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ABSTRACT. 

A simple picture is given for direct (n, p) reactions, based 
on the distorted '.vave Dorn approximation and on a single-particle m£ 
del of the target and residual nuclei. Several angular distribution cur­
ves have been calculated in the zero-range approximation for the r eac 
tion 28Si(n, p)28 AI, induced by 14 MeV neutrons and leading to the gr£ 
und state and to the first excited state of the residual nucleus. We ha­
ve shown that, in our case, these two transitions give rise to the same 
angular distribution and the cross sections are in the ratio bt! 02= 
= (2J1 + 1)!(2J2 + 1), where J1 and J2 are the total angular momenta 
of the two states. 

The agreement with the experimental data turns out to be 
rather poor for any reasonable choice of the optical model and bound 
states parameters. 

We have shown that the striking difference between the Born 
approximation and the distorted wave Born approximation curves can 
be explained in terms of a definite change in the relation between linear 
and angular momentum transfer. 

(+) - This work has been supported in part by INFN, CRRN, ClSE and 
CSFN. 
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1 - INTRODUCTION. 

In the last few years much work has been carried out on di 
rect nuclear reactions 1,2), mainly in the distcrted wave Born approxl 
mation, in order to get an understanding of both nuclear structure and 
reaction mechanism. However, most of the calculations have been pe,!: 
formed for inelastic scattering and stripping (or pick-up) reactions. 

We point out that the reactions involving different nuc leons 
in the initial and in the final channels are, in certain respects, simpler 
to treat. In fact, in this case it is easier to take into account the anti­
symmetry of the wave functions 3); one can also avoid the complications 
due to the optical model scattering from excited nuclei and to the descri 
ption of the excited state itse lf. On the other hand, calculations without 
the restriction of the zero-range interaction are rather difficult when 
deuterons or 01. particles are involved. 

The aim of this paper is to ;>resent an analysis of (n, p) rea£ 
tions in the distorted wave Born approximation and the theoretical fra­
mework is designed to include a finite range neutron-proton interaction 
with exchange effects. In sec. 2 we give an account of this framework 
and for convenience we first treat the case of spinless particles ana 
then introduce the spins. In sec. 3 we investigate the particular case 
of the reac tion 2881(n, p)28 AI. 

This reaction has been chosen due to the existence of expe 
rimental data4) for the transitions leading to the ground state and to s£ 
me low lying excited states of the residual nucleus; furthermore, in the 
nucle~s 288i the state 1dS/2 is completely filled with neutrons and pr£ 
tons, what simplifies the shell model description. Unfortunately, this 
nucleus is not expected to be spherical, owing to the large positive qua 
drupole moments ofnucleiS) with mass number 20 -5. A !': 30. On the othe;­
hand, heavier nuclei like' 40Ca, which is certainly spherical, do not 
show any evidence of structures in the high energy proton spectrum6). 

The disagreement of the theoretical curves with the experi 
mental one, which persists for any reasonable variation in the availa­
ble parameters, does ,not allow us to draw very definite conclusions 
from the comparison of our calculations with the observed angular di~ 
tribution. Nevertheless, we think that our results are of some interest 
in giving a new insight into the relation between the Born approocimation 
and the distorted wave Born approximation with zero-range effective 
interaction, in the case of (n, p) reactions. 

In particular, we have found that the optical model selec­
tion of important angular momenta in the initial and the final channel is 
sufficient to explain qualitatively the dis torsion effects in the angular 
distribution. 
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2 - THE THEORETICAL SCHEME. 

2. 1 - Bas ic assumptions. 

The main assumptions underlying our treatment of (n, p ) 
r eactions can be summarized in the following statements. 

The reaction is described as a single step transition from 
th e initia l to the final optical model scattering states, i. e. accordin g 
to the distorte d wave Born approximation 3, 7, 8, 9, 10). 

