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Abstract — We discuss the consequences of the introduction of a quantum of time
7o in the formalism of non-relativistic quantum mechanics, by referring ourselves in
particular to the theory of the chronon as proposed by P.Caldirola. Such an interesting
“finite difference” theory, forwards —at the classical level— a solution for the motion
of a particle endowed with a non-negligible charge in an external electromagnetic field,
overcoming all the known difficulties met by Abraham-Lorentz’s and Dirac’s approaches
(and even allowing a clear answer to the question whether a free falling charged particle
does or does not emit radiation), and —at the quantum level— yields a remarkable mass
spectrum for leptons.

After having briefly reviewed Caldirola’s approach, our first aim is to work out,
discuss, and compare one another the new representations of Quantum Mechanics (QM)
resulting from it, in the Schrédinger, Heisenberg and density-operator (Liouville-von
Neunmann) pictures, respectively.

Moreover, for each representation, three (retarded, symmetric and advanced) for-
mulations are possible, which refer either to times ¢ and t — 7, or to times ¢t — 70/2
and ¢ + 7o/2, or to times t and t + 7o, respectively. It is interesting to notice that,
when the chronon tends to zero, the ordinary QM is obtained as the limiting case of
the “symmetric” formulation only; while the “retarded” one does naturally appear to

describe QM with friction, i.e., to describe dissipative quantum systems (like a particle
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moving in an absorbing medium). In this sense, discretized QM is much richer than the
ordinary one.

We also obtain the (retarded) finite-difference Schrédinger equation within the Feyn-
man path integral approach, and study some of its relevant solutions. We then derive
the time—evolution operators of this discrete theory, and use them to get the finite-
difference Heisenberg equations.

When discussing the mutual compatibility of the various pictures listed above, we
find that they can be written down in a form such that they result to be equivalent (so
as it happens in the “continuous” case of ordinary QM), even if the Heisenberg picture
cannot be derived by “discretizing” directly the ordinary Heisenberg representation.

Afterwards, some typical applications and examples are studied, as the free particle,
the harmonic oscillator and the hydrogen atom; and various cases are pointed out, for
which the predictions of discrete QM differ from those expected from “continuous” QM.

At last, the density matrix formalism is applied to the solution of the measurement
problem in QM, with very interesting results, so as a natural explication of “decoher-

ence”. which reveal the power of dicretized (in particular, retarded) QM.



1 Introduction

The idea of a discrete temporal evolution is not a new one and, as almost all the
physical ideas, has from time to time been recovered from oblivion.” For instance, in
classical Greece this idea came to light as part of the atomistic thought. In Middle
Age, belief in the discontinuous character of time was at the basis of the “theistic
atomism” held by the Arabic thinkers of the Kalam[2]. In Europe, discussions about
the discreteness of space and time can be found for example in the writings of Isidore of
Sevilla, Nicolaus Boneti and Henry of Harclay, who discussed the nature of continuum.
In more recent times, the idea of the existence of a fundamental interval of time was
rejected by Leibniz, since it was incompatible with his rationalistic philosophy. Within
modern physics, however, Planck’s famous work on black body radiation inspired a new
view of the subject. In fact, the introduction of the quanta opened a wide range of new
scientific possibilities regarding the way the physical world can be conceived. Including
considerations, like those in the present paper, on the “discretization” of time within
the framework of Quantum Mechanics (QM).

In the early years of our century, Mach regarded the concept of continuum to be a
consequence of our physiological limitations: <<...le temps et I’espace ne représentent,
au point de vue physiologique, qu'un continue apparent, qu'ils se ‘composent tres
vraisemblablement d’elements discontinus, mais qu’on ne peut distinguer nettement
les uns des autres.>>[3] Also Poincaré took into consideration the posible existence
of what he called an “atom of time”: the minimum amount of time which allows to
distinguish between two states of a system.[4] Finally, in the twenties, J.J.Thomson[5]
suggested the electric force to act in a discontinuous way, producing finite increments
of momentum separated by finite intervals of time. Such a seminal work has ever since
inspired a series of papers on the existence of a fundamental interval of time, named
chronon; even if the repercussions of all that work was small, at that time. A further
seminal article was the one by Ambarzumian and Ivanenko[6], appeared in 1930, which
assumed space-time as being discrete and also stimulated a large number of subsequent
papers.

It is important to stress that, in principle, time discretization can be introduced in

two distinct (and completely different) ways:

“Historical aspects related to the introduction of a fundamental interval of time in Physics can be
found in F.Casagrande, ref.[1].



(1) by attributing to time a discrete structure, i.e., by regarding time not as a contin-

uum, but as a one-dimensional “lattice”;

(2) by considering time as a continuum, in which events can take place (discontinuous-

ly) only at discrete instants of time.

Almost all the attempts to introduce a discretization of time followed the first way,
generally as part of a more extended procedure in which the space-time as a whole is
considered as intrinsically discrete (four-dimensional lattice). Recently, also T.D.Lee[7]
introduced a time discretization on the basis of the finite number of experimental mea-
surements performable in any finite interval of time. For an early approach in this
direction, see e.g. T.Tati[8] and references therein.

The second approach was first adopted in the twenties (e.g., by Levi[61] and by
Pokrowski[61]), after Thomson’s work, and resulted in the first real example of a the-
ory based on the existence of a fundamental interval of time: the one set forth by
Caldirola, in the fifties[10]. Namely, Caldirola formulated a theory for the classical
electron, with the aim of providing a consistent (classical) theory for its motion in an
electromagnetic field. In the late seventies, Caldirola extended its procedure to non-

relativistic quantum mechanics.

