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1 Introduction

Powerful UV picosecond lasers drive high-brilliance radiofrequency electron sources (rf-

gun) [1]. The temporal profile of the laser pulse is required to be of rectangular fashion

with fast rise time [1,2]. A rectangular profile is generated inserting in a laser system a

shaping device (shaper) which transforms the Gaussian-like profile generated by a laser

oscillator into a target one [3]. The pulse length depends on the kind of rf-gun, that is

on the operating radiofrequency of the rf-cavities. We refer to the S-band (≈ 3 GHz)

rf-gun because it is widely used [1]. The laser pulse has to be UV (typically 266 nm),

to have a length of 10 ps with a rise time less than 1 ps and an energy of hundreds of

microjoules [4]. Lasers suitable to the task are Ti:Saffire and Nd:Glass (and the others

of this class) [5] with harmonic generation. The generation of a high energy 266 nm 10

ps rectangular pulse via a third harmonic up-conversion must overcome the problem of

the non-linear interaction within a crystal. In fact, the propagation through the crystal

produces distortions on the spatial and temporal profiles. The understanding of the profile

deformations gives the guidelines for the active setting of the optical components of the

shaping system which provides the rectangular pulse profile.

Light pulse manipulation is obtained by amplitude and phase modulation of its spec-

tral components. The two devices most used are the so-called CP-SLM (liquid crystal

programmable spatial light modulator) [3] and the DAZZLER (an acousto-optic pro-

grammable dispersive filter, also called AOPDF) [6]. The investigation on light pulse

shaping was addressed so far to the fundamental harmonic. We extend it to the second

harmonic produced by a nonlinear crystal.

In previous papers [4,7] we have investigated two types of shapers for the genera-

tion of rectangular target pulses at the first harmonic: one is a CP-SLM shaping system

modulating the phases of the spectral components, which is also called 4f-system, see

Fig.1(a), and the other is a 4f-2g-system, that is a system which does in succession two

operations, the modulation of the amplitude of the spectral components and the temporal

stretching of the pulse, see Fig 1(b). The basic operation of a shaping system is to ap-

ply a filter function to the input waveform to transform it into a target waveform. In the

frequency domain

Ao(ω) = H(ω) · Ai(ω) (1)

where Ao, Ai are respectively the output and input waveforms and H(ω) is the filtering

function. The 4f-system has at the center a mask made up of hundreds of pixels where are

focused the spectral components and the pixels are patterned as a physical function M(ω)

which does a programmed filter action [4]. The requirement of a rectangular profile of

the intensity waveform leaves the degree of freedom of choosing a phase-only filter, that
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Figure 1: (a) scheme of a 4f-system and (b) scheme of an amplitude-and-chirping-system.
The mask at the center of the 4f-system can modulate either the amplitude or the phase
of the pulse spectral components. It is set for phase-only modulation when performs
a shaping of a laser pulse. The second shaper is composed of two sections: the first
modulates the amplitude of the pulse spectral components, the second does the chirp of
the components. The amplitude modulation can be accomplished by a 4f-system and the
chirp by a pair of gratings, as shown in the figure. The shaping system in this configuration
is called 4f-2g-system.

is H(ω) = exp[i Φ(ω)]. A 4f-system is therefore a phase-only shaper.

A 4f-2g-system (an amplitude-and-chirping-system) has two optical sections: the

first is a 4f-system with a mask arranged for amplitude-only modulation Ao(ω) = M(ω) Ai(ω),

(M(ω) is a real function) the second section introduces a linear delay time among the

spectral components (chirping)

φ(ω) =
1

2
αω2. (2)

This operation is made up by a pair of gratings, as shown in Fig. 1(b). The output intensity

Io(t) is found by performing the inverse Fourier transform

Io(t) =
∣∣∣∣
∫

M(ω)Ai(ω) ei α
2

ω2

e−i ωt dω
∣∣∣∣2 (3)

When the output pulse length is much longer [7] than the input pulse length, which

means a large α, the integral in Eq. (3) can be written as

Io(t) ≈ {M [ω(t)]Ai[ω(t)]}2 = Ĩo[ω(t)] (4)

where ω(t) = t/α. From this Eq. (4) we get that the temporal profile of the pulse Io(t) is

equal to the power spectrum Ĩo(ω) profile. We can see that the stretcher simply transfers
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the spectral amplitude profile into the temporal amplitude profile. This occurs because a

2g-stretcher establishes a linear relation between frequency and time.