We can neglect the interaction of the incident neutron with 
all nucleons, except with the least bound proton, since we are consi­
dering only transitions to states of low excitation energy. The effect 
of the Pauli principle can a lso be ne gl ec ted, provided we are only in­
t E: rested in the shape of the angular distribution and not in the absol~ 
te value of the cross section. In fact, the antisymmetrization of the 
wave functions changes the differential cross section only by a con­
stant factor 3). 

The initial states· of a bound nucleon are classified by the 
radial quantum number n, the orbital angular momentum k, the total 
angular momentum j and its projection"y. The fina l states are label­
led by the corresponding primed quantum numbe rs. 

The target is a c losed shell nucleus both for neutrons and 
for protons. Therefore the residual nucleus has it proton hole and an 
extra-shell neutron. 

The interaction which causes the transition is given by a 
neutron-proton central potential, containing a Wigner and a Majorana 
term. 

2. 2 - Spinless particles . 

On the basis of the assumptions of section 2. 1, we give 
here explicit expressions for the trans ition amplitude a nd f0r the dif­
ferentialcross section; the spins of the thre e particles involved in the 
reaction (neutron, proton and nuclear core) are not taken into account 
in this section. 

The differential cross section can be expressed in terms 
of a transition amplitude R~I<:' which can be written as 

(1) 
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where de indicat es a six dimensional integration over the neutron a nd 
proton coordinates r;, and rp. The operator <U, denoting the ne utron ­
- proton potential, i s given by 

(2) 

where P x is the Majorana operator and do.. and/,> are r eal numbers . 

The bound s t ates for the neutron and the proton are repr~ 
sented by the normalized wave functions: 

( 30.) 

(3b) 

the indices ~ and It' are the projections of the orbital a ngular momen­
ta k a nd k' respec tive ly. As usually, Yaol. ( 4-, If ) denotes the norma~ 
zed spherIcal harmunic function 11)., The <J.uantities y{+) (~ ') and 
'f{-){ rp) in eq. (1) are the optical model 12) scattering wave functions 
for neutrons and protons; the' first has asymptotic boundary conditions 
of outgoing waves, the second of incoming waves. They may be expa!! 
ded in the following form, whe n the optical potential is spherically sym 
metric 13): . -

(4a) 

(4b) 

The functions fl{r) and gl{r) are solutions of the radial Schroedinger ~ 
quation and are defined by the boundary conditions 

lim r fl (r) = 0 
r_O 

lim fl{r) = e i.s nl{kn rl -
1 

Sin (knr - ~ lrr + dnl) 

r ..... "'" 

lim r g}{rl = 0 
r ..... O 

i{ cf 1+ S"l) -1 1 r 
~i~3l{r) = e P {kprl Sin (kpr- '2lrr+ "jlog2kpr+ <l pl+~i); 

the complex quantities dnl and dpl represent the optical model phase 
shifts for neutron and protons; the real quantity 01 is the Coulomb 
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phase shift 14), given in terms of the Coulomb parameter 14) '1 by the 
definition 6J. = arg r (l+l+i"ll. We have chosen tr.e polar axis in the di 
rection of the momentum il k"n of the incident neutron. The angles e and 
q, give the direction of the momentum 1'1 k"p of the emitted proton. 

We have expressed the amplitude (1) by using the expansion 
of the potential uO ~ - !PI) in terms of Legendre polynomials 

(5) 

Then, after substitution of eqs. (2), (3), (4) and (5) into eq. (1), we c a n 
express the angular integrals in terms of vector addition coefficients as 
follows 11): 

1/2 

Jy. (Jl)Y (lL)Y (..Jl)d..1l. = r (2a+l) (2b+1) 1 
Cf' bf.> aol L 4lr (2c + 1) 

(6) 

• (able) (abolf.> I c,,). 