It is known that the classical theory of the electron in an electromagnetic field (de-
spite the efforts by Abraham,[12] Lorentz,[13] Poincaré[14] and Dirac,[15] among others)
actually presents many serious problems; ezcept —of course— when the field of the par-
ticle 1is neglected.! By replacing Dirac’s differential equation by two finite-difference
equations, Caldirola developed a theory in which the main difficulties of Dirac’s theory
were overcome. As we shall see, in his relativistically invariant formalism the chronon
characterizes the changes suffered by the dynamical state of the electron when it is
submitted to external forces. So that the electron will be regarded as an (extended-
like) object, which is pointlike only at discrete positions z, (along its trajectory) such
that the electron takes a quantum of proper time to travel from one position to the

following one [or, rather, two chronons: see the following]. It is tempting to examine

1t is interesting to note that all those problems have been —necessarily— tackled by Yaghjian in
its recent book,[16] when he faced the question of the relativistic motion of a charged, macroscopic
sphere in an external electromagnetic field.



extensively the generalization of such a theory to the quantum domain; and this will be
performed in the present work. Let us recall that one of the most interesting aspects
of the discretized Schrédinger equations is that the mass of the muon and of the tau
lepton followed as corresponding to the two levels of the first (degenerate) excited state

of the electron.

In conventional QM there is a perfect equivalence among its various pictures:
Schrodinger’s, Heisenberg’s, density matrix’s . When discretizing the evolution equa-
tions, we shall succeed in writing down those pictures in a form such that they result to
be still equivalent. However, in order to be compatible with the Schrodinger represen-
tation, our Heisenberg equations cannot in general be obtained by a direct discretization
of the continuous Heisenberg equation.

The plan of this work is the following. In Chapt.2 we present a brief review
of the main classical theories of the electron, including Caldirola’s. In Chapt.3 we
introduce the three discretized forms ("retarded”, "advanced”, ”symmetrical”) of the
Schroédinger equation, analyze the main characteristics of such formulations, and derive
the retarded one from Feynman’s path integral approach. In Chapt.4, our discrete
theory is applied to some simple quantum systems, such as the harmonic oscillator,
the free particle and the hydrogen atom. The possible experimental deviations from
the predictions of ordinary QM are investigated. In Chapt.5, a new derivation is
presented of the discretized Liouville-von Neumann equation, starting from the coarse
grained hypothesis. Such a representation is then adopted for tackling the measurement
problem in QM, with rather interesting results. Finally, a discussion on the possible

interpretation of our discretized equations is forwarded in Chapt.6.

2 The Introduction of the Chronon in the Classical
Theory of the Electron

Almost a century after its discovery, the electron continues to be an object waiting
for a convincing description (cf., e.g., [17]), both in classical and quantum electrody-
namics. As Schroedinger put it, the electron is —still— a stranger in electrodynamics.
Maxwell’s electromagnetism is a field theoretical approach in which no reference is made
to the existence of material corpuscles. Thus, one may say that one of the most con-
troversial questions of the twentieth century physics, the wave—particle paradox, is not

characteristic of QM only. In the electron classical theory, matching the description



of the electromagnetic fields (obeying Maxwell equations) with the existence of charge
carriers like the electron is still a challenging task.

The hypothesis that electric currents could be associated with charge carriers was
already present in the early “particle electrodynamics” formulated in 1846 by Fechner
and Weber. But such an idea was taken into considerations again only a few decades
later, in 1881, by Helmholtz. Up to that time, electrodynamics had been developed
on the hypothesis of an electromagnetic continuum{18] and of an ether. In that same
year, J.J.Thomson wrote his seminal paper in which the electron mass was regarded as
purely electromagnetic in nature. Namely, the energy and momentum associated with
the (electromagnetic) fields produced by an electron were held entirely responsible for
the energy and momentum of the electron itself.[19]

Lorentz’s electrodynamics, which described the particle-particle interaction via elec-
tromagnetic fields by the famous force law

f=p<E+%v/\B) : (1)

p being the charge density of the particle on which the fields act, dates back to the
beginning of the 1890 decade. The electron was finally discovered by Thomson in 1897,
and in the following years various theories appeared. The famous (pre-relativistic)
theories by Abraham, Lorentz and Poincaré regarded it as an extended-type object.
endowed again with a purely electromagnetic mass. As wellknown, in 1903 Abraham
proposed the simple-minded (and questionable) model of a rigid sphere, with a uniform
electric charge density on its surface. The theory of Lorentz (1904) was quite similar,
trying to improve the situation with the mere introduction of the effects resulting from

the Lorentz-FitzGerald contraction.

2.1 The theory of the electron by Abraham—Lorentz

A main difficulty for an accurate description of the electron motion was the inclusion of
the radiation reaction, i.e., of the effect produced on such a motion by the fields radiated
by the particle itself. In the model proposed by Abraham-Lorentz the assumption of a

purely electromagnetic structure for the electron implied that

Fp + Fext - 0 3 (2)

where F, is the self-force due to the self-fields of the particle, and Fey is the external

force. According to Lorentz’s law, the self-force was given by
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1
Fp:/p<Ep+zv/\Bp)d3r,

where E, and B, are the fields produced by the charge density p itself, according to
the Maxwell-Lorentz equations. For the radiation reaction force, Lorentz obtained the

following expression:

4 2ke?. 22 A (=1)" 1 d"
Ta- 2oy B TRomy, )

F,=-——W, ——a—
P 3c2 Vaa + 3 c3 a 3c3 n! cn din

n=—
where k = (47ep)™" [in the following, whenever convenient, we shall assume units such

that numerically k¥ = 1], and where

W, = l//ﬁlmdsr d3r
2 Ir — 1|

is the electrostatic self-energy of the considered charge distribution, and R is the radius
of the electron. All the terms in the sum are structure dependent; i.e., they depend
on R and on the charge distribution. By identifying the electromagnetic mass of the

particle with its electrostatic self-energy

I/Vt;‘l
Mel = c?
it was possible to write eq.(2) as
4 .
§melv — I =Fex s (4)
so that one got:
2e?, -
= 2540+ 0(R) | )

which was the equation of motion in the Abraham-Lorentz model. Quantity I" is the
radiation reaction force, namely, the reaction force acting on the electron. A problem
with equation (4) was constituted by the factor %. In fact, if the mass is supposed to
be of electromagnetic origin only, then the total momentum of the electron would be

given by

4Wel
= -—-—V’
3 c?

p (6)



which is not invariant under Lorentz transformations. That model, therefore, was non-
relativistic. Finally, we can observe from equation (3) that the structure dependent
terms are functions of higher derivatives of the acceleration; even more, the resulting
differential equation is of the third order, so that initial position and initial velocity are
not enough to single out a solution. In order to suppress the structure terms, one ought
to reduce the electron to a point, (R — 0), but in this case the self-energy W, and
mass m, would diverge!