The 4f-system is widely exploited in the pulse shaping technique because it gives

a target pulse with phase-only modulation, thus with minimum energy loss. The other

shaping system was presented as more suited for generation of rectangular pulses. This

conclusion was based mostly on the simpler handling with respect to the former shaper

in searching for the right optical configuration [7]. The investigation of the pulse profile

evolution in the non-linear interaction in the process of the frequency up-conversion does

not change that general consideration. This conclusion holds as long as the laser system

has configurational instabilities which require frequent system re-setting for optimized

operation.

In this paper we investigate beam propagation and harmonic generation in the com-

mon KDP crystal, using a suitable numerical model. Moreover, we analyze and discuss

the modification of the pulse profiles, both in time and frequency domain, on the base of a

simplified and clarifying analytical theory. We conclude with some considerations about

the experimental setup.

2 Beam propagation within a non-linear crystal: the model and the results

For the analysis of the nonlinear interaction leading to second harmonic generation in

birefringent χ2 media, we consider the propagation of quasi-monochromatic electromag-

netic fields, with the electric components E1 at the fundamental angular frequency ω1 (the

ordinary ray in our case), and E2 at the harmonic frequency ω2 = 2 ω1 (the extraordinary

ray) written as

Ei(z, t) = Ai(z, t) exp [i(kiz − ωit)] + c.c , (i = 1, 2), (5)

where Ai are complex amplitudes, ki are the corresponding wave vectors, z is the prop-

agation axis. We neglect the transverse variation of the fields. In the framework of the

slowly varying amplitude approximation, the interaction between co-propagating fields

can be described by the coupled differential equations [8]

∂A1

∂z
+

1

vg1

∂A1

∂t
= i

2ω1 deff

c n1
A2 A∗

1 ei∆k z (6)

∂A2

∂z
+

1

vg2

∂A2

∂t
= i

ω2 deff

c n2
A2

1 e−i∆k z

where vgi and ni are the group velocity and the refraction index relative to the field Ei,

deff is the effective second order susceptibility, and ∆k = k2−2 k1 is the phase mismatch.
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The proper value of deff is determined by the angles χ and φ defining the propagation

direction with respect to the principal optical axis of the selected material. The propaga-

tion direction is determined by the condition of maximum interaction efficiency, which

corresponds to the condition of perfect phase matching ∆k = 0 [9]. On the other hand,

the values of the group velocities and refraction indexes depend on the propagation direc-

tion and are calculated by the so-called Sellmeier dispersion equations [10]. In this model

we retain the effect of group velocity differences (i.e. the temporal walk-off), but neglect

the group velocity dispersion, which has effect only for pulse durations well below the ps

of our interest [11]. We do not consider, in addition, the effects of higher nonlinearities,

which introduce a small phase mismatch and turn out to be relevant only for very energetic

short pulses [12,13]. The spatial walk-off due to the small angle between the directions

of energy flux and wave vector within the extraordinary ray of birefringent crystals is

neglected under the assumption of a broad transverse area of the pulse.

The coupled equations (6) are used to numerically calculate the second harmonic

pulse emerging from the non-linear crystal at z = L, being L the crystal length. The

complex field amplitudes at z = 0 are respectively A1(0, t) for the first harmonic and

A2(0, t) = 0 for the second harmonic. A1(0, t) represents the envelope of the incident

pulse at fundamental frequency. It will have a profile suitable for obtaining the target

profile after the interaction, and is created by a shaper. A brief description of the numerical

method, which has a global second order accuracy, is given in the Appendix. In all the

simulations we have selected for definiteness the condition of perfect phase matching

∆k = 0, which guarantees the minimum deformation of the pulses during the interaction.