For the ver:tor addition coefficients we use the definition of ref. 15) and 
the notation (abo((?> I abc,,) :; (ab.(;1lc,,); (aboolabco) = (able). The ex­
pression for the transition amplitude R.K'l<' is obtained from eqs. (l), 
(2), (3), (4), (5), and (6); it is 

(7) 
(D) (E) 

RIC: lC:' = Rjt)::' + R~ It' 

d.. 3/2>: x',l-l' r 2k+1 ] 1/2 
= 0<:+;1 (4lr) ll'L(-) 1 (21+1), (2k'+1)(21'+1) . 

( 8) 

3/2 ~ l\:-1t'c,l-l' . + r 2k+1 J 1/2 
(4,,) ll'L(-) 1 (21 1) L!2k'+1)(21'+1) . 

( 9) 

The quantities Ill'L and Kll'L are radial integrals defined as 

()o 0-

(lOa) Ill'L= If gl,(r ) w 'k,(r )UL(r , r )fl(r )vnk(r )r2r
2
dr dr JJ p n n n p n p n p n p 

00 
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COo-

(10b) KII 'L = j(gl,(r )"w 'k,(r )UL(r ,r )fl(r )v k(r )r2r
2
dr dr • 'j n n p n p n n p np n p 

OJ . 

T h e resultin g diffe r e ntial c ros s sec tion is given by 

(1 1) d6Q = 1 
dJl 2k + 1 

where Mn and Mp are the reduced masses in the initial and in the final 
channel. 

In the case of a pure Wigner force, t!J.e parameter /> in eqs. 
(8) and (9) vanishes, a nd the cross section (11) reduces to 

2:.. i
m 

(2l+1)(2p+1) [(2I'+1)(2P'+1) ] 1/2 

(12) . (IL/k')(pP/k')' (kL/I')(kP/p')(lp/n)(I'p'in)' W(ILpP;k'n)' 

. W(I'Lp'P; kn), :s.I'L I;p'pP n(cos e), 

where the summation ~ is extended over the indices 1, 1', p, p', L, P 
andn; m = 1 + I' + P + p' and M = (MnMp )1/2. This expression can be£ 
btaim~d from eqs. (7), (8) and (11) using a well known property of sphe 
rical harmonics 11) and the Slim rule of Racah11,16). The quantitie; 
W(a, b i c .. d; ef) are defined as in refs. 11, 16). 

In the particular case k' = 0 (which is of interest for the 
reaction 28Si(n, p)28AI), the matrix element given by eqs. (7), (8), and 
(9) simplifies to 

• F U ' YI'K (8,<1:» (k' = 0). 

with the de finition 

We not e that in this case the direc t and the exchange integrals have a 



common geometrical factor. The cross section takes the form 

(13) 
• (pk/p')(lp/n)(l'p'/n)' W(ll'pp'; kn) FII,F'" ,P (cos(l ), . 

pp n 

(l{' = 0) 

7 

where the summation z: is extended over the indices 1, I', p, p', n, and 
q=l-l'-p+p'. 

2. 3 - Particles with spin. 

We now introduce the spin of the particles. Let" be the pro 
jection of the proton spin on the Z axis and Xo- the corresponding eigen­
function. Then, according to sedion 2. 1, we can write the proton bound 
state wave function as 

and a similar expression for the neutron wave function 'Wn'k'j'"),'( rri). 
The spins of the unbound particles are left uncoupled. 

The transition amplitude R<S1)'rr' from a state (J, r ) of the 
target nucleus, characterized by the total angular momentum J and its 
projection r , to a state (J', r ') of the residual nucleus, can be expre~ 
sed in terms of the amplitude (7). If the core is ip an angular momen-
tum state (jo")'o) we have . 

R S5'rr' = 

( 14) 

. (j'j ")"")' /J' r') R . 
o 0 0 .. ,,' 

The cross ·section is then 

(15) 
d~jj' 

d.Jl. 
= 

1 

2(2J+1) 

Of course, the angular distribution given by eq. (15) is different in gen~ 

61 
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ral from that given by eq. (11), because the S'lm over k' and let is m~ 
de in eq. (11) after squaring the amplitude and in eq. (15) before do­
ing this . Nevertheless the two angular distributions are equal when 
RKI<:' does not depend on I>" or 6" and at least O:le of the quantum nu~ 
ber jo, k , k' vanishes. This can be seen from eq. (14), using the o!:, 
thogonality of the vector addition coefficients. In the case k'=O we ha 
ve 

(1 6) 

(k' = 0). 