After the emergence of the special theory of relativity or, rather, after the publication
by Lorentz in 1904 of his famous transformations, some attempts were made to adapt
the model to the new requirements.[20, 21, 22] Abraham himself (1905) succeeded in

deriving the following generalization of the radiation reaction term (5):
2e? (d%u u,u” d?u
I, =-— = - =)
g 3c(ds2 + c? ds2) (M

A solution for the problem of the electron momentum non-covariance was proposed

by Poincaré in 1905, by the addition of cohesive forces of non-electromagnetic character,
which —however— made the electron no longer purely electromagnetic in nature.

On the other hand, electrons could not be considered point-like, due to the obvious
divergence of their energy when R — 0; thus, a description of the electron motion
could not forget about the structure terms. Only Fermi succeeded to show, later, that
the correct relation for the momentum of a purely electromagnetic electron could be

obtained without Poincaré’s cohesive forces.[23]

2.2 Dirac’s theory of the classical electron

Notwithstanding its inconsistencies, the theory by Abraham-Lorentz was the most ac-
cepted theory of the electron, until the publication of Dirac’s theory in 1938. During
the long period in between, as well as afterwards, however, various further attempts to
solve the problem were set forth, either by means of extended-type models (Mie, Page,
Schott, etc.[24]), or by trying again to treat the electron as a point-like particle (Fokker,
Wentzel, etc.[25]).

Dirac’s approach[15] is the best known attempt to describe the classical electron.
[t by-passed the critical problem of the previous theories of Abraham and Lorentz by
working out a for the point-like electron a trick which avoided divergences! By using the
conservation laws of energy and momentum, and Maxwell equations, Dirac calculated

the flux of the energy-momentum 4-vector through a tube of radius € € R (quantity



R being the radius of the electron at rest) surrounding the world line of the particle,

and obtained:

du,
ds

where I', is the Abraham 4-vector (7), that is, the reaction force acting on the electron

m

=F,+T,, (8)

itself; and F), is the 4-vector that represents the external field acting on the particle:

F, = -ZF#,,u" . 9)

According to such a model, the rest mass mg of the electron is the limiting, finite

value got as the difference of two quantities tending to infinity when R — 0:

) 1 e?
mo = 11_1"% (5@ - k(f)> )
the procedure followed by Dirac being an early example of elimination of divergences
by means of a subtractive method.

At the non-relativistic limit, Dirac’s equation goes into the one previously obtained by

Abraham-Lorentz:

dv  2e?d%v 1
St e[E+ZvAB o
Mg T 3 dee ¢ ( i ¢’ " ) ’ (10)
except for the fact that in Abraham-Lorentz’s approach mg diverged. The last

: : 27,62 d?v
equation shows that the reaction force equals 3/; % ——=.

Dirac’s dynamical equation (8) was later reobtained also from different, improved
models.[26] Wheeler and Feynman, for example, rederived eq.(8) by basing electromag-
netism on an action principle applied to particles only, via their absorber hypothesis.[27]
However, also eq.(8) does present’ many troubles, related to the infinite many non-
physical solutions it admits. Actually, as already mentioned, it is a third-order dif-
ferential equation, requiring three initial conditions for singling out a solution of its.
In the description of a free electron, e.g., it yields also “self-accelerating” solution-
s (runaway solutions),[28] for which velocity and acceleration increase spontaneously
and indefinitely.[25] Moreover, for an electron submitted to an electromagnetic pulse,
further non-physical solutions appear, related this time to pre-accelerations:[29] If the
electron comes from infinity with a uniform velocity vy and, at a certain instant of

time ¢, is submitted to an electromagnetic pulse, then it starts accelerating before to.



Drawbacks like these do motivate further attempts to find out a coherent model for the

classical electron.

2.3 Caldirola’s theory for the classical electron

Among the various attempts to formulate a more satisfactory theory, we want to focus
our attention on the one proposed by P.Caldirola. So as Dirac’s, Caldirola’s theory is
also Lorentz invariant. Continuity, in fact, is not an assumption required by Lorentz
invariance.[30] The theory postulates the existence of a universal interval 7o of proper
time, even if time flows continuously as in the ordinary theory. When an external force
acts on the electron, however, the reaction of the particle to the applied force is not
continuous: The value of the electron velocity u, is supposed to jump from u,(7 — 7o)
to u,(7) only at certain positions s, along its world line; these discrete positions being
such that the electron takes a time 7o for travelling from one position s,_; to the next
one Sp.

In this theory[10] the electron in principle is still considered as pointlike, but the
Dirac relativistic equations for the classical radiating electron are replaced: (i) by a

corresponding finite-difference (retarded) equation in the velocity u®(r)

mo

20 L (1) = a7 = 7o)+

To

U () u (7) ; }

220 fuy () =y (7 = )

= %Fu,, (T)u, (1), (11)

which reduces to the Dirac equation (8) when 7o — 0, but cannot be derived from it (in
the sense that it cannot be obtained by a simple discretization of the time derivatives
appearing in Dirac’s original equation); and (ii) by a second equation, connecting this
time the “discrete positions” z*(7) along the world line of the particle. In fact, the
dynamical law above is by itself unable to specify univocally the variables u,(7) and
z,(7) which describe the motion of the particle. Caldirola named it the transmission

law:

2 (070) = 3, [(m = 1) 7o) = (e (n70) = wal(n = 1) 7]}, (12)

which is valid inside each discrete interval 7o, and describes the internal or microscopic
motion of the electron.
In these equations, u#(7) is the ordinary four-vector velocity satisfying the condition

10



2

uu(T)uf(r) = —c for 7 =nmny

where n = 0,1,2,... and pu,v =0,1,2,3; F* is the external (retarded) electro-
magnetic field tensor, and the quantity
o 2 ke?

