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Abstract

The generation of an electron beam in a 3 GHz radiofrequency gun with a very low
emittance requires a photocathode driven by a 10 ps ultraviolet high energy pulse with a rise time
minor than 1 ps. This pulse can be provided by a Ti:Sa laser system completed with a pulse
shaper programmed for that task. We discuss the design of a 4f-grating-lens pulse shaper
optimized for our long rectangular pulse and for the lowest sensitivity to alignment. The
Acousto-Optic Programmable Dispersive Filter shaping system is briefly discussed..
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1 Introduction

The development of low-emittance (few � mm-mrad) electron sources is required for

application in X-ultraviolet (UV) free electron lasers (FELs) [1–3], Compton scattering

[4] and new generation of linear colliders [5]. The study of our SPARC [1] (Sorgente

Pulsata e Amplificata di Radiazione Coerente) FEL experiment has shown the necessity

of an electron beam of � 1 �mm�mrad [6]. This requirement means a radiofrequency

electron gun (rf-gun) whose photocathode is driven by a powerful rectangular pulse of

10 ps with a fraction of 1 ps rise time. In fact, it was shown also experimentally that the

emittance depends on the temporal laser pulse characteristics and that its minimum value

is reached with a rectangular pulse having the above written characteristics [7].
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Figure 1: Sketch of the system layout with the pulse shaper insertion.

The generation of a rectangular light pulse is obtained by a laser system composed

of an oscillator and a system of amplifiers with in between a temporal pulse shaper, as

shown in Fig. 1. The proposed laser oscillator for the SPARC project is a cw Ti:Sapphire

oscillator generating 100 fs long transform limited pulses at 73.9 MHz. A pulse shap-

ing system set after the oscillator performs the transformation of that short pulse into the

requested long rectangular pulse. A technology has been developed in the last decade

for manipulating sub-picosecond pulses with the aim of generating ultrafast optical wave-

forms and relatively long square pulses according to user specifications [8–11]. Pulse

shaping systems have already demonstrated a strong impact as experimental tools pro-

viding unprecedented control over ultrafast laser waveforms for ultrafast spectroscopy,

nonlinear fiberoptics, and high-energy field physics. We propose to use that technology

for stretching a short pulse into a long pulse with a rectangular shape and a very short rise

time.

The physics principle of the pulse shaping is the spectral and amplitude modu-

lation of the pulse spectral components. The shaping systems proposed so far with a

2



certain success are [9]: i) The Liquid Crystal Programmable Spatial Light Modulator,

called LCP-SLM, ii) the acoustic-optic modulator Programmable Spatial Light Modula-

tor (AOM-PSLM) [12], iii) the Acousto-Optic Programmable Dispersive Filter (AOPDF)

[10,11] and iiii) movable and deformable mirrors (MM and DM) [9]. We will treat here

the two i) and iii) systems because they demonstrated features of reliable and flexible op-

erations and, furthermore, they are going to be tested in the SPARC experiment. They are

based on different physics processes and, thus, different technologies. In this article we

address more attention to the LCP-SLM shaper. The design parameters are discussed in

view of the system sensitivity to their perturbation.

2 General consideration on pulse shaping

The field of a light pulse has, in the time domain, the expression

~E(t) = E(t) � e� i !0t E(t) =
q
I(t) � e+i �(t) (1)

The field in the frequency domain becomes

E(!) =
q
I(!) � e�i�(!) (2)

The spectral components of the light pulse have a delay time with respect the central

frequency !0

�(!) = d�(!)=d! (3)

dependent on the frequency !.

In general, the pulse manipulation occurs through the modulation, by the shaper, of the

phase �(!) (therefore, of the time delay �(!)) and the modulation of I(!).