(2J'+l)(2J+1) 
(2k+1)( 2jo+1) 

:E.:1R 12 
k ko 

According to eqs. (11), (15) and (16), the cross section d6'JJ'/dJl is 
therefore proportional to d ero/ dil. One finds 

d 6'"JJ' 2J' 'I- 1 d S-o 
( 17) = , (k'=O) . 

d-'2 2{2jo+1) dJL 

In the other two cases we get 

d~JJ' 2J' + 1 dS-o = (jo =0) . d.Jl- 2{2k'+1) dJ2 

d G"JJ' 2J'+1 

dJL 2{2k'+l)(2jo+1) 
, (k= 0) • 

One should note that in the general case, if we sum over all values of 
J', such that lj'-jol ~J':!:.j'+jo' we get the same result as in the ca­
se jo = O. This can also be easily derived from eqs.(14) and (15), u 
sing the orthogonality property of the vector addition coefficients 

( 18) L: (J.'j 'Y''Y /J'r')(j'j c' £ /J'r')= r J'r' 0 0 0 0 'O,,'s;' ~o£o • 
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3 - THE REACTION 28Si(n, p)28 AI. 

3. 1 - General considerations. 

Let us consider now the reaction 28Si(n, p)28 AI, at 14. 1 MeV 
neutron energy in the laboratory system. We have calculated the ang~ 
1ar distribution of the protons emitted in the transitions to the ground 
state and to the first excited state of the nucleus 28Al. In the previou­
sly discussed scheme, this angular distribution is given by eq. (1 3). 

In the nucleus 28Si we have 14 neutrons and 14 protons fil­
ling all states up to the 1d5/2-shell. In the nucleus 28Al a proton is 
missing from this shell and a neutron is added in the 2S1/2-s~ell. For 
this reason the ground state of 28Al splits actually into two states, with 
angular momenta J 1 =3 and J 2=2. In fig. 1 is shown the level. schem" 
of the nucleus 28Al (re'f. 17). According to eq. (17) the two transitions 
give rise to the same angular distributior. for protons and the integra­
ted cross sec(ions are in the ratio fi'l/6'2 = (2J1+l)/(2J2+1) = 7/5. It 
is imoortant to point out that this result depends neither on the parti­
c'.llar choice of the optical model parameters, nor on particular assuI!!. 
ptions about the neutron-proton force, provided that the amplitude Rltlt' 

does not depend on the spin projections 6" or 6""'. It depends indeed on 
our picture of the bound states and on the fact that k' = D. It is also p~ 
culiar of (n, p) (or (p, n» reactions; in inelastic scattering two such l e ­
vels would give different angular distributions 18) for k' = D. In the ca­
se ofa non-spherical core, k' is no longer a good quantum number and 
again this property would not be valid. 

These considerations suggest that a comparison with exp~ 
riments of the angular distributions given by the two levels separately 
could give some informations about the validity vf our model. Vnfort~ 
nately, the splitting of the two levels amounts to 31 KeV only (see fig.:) 
and the experimental angular distribution4) is due to the unresolved Ie 
vels. In the case of unresolved levels we can also use eqs. (7), (8), 
(9) and (11) instead of eqs. (14) and (16), owing to the sum rule (18). 

3. 2 - Numerical calculations. 