With the aim of generating a harmonic rectangular pulse of 10 ps, we take into

consideration as input pulses for the up-conversion within the non-linear crystal, the two

pulses generated by the two shapers of Fig 1. The source laser pulse entering the shapers is

assumed to have a Gaussian-like profile with a time FWHM of 100 fs, that is a bandwidth

of about 500 GHz. This relatively wide spectral bandwidth is necessary for creating a

rectangular laser pulse with fast rise time.

The crystal considered for the harmonic generation is a KDP with a length L =

500µm, and the maximum intensity of the input signal is chosen below the threshold for

damage (which depends on the temporal length of the pulse). The selected length turns out

to be a good compromise between the second harmonic conversion efficiency and pulse

profile maintenance, as shown by the shape of the output intensity I2 = 2ε0n
2
2vg2|A2|2

of the up-converted pulses for different crystal lengths depicted in Fig. 2. The intensity

profile of the second harmonic increases with the crystal length, but the top evolves from

the flat to a hilled fashion. A simple theoretical explanation is discussed in the next

section.
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Figure 2: The graphs from 1 to 5 are the harmonic output pulses I2(t) obtained by Eqs.
(6) for crystal lengths spanning the values 200-400-600-800-1000 µm, respectively. The
dashed graph is the input signal intensity I1(t) obtained with the 4f-2g shaping system
arranged for that target pulse.

Let us now consider the two shapers.

(1) Input pulse generated by a 4f-2g shaper
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Figure 3: The picture depicts the spectral pulse profile performed by the spectral ampli-
tude modulation. This laser pulse then enters the stretcher (second section of the shaping
system) and afterwards enters the non-linear crystal for the second harmonic generation.

We consider first the 4f-2g-shaping system. The amplitude modulation performs a

square profile of the pulse power spectrum as depicted in Fig.3. We have run the propaga-

tion equations with a set of five input pulses shaped with progressively increased temporal

width up to 10 ps. Fig. 4 shows the second harmonic output pulses I2(t), central column,

and the corresponding power spectra I2(ω), right column. All the output pulses have the

same 10 ps temporal length because the lacking length after the first un-complete stretch-

ing (before the SHG, second harmonic generation) is completed by a second stretcher

set just after the SHG crystal. The maximum intensity of the input signal profile I1(t) is

selected to obtain near equal values for the intensity maxima of the output pulse, roughly
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following the simple rule I1(max)×√
∆t ≈ const, where ∆t is the input pulse FWHM.

These pictures show that a rectangular SHG target pulse can be accomplished only with

suitable shaping and stretching of the input pulse, before entering the crystal. Moreover,

the power spectrum profile in the right column result very similar to the temporal inten-

sity profile for all the input different temporal pulses, in contrast with the behavior of the

fundamental harmonic. This fact was discussed in [7], and is theoretically explained in

the following section.

(2) Input pulse generated by a 4f-shaper with phase-only modulation

We have run Eqs. (6) also with the input pulse obtained by a 4f-system whose mask

is arranged for obtaining a 10 ps pulse with phase-only modulation. The appropriate

phase function H(ω) = exp[iΦ(ω)] is found by a numerical calculation via an adaptive

algorithm. We have followed two different numerical approaches: in one the adaptive

algorithm searches for the appropriate phase filter function patterned at the mask pixels

which again provides at best the target profile [4]; in the second numerical approach we

expanded the phase function in power series

Φ(ω) = a ω2 + b ω4 + c ω6 + . . . (7)

and the adaptive algorithm searches the coefficients of the series for obtaining an output

profile approaching at best the target one.

The output SHG pulses obtained by Eqs. (6) with the two phase functions found

along the two lines of calculations are depicted in Fig. 5. The final pulses come out

dramatically different in the two cases: the line of the power expansion leads to a fairly

smoothed pulse, whereas the line of the direct calculation of the phase of the pixels leads

to an output pulse profile flat on the average, but with a lot of superimposed fast spikes.

