k' is no longer a good quantum number and
again this property would not be valid,

These considerations suggest that a comparison with expe
riments of the angular distributions given by the two levels separate1§
could give some informations about the wvalidity of our model. Unfortu
nately, the splitting of the two levels amounts to 31 KeV only (see fig, 7)
and the experimental angular distribution?) is due to the unresolved le
vels, In the case of unresolved levels we can also use eqgs. (7), (8),
(9) and (11) instead of eqs. (14) and (16), owing to the sum rule (18),

3. 2 - Numerical calculations,

A detailed account of the methods employed for the numeri
cal calculations is given in ref, 19), We have studied a computer pro-
gram for a delta-function neutron-proton potential, normalized as a Yu
kawa interaction of strength U, and range p~

- 3> =
(19) W = 47U _p J(rn-rp),

and for a potential as given in eq, (2), with a Yukawa radial shape, In
the present paper we discuss only results obtained with the zero-range
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potential (19), For the bound particles we have used isotropic harmonic
oscillator wave functionszo), which are

7/2 4 1/2 A
_[16Ap 1 [ P 2
vlz(rp) [ o BXp |- rp_l r

6x.3/2 1/2 A
W, (I‘n) = [—rul_“_—_ ] exp [— __2_I_1 ri (1—-3- /\nrrzl) .

The turning point Ry of the corr‘espondinf classical oscillator is related
to the parameter Ax by Rox = (7/Ax) /2 (x = n for neutron, x = p for
proton), The optical model scattering solutions have been computed using
a Saxon-Woods central potential well

y g r - Rx -1
'U'x(r) = - (VX + 1WX) exp (T) +1 .

Coulomb effects for protons have been taken into account exactly, assu
ming auniform charge distribution of radius Ry for the residual nucleus
2871 '

3. 3 - Results,

The numerical calculations have been performed for several
sets of input parameters, with the aim of clarifying the dependence of
the theoretical curves on these parameters, Other curves have been cal
culated by suitably selecting the angular momenta in both the initial and
the final channel, in order to get some insight into the relation between
angular momentum and linear momentum transfer effects,

The curves plotted in figs, 2 to 6 are reported as examples
toshow the parameter dependence. They have been numbered according
totable 1. The figs. 2 to 4 display the essential stability of the calcula-
ted pattern against changes in the radial extension of the bound state wa
ve functions-as well as in the optical potentials, The latter have been
changed here only slightly with respect to those determined from elastic
scatteringﬂizz), since otherwise the very meaning of the theory would
be altered. The effects of large variations in the optical potentials are
shown in figs, 5 and 6. We give in fig. 5 an example of how the curves
change whenthe real parts of the optical potentials are decreased by 25%
with respect to the elastic scattering values, In fig, 6 the distorted wa-
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ve curve is compared with those obtained without distortions and with
Coulomb distortion only,

Though not improving the agreement with the experimental
points, the effect of the optical model distortions appears to be quite
important, This was expected on the basis of the evidence from inela-
stic scattering calculationsl) and from recent work on (p, n) reacti-
onsz3). This situation qualitatively differs from the one we are faced
with in the case of stripping24 , Where the angle corresponding to the
first forward maximum in the angular distribution is essentially un-
changed by distortion effects. The position of this maximum is deter-
mined in a well known Way35) by a relation between the linear and the
angular momentum transfers, which therefore seems to remain mea
ningful with and without distortions. In the case of (n, p) reactions
the maximum of the Born approximation angular distribution can be
determined by an analogous relation, as in the case of stripping, but
it follows from the different behaviour of curves N. 2 and N, 11 (see
fig. 6) that the effect of distortion is to change the relation between
the linear and the angular momentum transfers.

We can observe that not all the matrix elements Fjjrin
eq. (13) bave the same importance in the angular distribution; apart
from resonance effects, the overlap of the wave functions is mainly re
sponsible of the smallness of the contribution from certain states of
angular momenta 1 and 1'; In the zero-range approximation this can be
estimated very simply: since the product of the two bound state wave
functions has a node near r = 1/2. R, and in the interval (0, 1/2. Rg)
the contribution to the overlap is small, due to the presence of a d-sta
te, the main contribution comes from the interval (1/2. Ry, Ro ). The
refore the largest matrix elements Fy1 are those, whose optical model
wave functions have a node approximately at r = R,. For a purely real
optical model potential this happens in our case for the angular momeu
tal = 0, 3and 4; thus we expect that the important matrix elements Fij!
arethose with either 1 or 1' equal to these values, The presence of the
imaginary part of the potential does not alter this conclusion at our e-
nergy.