A detailed account of the methods employed for the numeri 
cal calculations is given in ref. 19). We have studied a computer pro-=­
gram for a delta-function neutron-proton potential, normalized as a Yu 
kawa interaction of strength Vo and range fi-l 

(19) I)J. = 4"V fi - 3 S (? - ?), 
o n p 

and for a potential as given in eq, (2), with a Yukawa radial shape. In 
the present paper we discuss only results obtained with the zero-range 
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potential (19). For the bound particles we have used isotropic harmonic 
oscillator wave functions 20), which are 

11/2 r ] An 2 2 2 
exp - - r (1- - II r ) • 

_ 2 n 3 nn 

The turning point Ro of the correspondin¥ classical oscillator is related 
to the parameter "x by Rox = (7/ ? x) /2 (x = n for neutron, x = p for 
proton). The optical model scattering solutions have been computed using 
a Saxon-Woods central potential well 

11 (r) 
x [ ] 

-1 
r - Rx 

(V + iW) exp ( ) + 1 • 
x x ax 

Coulomb effects for protons have been taken into account exactly, ass.';! 
ming a uniform charge distribution of radius Rp for the residual nucleus 
28Al. ' 

3. 3 - Results. 

The numerical calculations have been performed for several 
sets of input parameters, with the aim of clarifying the dependence of 
the theoretical curves on these parameters. Other curves have been cal 
culated by suitably selecting the angular momenta in both the initial and 
the final channel, in order to get some insight into the relation between 
angular momentum and linear momentum transfer effects. 

The curves plotted in figs. 2 to 6 are reported as examples 
to show the parameter dependence. They have been numbered according 
to table 1. The figs. 2 to 4 display the essential stability of the calcula­
ted pattern against changes in the radial extension of the bound state w~ 
ve functions ' as well as in the optical potentials. The latter have been 
changed here only slightly with respect to those determined from elastic 
scattering2l~ 22), since otherwise the very meaning of the theory would 
be altered. The effects of large variations in the optical potentials are 
shown in figs. 5 and 6. We give in fig. 5 an example of how the curves 
change when the real parts of the optical potentials are decreased by 250/0 
with respect to the elastic scattering values. In fig. 6 the distorted wa-

6 , 
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ve curve is compared with those obtained without dis tortions and w.ith 
Coulomb distortion only. 

Though not improving the agreement with the experimental 
points, the effect of the optical model distortions appears to be quite 
important. This was expected on the basis of the evidenc e fr om inela ­
stic s-::attering calculations 1) and from recent work on (p , n) reacti­
ons 23 ). This situation qualitatively differs from the one we are faced 
with in the case of stripping24 ), where the angle corresponding to the 
first forward maximum in the angular distribution is essentially un­
changed by distortion effects. The position of this maximum is deter­
mined in a well known way25) by a relation between the linear and the 
angular momentum transfers, which therefore seems to remain me~ 
ningful with and without distortions. In the case of (n, p) reactions 
the maximum of the Born approximation angular distribution can bp 
determined by an analogous relation, as in the case of stripping, but 
it follows from the different behaviour of curves N. 2 and N. 11 (see 
fig. 6) that the effect of distortion is to change th~ relation between 
the linear and the angular momentum transfers. 

We can observe that not all the matrix elements Fl]' in 
eq. (13) bave the same importance in the angular distribution; apart 
from resonance effects, the overlap of the wave functions is mainly r~ 
sponsible of the smallness of the contribution from certain states of 
angular momenta 1 and 1'; In the zero-range approximation this can be 
estimated very simply: since the product of the two bound state wave 
functions has a node near r = 1/2. Ro and in the interval (0, 1/ 2. Ro) 
the contribution to the overlap is small, due to the presence of a d-sta 
te, the main contribution comes from the interval (1/2. 'Ro , Ro). Th~ 
refore the largest matrix elements Fll' are those, whose optical model 
wave functions have a node approximately at r = Ro. For a purely real 
optical model potential this hap?ens in our 8ase for the angular momeg 
tal = 0, 3and4; thus we expect that the important matrix elements Fll' 
are those with either 1 or I' equal to these values. The presence of the 
imaginary part of the potential does not alter this conclusion at our e­
nergy. 