3 A simplified theory of second harmonic generation with laser pulses with differ-
ent profiles

In this section we present an approximated theoretical view, which leads to a simplified

evolution equation for the second harmonic generated field. This equation allows a picture

of the problem which enlightens the physics underlying the observed features of the SHG

laser pulses.

Assuming low up-conversion efficiency in crossing the SHG crystal, we can neglect

the right hand side in Eq. (6); therefore the slowly varying amplitude of the input pulse

A1 propagate along the crystal remaining practically undepleted. As a straightforward

consequence, A1 can be written as a function depending on the variable t − z/vg1 only.

The relevant propagation equation for the second harmonic slowly varying amplitude A2
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Figure 4: The left column shows the temporal profiles of the input pulses after spec-
tral amplitude modulation and a partial chirping; the center column shows the temporal
profiles of the output second harmonic pulses after completing the chirping up to 10 ps
length; the right column shows the corresponding normalized power spectra.

now reads
∂A2

∂z
+

1

vg2

∂A2

∂t
= iγ [A1(t − z/vg1)]

2 e−i∆k z , (8)

having put ω2 deff/c n2 = γ. A more useful equation is obtained by changing the time
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Figure 5: Frame (a): the upper curve is the input signal with a phase-only modulation
calculated by an adaptive algorithm directly for the pattern of the mask pixels. The lower
curve is the calculated second harmonic output after the interaction within the non-linear
crystal. Frame (b): the upper curve is the temporal pulse profile shaped by a phase-only
modulation calculated via the optimization of a power expansion coefficients of the phase
function by an adaptive algorithm. The lower curve is the up-converted pulse.

frame of reference with t′ = t − z/vg2

∂A2

∂z
= iγ

[
A1

(
t′ +

z

vg2
− z

vg1

)]2

e−i∆kz ≡ iγ [A1(t
′ + βz)]

2
e−i∆kz , (9)

where β = 1/vg2 − 1/vg1 is the group velocity mismatch parameter. In absence of this

mismatch (i.e. β = 0) the solution of this equation at the end facet of the crystal is well

known [9] and reads

A2(L) = i γ A2
1

e−i ∆k L − 1

− i ∆k
, (10)

showing that A2(t) ∝ A1(t)
2, and the maximum intensity of the second harmonic is

obtained when the phase matching condition ∆k = 0 is fulfilled. Assuming the validity

of this condition for all the spectral components Ã2(ω, z) of the generated light pulse, we

may perform the transformation into the frequency domain of Eq. (9), obtaining

∂Ã2

∂z
= iγ e−i βzω Ã1(ω) ⊗ Ã1(ω) , (11)

where Ã1(ω) is the incident pulse in the frequency domain, and the symbol ⊗ indicates a

convolution integral

Ã1(ω) ⊗ Ã1(ω) =
∫

Ã1(ω
′) Ã1(ω − ω′) dω′ . (12)

Solving Eq. (11) with zero initial condition, we get the final expression

Ã2(ω, z) = i γ z

(
e−i βzω − 1

−i βzω

)
· Ã1(ω) ⊗ Ã1(ω) , (13)
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This equation (in the frequency domain) indicates that the up-converted pulse is given by

the convolution of the input pulse with itself multiplied by a modulation factor.

It is now clear that the non-linear crystal will couple the spectral components of the

input pulse at frequencies ωi and ωj satisfying the matching condition ωi + ωj = ωSHG.