The pulse shaping is a linear filtering process. In the time domain the filter action

of the shaper is represented by the impulse response function h(t), while in the frequency

domain the filter action is represented by the Fourier transform H(!) of h(t). The output

waveform eout(t) is the convolution of the input waveform ein(t) and the impulse response

function h(t)

eout(t) = h(t) � ein(t) (4)
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In the frequency domain we may write

Eout(!) = H(!) �Ein(!) (5)

In general H(!) will be a function of the type

H(!) = T (!) � ei (!) (6)

hence, the output will be

Eout(!) = T (!)
q
Iin(!) � e

i [� (!)+�in(!)] (7)

The appropriate amplitude T (!) and phase  (!) modulation functions will provide any

kind of output signal.

In our SPARC system the output laser pulse would have to be rectangular. The

spectral components of the short pulse provided by the driving oscillator are delayed in

time one another and possibly modulated in amplitude within the shaping system. We

consider first the most direct case of a linear delay time

�(!) =
d�(!)

d!
= b !: (8)

This case is appropriate to AOPDF system, but it also enlightens the physics of the ampli-

tude modulation and of phase modulation. Because of the linear delay the phase function

will be

�(!) =

Z !

0
b ! d! =

1

2
b !

2
: (9)

The output signal, given by the backward-Fourier transform, is

Eout(t) =
1

2�

Z
bandwidth

q
Iin(!) e

�i�(!)
e
i !t
d ! (10)

We refer the calculations to the input signal of the Ti:Saffire oscillator and we keep the

spectral bandwidth of 25 rad=ps about the central frequency. The results are shown in

Fig.2.

Frame (1a) shows the considered delay interval of 10 ps and the frequency window.

Frame (1b) shows that the 100 fs input pulse is transformed into a 10 ps wide pulse with

a rise time about 1 ps. The spectral components are spread over a time interval, therefore

the pulse is chirped.

Frame (2b) shows that with a delay time function having two flat segments at the extrem-

ities the rise time is shortened: The wider the flat extremities the faster results the rise
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Figure 2: The �(!) functions (bold lines) are depicted in left Frames. The curved thin lines on the top
represent the section of the Gaussian spectrum used for the calculations. The bottom Frame (3a) shows also
the transmission function (the rectangle with the two sides) having a reduced value at the extremities. In
Frames (b) the computer calculated output pulse shapes relative to the different � curves are reported. The
amplitude modulation shown in the bottom frame is able to get rid of the overshoots (due to the superposi-
tion of the components without any delay).

time and the higher are the overshoots. The components relative to the flat segments add

up in phase. To get round of the overshoots we must lower the amplitude of the relative

components reducing the transmission for those spectral components, as shown in Frame

(3a).

3 The LCP-SLM system

In this section we present the operation principle of the system, the components, the

relative arrangement and finally we discuss the sensitivity of the system to the physical

parameters.
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3.1 The operation principle of the LCP-SLM system

The operation of a LCP-SLM shaping system is based on the filtering of the input pulse

in the frequency domain. The procedure is: a) decompose spatially the frequency com-

ponents of the input pulse, b) transform the dispersed rays in spots in a transform plane

c) filter the spots (the frequency components), d) transform back the component rays in a

convergent pulse and e) recombine (synthesize) the components in a pulse. These opera-

tions are made by a 4f-setup with the filter mask in the center as shown in Fig. 1. The light

polarization at the grating and the mask are perpendicular one another, hence a waveplate

for 90o polarization rotation is inserted in between.

A first grating disperses angularly the individual frequency components with a linear law,

at zero approximation,

x ' �! referred to the central frequency !0 (11)

see Fig. 3. The first lens does the Fourier transformation of the dispersed beam onto

the transform plane (the focal plane). The mask does the filtering. The second lens

does the Fourier anti-transform. The second grating does the synthesis of the frequency

components. The output pulse shape is given by the Fourier transform of the patterned

mask, see Fig. 4, transferred onto the spectrum. The system is a zero time-dispersion line.
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Figure 3: Angles and trajectories in the SLM. The spectral components of the input light beam are
separated by the grating and focused at the mask by a lens with a beam waist w 0. The pulses are gaussian
both in space and in time.