In fig, 7 the exact curve N. 2 is compared with the curve 
N. 2 A, which has been computed putting Fll' = ° unless either 1 or I' a­
re equal to 0, 3 or 4 and not larger than 5. It is apparent that this se­
lectiOl~ of angular momenta does not change the qualitative features of 
the angular distribution, nor changes essentially the integral cross s~ 
ction. We can also proceed along the same lines for the Born approxi­
mation (curve N. 11). In the absence of any potential the overlap inte­
grals are mo're sensitive to the small difference in the relative mome!! 
ta in the two channels and the selection needs no more to be symmetri 

6: 
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cal in 1 and I'. For example,the amplitude F20 is expected to be impoE. 
tant, while F02 is expected to be small. The other important terms a­
re those with either 1 or I' equal to 1,2 or 3 and not larger than 3. The 
effect of this selection of angular momenta in the Born approximation 
is showninfig. 7 (curve N. lIB) and it is apparent that it does not chan 
ge signific antly the angular distribution. 

We have thus shown that the optical model distortion oper~ 
tes a selection of angular momenta, which is different from that one in 
the Born approximation. We can also show that the optical model sele.<:. 
tion itself is suffi'cient to account for the qualitative change in t h e most 
important linear momentum transfer as compared with that expected 
in the Born approximation: in fact,using the selection of angular mome!! 
ta appropriate to the distorted wave Born approximation, but the amPli 
tudes F ll , calculated in the Born approximation, we get the curve llA 
plotted in fig. 8, which clearly shows a maximu'TI at the smallest allo­
wed value of the linear momentum transfer , as curve N. 2 does . On 
the contrary, the Born approximation selection of angular momenta is 
not sufficient to give, with the amplitudes Fll' calculated in the distor­
ted wave approximation, an angular distribution resembling curve N. 11 
(see curve N. 2B in fig. 8). This is to be expected, because the optical 
model distortions differently modify the relative amplitudes and phases 
of the relevant amplitudes Fli" as compared with those of the Born aE 
proximation. In particular, this happens in presence of resonance ef­
fects: these, in our example, enhance the amplitude of the scattering 
states inside the potential well for the angular momentum quantum nUl!! 
bers 1 = 2 and 4 in the neutron channel and I' = 1 in the proton channel. 

We emphasize that these remarks on the relation between 
linear and angular momentum transfer with and without optical model 
distortions are in a sense complementary to those of Austern, Butler 
and Pearson25 ). 

With regard to the agreement with the experimental data, 
we have found 26 ) that it is definitely improved by taking into accoun~ e! 
change in the effective finite-range n-p interaction. Details on this and 
related results will be reported and discussed in a forth-coming paper. 

6 
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TABLE I 

Set of parameters used for the angular distributions plotted 
in the figures. 

Curve 
Ro Vn Vp Wn Wp rz Number 

1 5.40 40 40.4 8 9.2 0.646 

2 4. 85 

3 4.40 

4 4.40 44 

5 4.40 44. 4 

6 4.40 8. 8 

7 30 

8 30 

9 30 30 

10 4. 85 0 0 0 0 

11 4. 85 0 0 0 0 0 

Curves N. 1, 2 and 3 have been determined by the optical 
model parameters which fit the elastic scattering data for neutrons 21) 
and for protons22 ). Only the parameter values which have been varied 
with respect to those of curve N. 1 are indicated. The values of the o­
ther parameters are: Rn = Rp = 4.40; an = 0.35; ap = O. 19. 

We have assumed Ron = Rop = Ro' Lengths are measured in 
units of 10- 13 cm, energies in MeV. 

6 [' 
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Fi~. 2- Var iation of the bound state parameter Ro' 
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Fig. 5- Large variations in the real part of the optical po_ 
tential. Vn • 30 MeV (N. 7); Vp" 30 MeV (N. 8); 
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F ig. 7 - Selection or important angUlar momenta. Curves 
N. 2A and N. 11 B are defined in the text. Curves 
N. 2 and 2A have been multipli ed by a factor 10, 
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Fig. 6- Large variatio:ls in the optical potentials. Distor­
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multiplied by a factor 10. 
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