0=p,==
2 3 mpc

~ 6.266 x 107** s (13)

is defined as the chronon associated with the electron (as it will be justified below).
The chronon 6y = 70/2 depends on the particle (internal) properties: namely, on its
charge e and rest mass mo.

As a result, the electron happens to appear eventually as an extended-like[31] par-
ticle, with internal structure, rather than as a point-like object (as initially assumed).
For instance, one may imagine that the particle does not react instantaneously to the
action of an external force because of its finite extension (the numerical value of the
chronon is of the same order as the time spent by light to travel an electron classical
diameter). As already said, eq.(11) describes the motion of an object that happens to
be pointlike only at discrete positions s, along its trajectory;[10] even if both position
and velocity are still continuous and well-behaved functions of the parameter r, they
being differentiable functions of 7.

It is essential to notice that a discrete character is given to the electron merely by
the introduction of the fundamental quantum of time, without any need of a “model”
for the electron. Actually it is wellknown that many difficulties are met not only by
the strictly pointlike models, but also by the extended-type particle models (“spheres”,
“tops”, “gyroscopes”, etc.). In A.0.Barut’s words, <<If a spinning particle is not
quite a point particle, nor a solid three dimensional top, what can it be?>>. We
deem the answer stays with a third type of models, the “extended-like” ones, as the
present theory; or as the (related) theoretical approach[31, 17] in which the center of
the pointlike charge is spatially distinct from the particle center-of-mass. Anyway, it
is not necessary to recall that the worst troubles met in quantum field theory (e.g.,
in quantumelectrodynamics), like the presence of divergencies, are due to the pointlike
character still attributed to (spinning) particles; since the problem of a suitable model
for elementary particles was transported, unsolved, from classical to quantum physics.
One could say that problem to be the most important in modern particle physics.

Equations (11) and (12) together provide a full description of the motion of the
electron. Notice that the global, “macroscopic” motion can be the same for different

11



solutions of the transmission law. The behaviour of the electron under the action of
external electromagnetic fields is completely described by its macroscopic motion.

As in Dirac’s case, the equations above are invariant under Lorentz transformations;
but, as we are going to see, are free from pre-accelerations, self-accelerating solution,
and problems (that had raised great debates in the first half of the century) with the
hyperlbolic motion.

In the non-relativistic limit the previous (retarded) equations reduced to the form

POy () - vit -] = E(t)+%v(t)/\B(t) , (14)
r(6) = r(t = m0) = 5 [V (t) = v(t - 0)], (15)

which can be obtained —this time- from eq.(10), by directly replacing the time deriva-
tives by the corresponding finite-difference expressions. The macroscopic equation (14)
had already been obtained also by other authors[21, 22, 33, 34] for the dynamics of
extended-type electrons.

The important point is that eqs.(11),(12), or egs.(14),(15), allow overcoming the
difficulties met with the Dirac classical equation (8). In fact, the electron macroscopic
motion is completely determined once velocity and initial position are given. Solutions
of the relativistic equations (11),(12) for the radiating electron —or of the corresponding
non-relativistic equations (14),(15)— were obtained for several problems, the resulting
motions never presenting unphysical behaviour; so that the following questions can be
regarded as having been solved:[10] A) Ezact relativistic solutions: 1) Free electron
motion; 2) Electron under the action of an electromagnetic pulse;[35] 3) Hyperbolic
motion;[32] B) Non-relativistic approzimate solutions: 1) Electron under the action
of time-dependent forces; 2) Electron in a constant, uniform magnetic field;[36] 3)

Electron moving along a straight line under the action of an elastic restoring force.[37]

Before going on, let us briefly study the electron radiation properties as deduced
from the finite-difference relativistic equations (11), (12), with the aim of showing the
advantages of the present formalism with respect to the Abraham-Lorentz-Dirac one.
Such equations can be written[32, 10]

AQ T e v
BUD 4 gyr) 4 8,07) = SFulr(), (16

where:



AQu = mo [uu(r) — uu(T — 0] ; (17)

R,(T) = T {M [w’(T + 7o) + u*(7 — 70) — 2u”(7)] } : (18)

270 c?

Su(r) = —o=2 {E,%Lﬂ

ore [w’(r + 70) — u”(7 — 70)] } . (19)
In eq.(16), the first term AQo/7o represents the variation per unit of proper time (in
the interval 7 — 7o to 7) of the particle energy-momentum vector. The second one,
R,(7), is a dissipative term, since it contains only even derivatives of the velocity as
one can prove by expanding u’(7 + 70) and u”(7 — 7o) in terms of 7p; furthermore, it
is never negative,[10, 32] and can therefore represent the energy-momentum radiated
by the electron in the unit of proper time. The third term, S,(7), is conservative and
represents the rate of change in proper time of the electron reaction energy-momentum.

The time component (g = 0) of eq.(16) writes:

T(r)—T(r — )

To

+ Ro(7) + So(r) = P*(7), (20)

quantity T'(7) being the kinetic energy

T(t) = mec? (—1——— 1) ; (21)

so that in eq.(20) the first term replaces the proper-time derivative of the kinetic energy,
the second one is the energy radiated by the electron in the unit of proper time, So(7) is
the variation rate in proper time of the electron reaction energy (radiative correction),
and P®*(7) is the work done by the external forces in the unit of proper time.

We are now ready to show, e.g., that eq.(20) yields a clear explanation for the
origin of the so-called “acceleration energy” (Schott energy), appearing in the energy-
conservation relation for the Dirac equation. In fact, by expanding in power series with
respect to 7o the L.h. sides of eqs.(16),(17), (18),(19) for x = 0, and keeping only the
first-order terms, one gets

T(r)=T(r—mn) _ dT 2e’dao (22)

To = dr 3¢ dr’

13



1 2 e?