Therefore the observed intensity I2(ω) ∝ |Ã2(ω)|2 of the second harmonic will result

from the contribution of all the input spectral components complying with the matching

condition. The intensity is modulated by a factor sinc2(x), where x = βzω/2. This

factor defines the frequency bandwidth over which the SHG intensity is significantly dif-

ferent from zero. The bandwidth is progressively reduced with the crystal length as shown

in Fig. 6 by the graphs of the quantity CN = I2(ω)/L2 (normalized power spectrum di-
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Figure 6: Profiles of the quantity CN in the frequency domain for a set of different crystal
lengths spanning the values 200-400-600-800-1000 µm respectively, as in Fig. 2. The
dashed line is the contribution of the convolution term.

vided by length squared) versus the crystal length. The pulse profile evolves from flat to

round with the increase of the crystal length L due to the fact that the flat entering pulse is

convolved (see the discussion in the next paragraph) with a sinc function in the interac-

tion. Note that the spectral content of the output pulse is determined substantially by the

sinc function bandwidth as the crystal reaches the length of 1000 µm. This effect comes

from the higher losses at higher frequencies. This leads to the same rounding effect on

the temporal profile, as shown in Fig. 2.

We analyze now the results obtained in the two cases of 4f-2g and 4f-systems on

the base of previous considerations, at the fixed crystal length selected for keeping an

appropriate frequency bandwidth.

(1) Input pulse for SHG crystal generated by a 4f-2g shaper

The pulse to be transformed is assumed to be a transform limited Gaussian pulse.

A rectangular spectrum profile A1(ω) (as depicted in Fig. 3) is generated by a proper

amplitude modulation. When no chirp is applied the expected result of the convolution
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integral (12) is simply a simil-triangular shaped SHG pulse. This result is, in fact, obtained

by the complete equation system (6) as shown by the first frame second row of Fig. 4.

Let us consider, then, the case with some chirping (that is with the phase modulation

Φ(ω) = (1/2) αω2). The new amplitude A1(ω) will assume the form

A1(ω) = S1(ω) ei 1
2

α ω2

(14)

where S1(ω) =
√

I1(ω), with I1(ω) the power spectrum of the first harmonic. The ampli-

tude of the second harmonic in the frequency domain will have the expression (discarding

the immaterial modulation factor)

A2(ω) ∝
∫

S1(ω
′) S1(ω − ω′) ei 1

2
α[(ω−ω′)2+ω′2] dω′ . (15)

The exponential function

ei α( 1
2
ω2−ω ω′+ω′2) (16)

is a fast oscillating function for all ω ′ except at the frequency coordinate ω′ = ω/2; the

larger is the coefficient α (that is the longer the stretching), the sooner starts the fast oscil-

lation. Therefore, if α is large enough, the integral turns out to be near zero everywhere

except at ω′ = ω/2, i.e. that term operates as a δ-function. The integral (15) can be

approximately written as

A2(ω) ≈
∫

S1(ω
′)S1(ω − ω′) ei α( 1

2
ω2−ω ω′+ω′2) δ

(
ω′ − ω

2

)
dω′

≈ S2
1

(
ω

2

)
ei α (ω/2)2 (17)

From this equation we deduce that the spectrum width of the second harmonic is two

times larger than that of the first one, and that the spectral profile is similar (squared)

to the profile of the first harmonic when the stretching is strong enough. These results

reproduces almost exactly those obtained by the simulations with Eqs. (6) as depicted in

the right column of Fig. 4. Furthermore, we observe that the delay times of the spectral

components for the first and second harmonics are respectively

τ1(ω) =
dΦ1

dω
= α ω τ2(ω) =

dΦ2

dω
=

1

2
α ω . (18)

This result comply with the fact that the temporal width of the second harmonic tends to

be the same as the temporal width of the completed stretched first harmonic, as one can

see in Fig. 4.

(2) Input pulse generated by a 4f-shaper with phase-only modulation

We must consider only the case of the input pulse formed by the phase function

obtained by a power expansion. The pulse entering the crystal is already fairly shaped.
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From the mathematical point of view we have to treat again with a convolution integral

of the type (17), with the exponential phase function even faster oscillating than that

considered in the first shaper with a simple chirping. Therefore, the conclusion outlined

above is immediate. Incidentally, we could end up straightforward to this conclusion

observing that, being the input pulse already formed, we could directly exploit Eq. (10)

in the temporal domain.