The field just after the mask will be (in the frequency domain, following Eqs. (4)

and (5))

Eout(x; !) � H(x) Ein(!) e
�

(x��!)2

w2
0 (12)

We notice that the linear relation between the coordinate x and the frequency ! allows

the simple relation between the filter function HSLM(!) and the physical mask func-

tion HSLM(x) (the complex transmittance of the mask). From the general Eq. 5 com-

bined with Eq. 12 and assuming a filtering action which allows only the lowest Hermite-

Gaussian mode, we get for the filter function H(!) [13]
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Figure 4: Schematic diagram of an electronically addressed, phase-only LCP-SLM.

H(!) =

s
2

� w2
0

Z
mask

HSLM(x) e
�2

(x��!)2

w2
0 dx (13)

The mask of a LCP-SLM shaping system is patterned as an array of pixels inter-

leaved with small gaps. In the Jenoptic model SLM-S 640/12 chosen for our system the

pixels are 97�m wide and the gaps are 3�m wide. Because of the mask pixellation, the

mask filter function HSLM(!) is pixellated. Eq. 4 is changed into [14]

eout(t) �=

"X
n

h(t� n
1

Æ�
) � ein(t)

#
�

sin(�Æ� t)

�Æ� t
: (14)

The spectral width Æ� is relative to the individual pixel of width Æx = 2��Æ� where �

is the spatial dispersion of the beam components. Negligibly small interpixel gaps and a

focused spot size w0 at the masking plane less than the pixel dimension are assumed for

obtaining the expression (14). The result of the pixellation is to produce an output pulse

which is the convolution of the input pulse not only with the desired impulse response

function h(t), but also with a series of replica impulse response functions, h(t � nÆ�
�1),

occurring at times t = nÆ�
�1. The entire result is weighted by a temporal window func-

tion, sinc(�Æ�t), which has the first zeros at t = �Æ�
�1. However, in our problem of

obtaining a square intensity pulse at UV, i.e. after the frequency multiplication, the lateral

replica become vanishingly small, therefore negligible.

A complete LCP-SLM induces both phase and amplitude modulations. Hence, the

general frequency response function HSLM(!) is characterized by its amplitude modula-

tion T (!) and spectral phase  (!), that is

HSLM(!) = T (!) ei  (!) (15)

7



However, since in our problem only the temporal intensity profile is requested, we

have the degree of freedom of choosing phase-only filters. In fact, the time domain in-

tensity (and amplitude) is specified but the temporal phases are free. Besides, the shaped

pulse must be highly amplified (a high energy per pulse is required by a metallic photo-

cathode in order to deliver the wanted one nano-Coulomb charge), hence it is important to

have a large spectrum in order to have a pulse stretching long enough for avoiding avoid

optics damage into the amplifiers [8].

3.2 The LCP-SLM system configuration

The grating and the spatial dispersion. The system configuration is mostly determined by

the spatial dispersion � of Eq. (11). It is related to the system parameters by the relation

� =
�
2
0 f

d 2� c cos[�d(�0)]
(16)

In the above equation f is the focal length, � is the wavelength, c is the speed of light, �d
is the diffracted angle of the central frequency, see Fig. 3. The diffraction angle comes

from the grating law m� = d(sin �i + sin �d) with m = 1.

Looking for an efficient diffraction into the first order a small grating period d must be

chosen. The grating period d should be as small as possible so to get a reasonably good

space separation of the spectral components. The Ivon-Jobin grating with d = 0:5�m

and 2000 grooves/mm seems a good choice.

The parameter � remains fixed by the mask dimension �x and the spectral bandwidth

�! selected for the system, being � = �x=�!. The chosen mask is 64 mm wide. The

selected spectral portion has a width of �! = 30 � rad/ps (see below). Therefore we

get � = 0:68mm � ps=rad. Once fixed �, Eq. (16) relates the focal length to the input

angle (through the grating law). Frame (a) of Fig. 5 depicts that relation. We looked at

the variation of � with �i, see Frame (b) of Fig. 5, for making the trade-off between the

focal length and the input angle. The goal is to have an enough low sensitivity of � to � i
perturbations and an apparatus dimension (that is a focal length) not too large. We have

decided for a focal length f = 700 mm and, thus, an input angle �i = 62:76o.