Ro(T) ~ ﬁ g c—3aua“ ) (23)
So(t) ~ 0; (24)

where a* is the four-acceleration

g = drmu* drmu®
= drmr ! drmt

quantity v being the Lorentz factor. Therefore eq.(20), to the first order in o,

becomes:

dT" 2e*d 2 e? H
e _2¢ %9 2f Gl . pe(q) (25)
dr  3c2dr 3¢ ,/1-p2

or, passing from the proper time 7 to the observer’s time t:
dT 2 e?day 2 e? u dr
- s = ~ Pext —
& 3 dt 3 ) &

Last relation is identical with the energy conservation law found by Fulton and

(26)

Rohrlich[40] for the Dirac equation. In it, the derivative of (2¢?/3c?)ao appears, which
is just the acceleration energy. Our approach does clearly shows that it arises only by
expanding in a power series of 1o the kinetic energy increment suffered by the electron
during the fundamental proper-time interval 7o; whilst such a Schott energy (as well
as higher-order energy terms) does not show up when adopting the full formalism of
finite—difference equations. We shall come back to this important point in Subsection
2.4.
Let us finally observe[10] that, when setting
o [ (P (7 = 7o) — uu(r — To)u ()] = Ft (27)
py v 0 p 0)Uy =

the relativistic equation of motion (11) writes:

e overc (ij}f + FSYu =0, (28)

confirming that FS2 represents the (retarded) self-field associated with the moving

electron.
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2.4 The three alternative formulations of Caldirola theory

Two more (alternative) formulations are possible of Caldirola’s equations, based on
different discretization procedures. In fact, equations (11) and (12) describe an in-
trinsically radiating particle. And, by expanding the equation (11) in terms of 7o, a
radiation reaction term appears. Caldirola called those equations the retarded form of
the electron equations of motion.

By rewriting the finite-difference equations, on the contrary, in the form:

T—: {uu (7 4 7o) — w, (1) + 20 (leu” ) [u, (T + 70) — ww (T)]} =
- E Fo, (7)u, (1), (29)
z, [(n+1) 1] — 2, (n70) = Tou, (n70), (30)

one gets the advanced formulation of the electron theory, since the motion —according
to eqs.(29),(30)— is now determined by advanced actions. In contrast with the retarded
formulation, the advanced one describes an electron which is absorbing energy from the
external world.

Finally, by adding together retarded and advanced actions, Caldirola wrote down

the symmetric formulation of the electron theory:

TE{uu(T-}-To)——uu(T—-To)—i-E%M[UV(T+T0)—1LV(T—TO)]} _

21’0

= 'EFW(T)UU(T)’ (31)

z,[(n +1) 0] — z,, ((n — 1) 7o) = 270w, (n70) (32)

which does not include any radiation reactions, and describes a non radiant electron.
Before closing this brief introduction to Caldirola’s theory, it is worthwhile to present
two more relevant results derived from it, one of them following below, in the next

Subsection. If we consider a free particle and look for the “internal solutions” of the

equation (15), we get —for a periodical solution of the type
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2
T = —[f ¢ sin <—7E>
To

2
y = —fo c cos (—Wl)

70
z=10

(which describes a uniform circular motion) and by imposing the kinetic energy of the
internal rotational motion to equal the intrinsic energy moc? of the particle— that the

amplitude of the oscillations is given by 82 = 2. Thus, the magnetic moment corre-

4
sponding to this motion is exactly the anomalous magnetic moment of the electron,[39)

obtained here in a purely classical context:

1 €3

4 moc?

Ha

This shows that the anomalous magnetic moment is an intrinsically classical, and not
quantum, result; and the absence of £ in the last expression is a remarkable confirmation

of this fact.

2.5 Hyperbolic motions

In a review paper on the theories of electron including radiation-reaction effects,
Erber[38] criticized Caldirola’s theory for its results in the case of hyperbolic motion.

Let us recall that the opinion of Pauli and von Laue (among others) was that
a charge performing uniformly accelerated motions —e.g., an electron in free fall—
could not emit radiation. That opinion was strengthened by the invariance of Maxwell
equations under the group of conformal transformations,[67] which in particular includes
transformations from rest to uniformly accelerated motions. Since the first decades of
the twentieth century, this had been —however— an open question, as the works by
Born and Schott had on the contrary suggested a radiation emission in such a case. In
1960, Fulton and Rohrlich{40] demonstrated that from Dirac’s equation for the classical
electron it does follow the emission of radiation during the hyperbolic motion.

A solution of this paradox is possible within Caldirola’s theory, and it was worked
out in ref.[32] By analysing the energy conservation law for an electron submitted to an
external force and following a procedure similar to that of Fulton and Rohrlich, Lanz
obtained the expression (20) above. By expanding it in terms of 7 and keeping only
the the first order terms, he arrived to expression (25), identical to the one obtained
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by Fulton and Rohrlich, in which —let us repeat— the Schott energy appears: a term
that Fulton and Rohrlich (having obtained it from Dirac’s expression for the radiation
reaction) interpreted as a part of the internal energy of the charged particle.

For the particular case of hyperbolic motion, it is

dao

dr

so that there is no radiation reaction [cf. eqs.(25) or (26)]. However, neither the

B
aa” =

acceleration energy neither the energy radiated by the charge per unit of proper time,
2¢%a,a*, are zero!

The difference is that in the discrete case this acceleration energy does not exist as
such, being a term proceeding from the discretized expression for the charged particle
kinetic energy variation. As we have seen in eq.(22), the Schott term appears when
the variation of the kinetic energy during the fundamental interval of proper time is
expanded in powers of To:

T(r)y-T(r—m) . d 2¢e* d
T T A 32dr”
This is an interesting result, since it was not easy to understand the physical meaning
of the Schott acceleration energy. With the introduction of the fundamental interval of

time, as we know, the changes in the kinetic energy are no longer continuous and the
Schott’s term merely expresses, to first order, the variation of the kinetic energy when
passing from one discrete instant of time to the subsequent one.