In fig, 7 the exact curve N, 2 is compared with the curve
N. 2 A,which has been computed putting F{;1 = 0 unless either 1 or 1' a-
re equal to 0, 3 or 4 and not larger than 5, It is apparent that this se-
lection of angular momenta does not change the qualitative features of
the angular distribution, nor changes essentially the integral cross se
ction, We can also proceed along the same lines for the Born approxi-
mation (curve N, 11), In the absence of any potential the overlap inte-
grals are more sensitive to the small difference in the relative momen
ta in the two channels and the selection needs no more to be symmetri
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cal in 1 and 1'. For example,the amplitude Fy( is expected to be impor
tant, while F9 is expected to be small. The other important terms a-
re those with either 1 or 1' equal to 1, 2 or 3 and not larger than 3. The
effect of this selection of angular momenta in the Born approximation
isshowninfig, 7 (curve N, 11B) and it is apparent that it does not chan
ge significantly the angular distribution,

We have thus shown that the optical model distortion opera
tes a selection of angular momenta, which is different from that one in
the Born approximation, We can also show that the optical model selec
tionitself is sufficient to account for the qualitative change in the most
important linear momentum transfer as compared with that expected
inthe Bornapproximation: in fact,using the selection of angular momen
ta appropriate to the distorted wave Born approximation, but the ampli
tudes Fyp1 calculated in the Born approximation, we get the curve 11A
plottedin fig. 8, which clearly shows a maximum at the smallest allo-
wed value of the linear momentum transfer, as curve N, 2 does. On
the contrary, the Born approximation selection of angular momenta is
not sufficient to give, with the amplitudes Fjj1 calculated in the distor-
ted wave approximation, an angular distribution resembling curve N, 11
(see curve N, 2B in fig, 8). This is to be expected, because the optical
model distortions differently modify the relative amplitudes and phases
of the relevant amplitudes Fli': as compared with those of the Born ap
proximation, In particular, this happens in presence of resonance ef-
fects: these, in our example, enhance the amplitude of the scattering
states inside the potential well for the angular momentum quantum num
bers 1 = 2 and 4 in the neutron channel and 1' = 1 in the proton channel,

We emphasize that these remarks on the relation between
linear and angular momentum transfer with and without optical model
distortions are in a sense complementary to those of Austern, Butler
and Pearsonzs).

With regard to the agreement with the experimental data,
we have found?6) that it is definitely improved by taking into account ex
change in the effective finite-range n-p interaction. Details on this and
related results will be reported and discussed in a forth-coming paper,
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TABLE 1

_ Set of parameters used for the angular distributions plotted
in the figures,

Number | Bo | Vo | Vo | Wa | W | 7

1 5. 40 40 40, 4 8 9.2 0, 646
2 4, 85
3 4,40
4 4,40 44
6} 4,40 44, 4
6 4, 40 8.8
7 30
8 30
9 30 30

10 4, 85 0 0 0 0

11 4, 85 0 0 0 0 0

Curves N, 1, 2 and 3 have been determined by the optical
model parameters which fit the elastic scattering data for neutrons
and for protonszz). Only the parameter values which have been varied
with respect to those of curve N, 1 are indicated, The values of the o-
ther parameters are: Ry = Rp = 4.40; ap = 0,35; ap =0, 19,

We have assumed Ry = Rgp = R,. Lengths are measured in
units of 10-13 cm, energies in MeV,

b9
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The curves in all figures are numbered according
to table I
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Fig. 4- Small variation in the imaginary partof the optical

potential, Wn =8, 8 MeV (N. 6); W, =8 MeV (N, 3).
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Fig. 5- Large variations in the real part of the optical po-

tential. Vp =30 MeV (N, 7); V= 30 MeV (N. 8);
V=V, = 30 MeV (N. 9).
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Fig. 7- Selection of important angular momenta. Curves
N, 2A and N, 11B are defined in the text, Curves
N. 2 and 2A have been multipli ed by a factor 10,
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Fig. 6- Large variatioas in the optical potentials. Distor-
ted waves Born approximation (N, 2); Coulomb di-
stortion only (N, 10); no distortion (N. 11), Experd
mental points from ref. (4). Curve N, 2 has been
multiplied by a factor 10.
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Fig. 8- Crossed selection of important angular momenta,
Curves N, 2B and 11A are defined in the text. Cur
ves N, 2 and 2B have been multiplied by a factor
10.