The mask and the beam waist. The response function, considering the finite number

of pixels and the finite dimension of the beam waist w0, has the expression [9,13]

H(!) =

s
2�2

� w
2
0

HSLM(!) � e
� 2 �

2

w2
0

!2

(17)

The filter function HSLM(!) is shaped with steps (640 steps as the number of pix-

els). The steps are smoothed by the convolution with the Gaussian envelope function
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Figure 5: Frame (a) shows the curve of the focal length as function of the incident angle. Frame (b) shows
the angular deviation as function of the incident angle � i for different focal lengths (in the order from the
top 700, 600, 500 and 400 mm). The dotted line indicates the fixed value of alpha. The trade off between
�i and f must be done: the longer the focal length the lower the sensitivity to � i perturbation. Willing a
certain level of insensitivity to the input angle perturbation, that angle must be higher than 50 o. The dotted
line in Frame (b) is the � value decided for our system.We remark that ��=� > O when �� i < 0 and
viceversa. We would like to point out that with our � i ' 62; 7o the sensistivity of the system to �i variations
is considerably less than the sensitivity at 50o (taken as an example). Obviously, at this last incident angle
the focal length would be different, see Fig. 5.

e
� 2�2!2=w2

0 originated by the Gaussian spot of each spectral component at the mask. The

smoothing effect is negligible when w0 is minor than the pixel width. We have found, see

next section, that for obtaining a long flat pulse, it is advisable to keep the beam waist

smaller than the pixel dimension. In the simulations we have chosen w0 = 20�m.

The beam waist w0 of a spectral component at the mask as function of the system param-

eters results in

w0 =
cos �i

cos �d
�

� f

� win
(18)

where win is the waist of the input beam at the grating. Having fixed all the parameters

but the input waist, this wi must be 5.8 mm.

About the the spectral bandwidth �! the following consideration is in order: the

frequency interval �! acts upon the rectangular pulse characteristics (that is rise time and

plateau roughness) and the shaper dimensions. That bandwidth of 30 � rad/ps results from

the best trade-off among the three requirements of fast rise time, flat plateau and reduced

mechanical dimensions .

In conclusion, in Fig. 6 the final design of the 4f-shaper for the SPARC machine is

depicted.
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Figure 6: The schematic of the entire shaping system is depicted.

3.3 An LCP-SLM system with phase-only filtering

Choosing the phase-only filtering and the beam waist w0 minor than the pixel dimension

the spectral amplitudes of the input and output signals can be assumed the same. There-

fore, HSLM(!) = exp[i  (!)]. In this case an analytical solution does not generally exist,

but many numerical solutions for the phase modulation function  (!) satisfactory enough

can be found. A computer assisted calculation can find a spectral phase distribution which

leads to an output pulse which approximates fairly well the target pulse.

For the above purpose we have developed a computer program (in C++ language). The

wanted transfer function H(x) of the programmable mask is found applying an iterative

Fourier transform algorithm: the spectral pattern programmed into the pulse shaper is up-

dated interactively according to a Genetic stochastic optimization Algorithm (GA) based

on the difference between the desired and the wanted output (in an real system a measured

output) [15,16]. The scheme of the adaptive algorithm is depicted in Fig. 7.

The complex spectral field E(!) of the input pulse (characterized by its spectral

amplitude and phase A(!) and �(!)) and the temporal amplitude z(t) of the target pulse

are given as inputs. The calculation begins by settings a zero phase delay to an initial trial

phase vector �. In each iteration a random phase change Æ�i is generated according to

Æ�i = R where R is a random variable uniformly distributed in the interval�0:5 � +0:5

and the index i refers to the i-th pixel. At the end of each iteration a cost � function

provides a measure of the deviation of the output pulse from the target pulse. The new

spectral phase function is accepted by the program if the refreshed cost � function

calculated with the new spectral phase function results smaller than that calculated with

the last accepted spectral phase function. It is otherwise rejected. There are many kinds

of cost� functions and the choice of it is determined by the particular target waveform
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Figure 7: Scheme of the iterative Fourier transform algorithm (FT = Fourier Transform).