In eqs.(22) and (25), the derivative dT'/dr is a point function, forwarding the kinetic
energy slope at the instant 7. And the dissipative term %ezaua“ is just a relativistic
generalization of the Larmor radiation law: then, if there is acceleration, there is also
radiation emission.

For the hyperbolic motion, however, the energy dissipated because of the accelera-
tion has just the same magnitude as the energy gain due to the kinetic energy increase.
We are not forced to resort to ‘pre-accelerations’ in order to justify the origin of such
energies...[41] Thus, the present theory provides a clear picture of the physical processes

involved in the uniformly accelerated motion of a charged particle.
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3 The Hypothesis of the Chronon in Quantum Me-
chanics

Let us pass to the main topic of the present paper: the chronon in Quantum Me-
chanics. The speculations about the discreteness of time (on the basis of of possible
physical evidences) in QM go back to the first decades of this century, and various
theories have been proposed developing QM on a space-time lattice (cf., e.g., refs.[42]).
This is not the case with the hypothesis of the chronon, where we do not actually have
a discretization of the time coordinate. In the twenties, for example, Pokrowski[61]
suggested the introduction of a fundamental interval of time, starting from an analysis
of the shortest wavelengths detected at that time in cosmic radiation. More recently,
for instance, Ehrlich[43] proposed a quantization of the elementary particle lifetimes,
suggesting the value 4.4 x 1072 s for the quantum of time. But a time discretization
is suggested by the very foundations of QM. There are physical limits that prevent
the distinction of arbitrarily close successive states in the time evolution of a quantum
system. Basically, such limitations result from the Heisenberg relations: in such a way
that, if a discretization is to be introduced in the description of a quantum system, it
cannot possess a universal value, since those limitations depend on the characteristics
of the particular system under consideration. In other words, the value of the funda-
mental interval of time has to change a priori from system to system. All these points
malke justifiable the extension of Caldirola’s procedure to QM.

In the seventies, Caldirola extended to QM the introduction of the chronon, follow-
ing the same guidelines that led him to his theory of the electron. So, time is still a
continuous variable, but the evolution of the system along its world line is discontinu-
ous. As for the electron theory in the non-relativistic limit, one has to substitute the

corresponding finite—difference expression for the time derivatives; e.g.:

df (1)  f(t) - f{t—At)
& At (33)

where proper time is now replaced by the local time ¢t. Such a procedure was then

applied to obtain the finite-difference form of the Schrédinger equation. As for the
electron case, there are three different ways to perform the discretization, and three

“Schrodinger equations” can be obtained{44]:
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zg [ (x,t) =¥ (x,t —7)] = HU (x,t), (34)
iéh?[\ll(x,t—i—r)——\Il(x,t——T)]:f[\Il(x,t), (35)

zg [O(x,t47) — ¥ (x,t)] = HU (x,t), (36)

which are, respectively, the retarded, symmetric and advanced Schrodinger equations,
all of them transforming into the (same) continuous equation when the fundamental
interval of time (that now can be called just 7) goes to zero. It can be immediately
observed that the symmetric equation is of the second order, while the other two are
first order equations. As in the continuous case, for a finite-difference equation of order
n a single and complete solution requires n initial conditions to be specified.

As the equations are different, the solutions they provide are also fundamentally
different. In order to study the properties of such equations there are two basic proce-
dures. For some special cases, they can be solved by one of the various existing methods
of solving finite-difference equations, or by means of an attempt solution,A an ansatz.
The other way is to find a new hamiltonian H such that a new continuous Schrodinger

equation

0¥ (x,t)
ot

reproduces, at the points ¢ = n7, the same results obtained from the discretized equa-

ik = HU (x,t) (37)
tions. As has been shown by Casagrande and Montaldi[45], it is always possible to find
a continuous generating function which makes possible to obtain a differential equa-
tion equivalent to the original finite-difference one, such that in every point of interest
their solutions are identical. This procedure is useful since it is generally very difficult
to work with the finite-difference equations on a qualitative basis. Except for some
very special cases, they can be only numerically solved. This equivalent hamiltonian
H is, however, non-hermitian and it is frequently very difficult to be obtained. For the
special case where the hamiltonian is time independent, the equivalent hamiltonian is
quite easy to be calculated. For the symmetric equation, e.g., it is given by:

H= Esin'l(

-
T A

A

H). (38)
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As expected, H — H when 7 — 0. Caldirola[46] used the symmetric equation to
describe the non-radiating electron (bound electron) since for hamiltonians explicitly

independent of time its solutions are always of oscillating character:

U (x,t) = exp (——zé sin_el(%ﬁ)) f(x).

In the classical theory of electron, the symmetric equation also represents a non-
radiating motion. It provides only an approximate description of the motion without
taking into account the effects due to the self fields of the electron. However, in the
quantum theory it plays a fundamental role. In the discrete formalism, it is the only
way to describe a bound non-radiating particle.

The solutions of the advanced and retarded equations show completely different
behaviour. For a hamiltonian explicitly independent of time the solutions have a general

form given by

U (x,t) = [1 +2%H] %)

and, expanding f(z) in terms of the eigenfunctions of H,

Hu, (%) = Wau, (x)

f(x) = catn (%)

with

D el =1,

n

it can be obtained that

2}

U(x,t)= e [1 + i%Wn]—t/T Un (X) .

n

In particular, the norm of this solution is given by

|\Il (X,t)|2 = Z Icnl2 exp (_7nt)

n

with
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2

’yn=%1n< h:,Wz):‘;;T—{-O( %).
The presence of a damping factor depending critically on the value 7 of the chronon
must be remarked.

This dissipative behaviour originates from the retarded character of the equation.
The analogy with the electron theory also holds and the retarded equation shows in-
trinsically dissipative solutions representing a radiant system. The hamiltonian has the
same status as in the continuous case: it is an observable since it is a hermitian opera-
tor and its eigenvectors form a basis of the state space. However, due to the damping
term. the norm of the state vector is not constant anymore. An opposite behaviour
is observed for the solutions of the advanced equation, in the sense that they increase

exponentially.