4 Some experimental considerations

The response function for the generation of a target pulse comes out as numerical solution

via an adaptive algorithm. This solution is implemented in the laser system by a proper

setting of the shaping system. A computer, running the adaptive algorithm, can drive

the system towards the right optical configuration of the shaper, being it inserted in a

feedback loop between the output of the harmonic generator and the shaping system. In

this configuration the detected output pulse is sent to the computer as input set of data and

compared with the target pulse in terms of a cost function [4] and then the shaping system

configuration is updated.

However, the operation of the laser system in relation to the pulse profile (provided

with the shaper) is very sensitive to mechanical and optical perturbations [4]. Since pertur-

bations (in a large laser system) are un-avoidable, and since a shaping system is capable

of bringing off the requested profile counter-reacting to perturbations with a proper re-

setting, the laser system must be arranged in an selfcontrolled configuration. The output

pulse is continuously measured, sent to a computer for comparison with the target pulse

and the computer drives the shaping system to the right spectral amplitude and/or phase

re-modulation (depending on the shaping system type): the operational stability implies

an adaptive behavior.

In connection with the operation of measuring the output pulse profile and with the opera-

tion of computer-assisted setting of the shaping system, we remark that: the detection of a

spectrum by a spectrum analyzer is immediate, whereas the detection of a temporal pulse

is complicate and difficult. This later operation is customary done by a cross-correlation.

In our system the cross-correlation technique cannot be exploited because of the 10 Hz

repetition rate. In fact, this low repetition rate leads to a system resetting time of about

half an hour. About the technique of the single-shot autocorrelation, we observe that,

even if it would be enough fast, for extracting the temporal profile from the autocorre-

lation graph a numerical de-correlation calculation must be done, and, this calculation

needs also a spectrum measurement [15]. These considerations lead to conclude that a

4f-2g shaping system allows an easier handling because a system re-setting is done (i) by
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measuring the spectrum of output pulse at each shot and (ii) by connecting the spectrum

data to a computer which does the rest (that is compares the output and the target profiles

(in our case of 10 ps the profile of the last figure in center column in Fig. 4) and organizes

the proper spectral variations).

5 Conclusions

A relatively long and powerful second harmonic laser pulse, efficiently generated trough

the interaction within a non-linear crystal, has a rectangular temporal profile only if the

profile of the input pulse is properly designed. The production of a proper input pulse re-

quires the implementation in a laser system of a shaping system capable of giving to laser

pulses (via spectral amplitude and/or phase modulation) profiles of smooth rectangular-

swallow-tailed forms.
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Appendix

Eqs (6) are conveniently solved with a second order finite difference scheme, appropri-

ate for studies on laser pulse propagation [14]. We first define dimensionless complex

amplitudes with

C1 = A1e
−i∆kz/2

√
2ε0n1c

I0
; C2 = A2

√
2ε0n2c

I0
(19)

where I0 is a reference intensity, usually coincident with the maximum of the incident

pulse. By changing the independent variables with the relations

t̃ =

(
t − z

vg1

)(
1

vg2

− 1

vg1

)−1

; z̃ = z (20)

we get the reduced system of equations

∂C1

∂z̃
= iα C2C

∗
1 − i

∆k

2
C1 (21)

∂C2

∂z̃
+

∂C2

∂t̃
= iα C2

1
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where

α = ω1deff

√
2I0

ε0c3n2n2
1

. (22)

The finite difference scheme is obtained by dividing the z̃ − t̃ plane into a grid with

spacing ∆z̃ = ∆t̃, and making a second order Taylor expansion of C1(z̃, t̃), C2(z̃, t̃)

about the grid points (m, n); the second derivatives are calculated by differentiating the

Eqs. 21 and substituting a first order difference approximation for the simple derivatives.

Therefore we obtain iterative expressions giving the amplitudes at time advanced grid

points Ci(m, n + 1) as functions of the preceding time and space values Ci(m − 1, n +

1), Ci(m, n) and Ci(m − 1, n). This procedure is numerically stable and has an overall

truncation error of order (∆t̃)2.
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