[16,17]. The stop of the iteration occurs when the value of the cost� function arrives at

its saturation. The final phase pattern �(!)�  (!) is transferred to the mask.

In our case of long rectangular pulse, the choice of the cost � function came out to be

very important [18]. The final chosen expression is C =
R
(In � I

target
n )2dt.

We have applied our simulation program, based on the genetic algorithm, to a mask of

640 pixels of 100 �m width illuminated by an input gaussian pulse of 100 fs. The trade-

off among the parameters for the best result in terms of flatness at the third harmonic is:

0.5 ps rise time and 20�m for the beam waist at the mask. The result of simulations is

depicted in Fig. 8.

It is satisfactory. We point out that the rise time and the plateau flatness resulted

related: the shorter the rise time the worse the flatness. The system has shown a high

sensitivity to variations of the input pulse length. It could be advisable to choose a less

portion of the spectral bandwidth, so, in turn, to accept a worse flatness, for having a less

sensitivity to small deviations of the pulse length.

We have done also simulations with an iterative Fourier Transform (Gerchberg-Saxton)

algorithm [19]. The output simulated signal was remarkably worse than that obtained by
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Figure 8: Simulated output pulses after the shaper obtained with the iterative algorithm: The signals of
left and right frames refer to the fundamental harmonic and 3 rd harmonics respectively.

the computer program based on the Genetic algorithm.

We have checked the stability of the output pulse form versus the perturbation of the

spatial dispersion, see Fig. 9. Frame (b) shows that the flatness variation with ��=� is

slow.

Figure 9: The curves of frame (a) show the variation of the signal plateau flatness for various value
��=�. Frame (b) shows that a 20 % enhancement of the plateau roughness occurs for an angular dispersion
variation of about 2 %. The Flat-top-noise was calculated by (Imax � Imin)=Iaverage.

It is worth pointing out that a variation of � (because of the variations of �i) produces

a variation of �! at the mask. This variation, in turn, produces a variation of the signal

flatness. These considerations give reason of the previous discussion on the � sensitivity

in relation to the focal length. Mathematically this relation comes out, from Eqs. (11) and

(16), to be

�! =
�x

�
= �x � d �

cos �d

2� c f
!
2
0: (19)

In Fig. 10 we can see the relative variation of � for different percentage variations
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on �i. From the top the four curves refer to the variations 4%; 3%; 2% and 1% respectively.

To fix ideas, a variation of 2% on �i at the angle of 62:76o induces a percentage variation

on � of 1.5%. Anyway, from the curves we may conclude that the sensitivity of � to

input angle variations at the considered focal length and input angle should not be a great

problem.

Figure 10: The curves show the sensitivity of the dispersion � for different relative variations of the input
angle �i at the fixed focal length of 700 mm. From the top, the continuous lines refer to the following
percentage variations: 4%; 3%; 2% and 1% respectively. Dotted lines refer to negative variations of � i. We
notice that ��=� is not symmetric with respect the two side variations. We remark that ��=� > 0 when
��i < 0 and viceversa. We would like to point out that with our � i ' 62; 76o the sensistivity of the system
to �i variations is considerably less than the sensitivity at 50o (taken as an example). Obviously, at this last
incident angle the focal length would be different, see Fig. 5.

4 The operation principle of the AOPDF system

The AOPDF system (called also DAZZLER) is based on the collinear acousto-optic inter-

action within a tellurium dioxide (TeO2) crystal (acousto-optic modulator). An acoustic

wave is launched into the crystal by a piezoceramic driven by an rf temporal signal. The

acoustic wave, propagating with a certain velocity vac along the z-axis, sets a spatial

wave within the crystal. A refractive index grating is created through the photoelastic

effect. The grating period is K = vac=
, where 
 is the radiofrequency drive frequency.

The acousto-optic interaction can be either a bulk collinear or quasi-collinear interaction.