3.1 The mass of the muon

The most impressive achievement due to the introduction of the chronon hypothesis
in the realm of QM is obtained in the description of a bound electron usihg the new
formalism. Bound states are described by the symmetric Schrédinger equation and a
hamiltonian that does not depend explicitly on time. A general solution can be obtained

by using a convenient ansatz:

Z un (X)exp (—tant),

where Hu, (x) = E,u,(x) gives the spectrum of eigenvalues of the hamiltonian. If
the fundamental interval of time 7 corresponds to the chronon 8y associated with the

classical electron, it can be straightforwardly obtained that

s" ! si Enbo
n = —Sin~ .
00 h

This solution gives rise to an upper limit for the eigenvalues of the hamiltonian due

to the condition

o]

<1

h

Since 6y is finite, there is a maximum value for the energy of the electron given by

‘ E.bo




E 2 hmec®
By = — = 220 5 105.04 MeV.

90 3 e?

Now, including the rest energy of the electron, we finally get

E = Epay + Eg™™ ~ 105.55 MeV.

which is very close (an error of 0.1%) to the measured value of the rest mass of the
muon. Using the equivalent hamiltonian method it is possible to extend the basis of
eigenstates out of the critical limit. However, for the eigenvalues above the critical limit

the corresponding eigenstates are unstable and decay in time:

U (x,t) = Z Calln (X) €xp (—ivnt) exp (—knt),

n
As for the retarded equation, the norm of the state vector is not constant and decays
exponentially with time for those eigenstates out of the stability range. Caldirola[46]
interpreted this norm as giving the probability of the existence of the particle in its
original Hilbert space and associated a mean lifetime with these states.

The considerations regarding the muon as an excited state of the electron can be
traced back to the very days of its discovery. Particularly, it has already been observed
that the ratio between the masses of the two particles is almost exactly 3/(2«a), where
o is the fine structure constant.[48] It has already been remarked that 2a is just the
cocfficient of the radiative reaction term in Dirac’s equation for the classical electron.[49]
Bohm and Weinstein[33] put forward the hypothesis that various kinds of “mesons”
could be excited states of the electron. Dirac[50] has even proposed a specific model for
an extended electron so as to interpret the muon as an excited state of the electron.

Caldirola[47] observed that by means of the Heisenberg uncertainty relations it is
possible to associate the existence of the muon as an excited state of the electron with

the introduction of the chronon in the theory of electron. The relation

AT AE > 1/2

imposes limitations in the determination, at a certain instant 7, of the energy £ as-
sociated with the internal motion of the electron. If excited states of the particle
corresponding to larger values of mass exist, thus it is only possible to speak of an

“electron with rest mass mo” when AFE < (po — mo)c?, where pg is the rest mass of



the internal excited state. Such internal states could only be excited in the presence of

sufficiently strong interactions. From the uncertainty relation we have that

h
[N —
"= 2(po —mo) &

and, supposing the muon as an excited state, we get
3 ke
2.~ 9 2
(po — mg) ¢ = 5 ezmoc .
Thus, it can be finally obtained that

1 62 To
AT > = = —
7-—3m0c2 2’

i.e., that the value of the rest mass of an interacting electron can be taken only inside

an interval of the proper time larger than half a chronon. So, when we take into account
two successive states, each one endowed with the same uncertainty A7, then they must
be separated by a time interval of at least 2 A7, which corresponds exactly to the

chronon .

3.2 The mass spectrum of leptons

In order to obtain the mass of another particle a possibility to be considered is to take
the svmmetric equation as describing the muon. According to this naive argumentation,
the equation also foresees a maximum limit for the energy of the eigenstates of the muon.
By taking the equation as successively describing the particles corresponding to these

maxima, an expression can be set up for the various limit values, given by

N 3 ke " 31 "
E(g ) = moc2 [5; + 1] = m062 \‘55 + 1] (39)
such that, for
n=0 — FE©=0511 MeV (electron)
n=1 — EM =10555 MeV (muon)

n=2 — E® =21801.54 MeV (heavy lepton?)

the masses for the first excited states can be obtained, including a possible heavy lepton

which, according to the experimental results up to now, probably does not exist.
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Following a suggestion of Barut[52], according to which it should be possible to
obtain the excited states of the electron from the coupling of its intrinsic magnetic
moment with its self field, Caldirola[53][54], considering a model of the extended electron
as a micro-universe, succeeded in evaluating also the mass of the lepton 7 .

Caldirola took into account, for the electron, a model of a point-object moving

around in a 4-dimensional de Sitter micro-universe characterized by

B R B
where 7 is the chronon associated with the electron and the radius of the micro-universe
is given by a = crp. Considering the spectrum of excited states obtained from the naive
argumentation above, we find that each excited state determines a characteristic radius
for the micro-universe. Thus, for each particle, the trajectory of the point-object is
confined to a spherical shell defined by its characteristic radius and by the characteristic
radius of its excited state. For the electron, e.g., the point-object moves around inside
the spherical shell defined by its correspondent radius and that one associated with its

excited state: the muon. Such radii are given by

1 -n
a™ = roc [ﬁ— + 1] . (40)
2a

According to the model —supposing that the intrinsic energy- of the lepton e(™
is given by m("c?— the lepton moves in its associated micro-universe along a circular

trajectory with a velocity f = %5-, to which it corresponds an intrinsic magnetic moment

(n) 1 62
w = ——os
47 m(n)c?

Starting from Barut’s suggestion, Caldirola obtained for the lepton e an extra

(41)

self-energy given by

Elnp) — (2p)4m(")c2.