Therefore the optical modes can be approximated by plane waves and the acousto-optic

interaction is approximated within a waveguide or an optical fiber. In the propagation the

transverse profile of the optical mode must be taken into account: different modes have

different velocities. In a AOPDF each component of an incoming polarized mode 1, see

Fig. 11, is diffracted into a mode 2 at the point z(!) of the crystal where the resonance

conditions
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k2 ' k1 +Ks !2 ' !1 + 
 (20)

is matched. In the above equation k1; k2; and Ks are respectively the incident, the

diffracted and the acoustic wavenumbers. The frequencies of the two optical waves are

approximated equal. Since the velocities of the two modes are different, each component

will cross the crystal length L in a different time �t(!). This �t = �(!) is proportional

to z(!). The spectral components of a short pulse are moved each other. The system be-

haves as a dispersive system where the group-velocity vg(!) has a significant value. The

AOPDF can couple to the phase-filter an amplitude-filter modulating in amplitude the

driving rf-signal. An acoustic wave variable in time and amplitude can provide control

over the group delay and the amplitude of the diffracted spectral components.

ω1 ω3ω2

 z(ω)

mode 1

mode 2

input
pulse

output
pulse

    acoustic
chirped wave

Figure 11: Schematic representation of the AOPDF principle. The acoustic wave and the optical incident
and diffracted waves are collinear and propagating along the z-axis.

The tellurium dioxide (TeO2) crystal of AOPDF has a typical 2.5-3 cm length in

a quasi-collinear configuration. The two modes are polarized along the ordinary and

extraordinary axes. At � = 800nm, n1 = 2:226 and n2 = 2:374. The dispersion of the

frequencies from 700 to 900 nm requires an rf frequency range between 40 to 60 MHz.

The amplitude of the output, or diffraction efficiency, is controlled by the acoustic power.

Some comments on the LCP-SLM and Dazzler technologies are in order.

Dazzler is compact, it is simply set along along the system axis (it does not to have

to be positioned in the Fourier plane of a dispersion line), it provides independent and

simultaneous control of amplitude and phase modulation. These positive features of the

Dazzler makes it very attractive. However, in practice a variety of factors, such as the

transducer impedance matching, acoustic attenuation and nonlinearities could hamper the

the possibility of a long crystal (that is the possibility of a large dispersion), lead to a low

efficiency with expect the LCP-SLM. These drawbacks could sensibly lower the challenge

of the device.
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5 Notes on the other programmable shaping systems

We write some notes on the other shaping systems mentioned in the introduction for the

sake of completeness.

In the AOM-PSLM system the mask is substituted by a AOM crystal, typically a TeO2,

driven by a radiofrequency (rf) voltage signal. This signal generates an acoustic wave

traveling across the modulator with a velocity vac, leading to a refractive index grating

through the photoelastic effect. The grating is phase and amplitude modulated through

the rf wave modulation (see below). The spatially dispersed optical frequency compo-

nents are diffracted by the grating, which is locally tuned to the components. The main

drawbacks are the acoustic nonlinearities even at a level of rf power below that needed for

reaching the full diffraction efficiency.

The movable mirrors system allows a pure phase simple modulation through a careful

micro-position of a definite number of mirrors. The system does not have the requested

flexibility.

6 Conclusions

A 4-f spatial light modulator with a programmable mask, phase-only shaped, looks like

adequate for producing the target pulse of 10 ps with a rise time of less than 1 ps.

The Jenoptic model SLM-S 640/12 mask, used in the computer tests, showed to be

suitable for the task of producing the requested rectangular pulse starting from the 100 fs

pulse provided by the oscillator programmed for the laser system. The spectral pattern for

the phase mask has been found with an home-made adaptive algorithm. The phase-only

pulse shaping maintains the rise time of the input pulse. This result indicates that the input

driving pulse could be as wide as 0.5 ps for the target pulse with a rise time of less than 1

ps.

The LCP-SLM system shows to have a relatively low sensitivity to alignment per-

turbations. We would also notice that the system is enough flexible to adapt the transfer

function to changing user requests. For instance the change from a rectangular pulse

shape to a ramp pulse shape can be done with a relatively low computational work.
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