The condition set down on the trajectory of the point-object so that it remains

confined to its corresponding spherical shell is given by

1
EmP) < [§— + 1] moc?,
2

and the values attainable by p are: p = 0 for n = 0, and p = 0,1 for n # 0. The

spectrum of mass is then finally given by
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m"?) = [1 + (2p)*] m™ = mg [1 + (2p)%] [;é + 1Jn. (42)

Thus, for different values of n and p we have:

0y
0.511 MeV | electron
105.55 MeV muon
1794.33 MeV tau

ol s
— O olT

It must be remarked that the tau appears as an internal excited state of the muon
and its mass is in fair agreement[55] with the experimental values: m, ~ 1784 MeV.
The difference between these values is less than 1%. This is quite amazing if we consider
the simplicity of the model. The model foresees the existence of other excited states
which seems not to exist. This is to some extent justifiable once the muon is obtained as
an excited electron and the description of the electron does not anticipate the existence
of any other state. In order to obtain the lepton tau it was necessary to introduce in
the formalism the coupling of the intrinsic magnetic moment with the self-field of the

electron.

3.3 Feynman path integrals

The discretized Schrodinger equations can be easily obtained using Feynman’s path
integral approach. This is particularly interesting since it allows a clearer idea of the
meaning of these equations. According to the hypothesis of a chronon, time is still a
continuous variable and the introduction of the fundamental interval of time is connect-
ed —let us recall- only with the reaction of the system to the action of a force. It is
convenient to restrict the derivation to the one-dimensional case, considering a particle
under the action of a potential V(z,t). We take the time coordinate as continuous and
take into account a discretization at instants separated by steps given by 7.

The transition amplitude for a particle going from an initial point (z1,?,) of the

space-time to a final point (z,,t,) is given by the propagator

K (zn,tn;z1,t1) = (Tnyta | T1,t1) - (43)
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Figure 1: Discrete steps in the time evolution

In Feynman’s approach this transition amplitude is associated with a path integral,

where the classical action plays a fundamental role. It is convenient to introduce the

notation

tn

S(n,n—-1)= /dtﬁ(m,i‘) (44)

such that £ (z, %) is the classical lagrangian and S(n,n;) is the classical action. Thus,

for two consecutive instants of time, the propagator is given by

) )
K (2, tn; Tn-1,tn-1) = Zexp (%S (wn,tn;zn_l,tn_1)> . (45)

The path integral has the meaning of a sum over all the possible paths traversed by

the particle and can be written as

(Tnytn | T1,t1) = hm A™ /dmN 1/dmN 2° /dl‘g Hexp( (n,n — 1)),
(46)
where A is a normalization factor. In order to obtain the discretized Schrodinger equa-

tions we have to consider the evolution of a quantum state between two consecutive

configurations (2,-1,tn-1) € (Zn,tn). The state of the system at i, is:



400
N (IEn, tn) = / K (l‘n, tn, Tp—1, tn-—l)\p (mn-—la tn—l) dIBn_l . (47)

—00

By the other side, it follows from the definition of the classical action (eq. 44) that

S(xn,tn; xn-—latn—l) = 2_77:_' (mn - xn—1)2 -7V (f#)tn—l> . (48)

Thus, the state at t, is given by

+00

U (z,,t,) = / exp {% (2o — zn_1)2 — i%V <£’_‘+_;'ﬂ,tn_l>}

-0

U(zn-1,tn-1)dzn_1. (49)

When 7 = 0, for z, slightly different from z,_1, the integral due to the quadratic
term is rather small. The contributions are considerable only for z, = z,-;. Thus, we

can make the following approximation

Tn-1 =2Zp+7n — dzy,_; =dnp,

such that

OV (T, tn 0¥

By inserting this expression into equation (49), supposing that?

V(z+g) ~V (z),

and taking into account only the terms to the first order in 7, we get

: 5 1/2 : 2
\J (-’Ln,tn) = %exp <_%TV (mnatn-—l)) (22 WT) <\I, (1"'"" tn_l) * %%l‘_‘f>

m

Notwithstanding the fact that exp(—i7V(zn,t,)/h) is a function defined only for

certain well-determined values, it can be expanded in powers of 7, around an arbitrary

{The potential is supposed to vary slowly with .
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position (z,,%,). Choosing A = (2ihr7/m)~1/2, such that 7 — 0 in the continuous

limit, we obtain

\II (:Erntn—l + T) - \IJ (xnatn-—l) = “'%TV (mn’tn—l) \II (mnytn—l) +

thr 0?0
+ %W—FO(‘I}) (50)

By a simple reordering of terms we finally get

U (zn, tn - ny bn— h* o
; (T 1+T) (IE 1) = {__.Q_+V($n,tn_1)}\I’(l'n,tn-—l)

T

Following this procedure we obtain the advanced finite-difference Schrodinger e-
quation which describes a particle performing an one-dimensional motion under the
potential V(z,1).

The solutions of the advanced equation show an amplification factor which may
suggest that the particle absorbs energy from the field described by the hamiltonian
in order to evolve in time. In the classical domain the advanced equation is interpret-
ed as describing a positron. However, in the realm of the non-relativistic QM, it is
more naturally interpreted as representing a system which takes in energy from the
environment.

In order to obtain the discrete Schrédinger equation only the terms to the first order
in 7 have been taken into account. Since the limit 7 — 0 has not been accomplished,
the equation thus obtained is only an approximation. The meaning of this fact may be
related to another one we are going to face ahead in this paper when considering the
measurement problem in QM.

It is rather interesting to remark that in order to obtain the retarded equation we
have to regard the propagator as acting backward in time. The conventional procedure
used in the continuous case always provides us with the advanced equation. Therefore,
the potential describes a mechanism for transferring energy from a field to the system.
The retarded equation can obtained only by assuming an inversion of the time order,

considering the expression

. +00 . th—1
\I/(l‘n..l,tn..l) = / %CXP % / Ldt ‘Il(mnatn) dmna (51)
—00 tn



which can be rigorously obtained by merely using the closure relation for the eigenstates
of the position operator and then redefining the propagator in the inverse time order.
With this expression, it is possible to obtain the retarded Schrodinger equation. The
symmetric equation can be easily obtained by a similar procedure.

An interesting characteristic related to these apparently opposed equations is the
impossibility of obtaining one from the other by a simple time inversion. The time
order in the propagators must be related to the inclusion, in these propagators, of
something like the advanced and retarded potentials. Thus, in order to obtain the
retarded equation we have to take into account effects that act backward in time.
Considerations like these that led to the derivation of the three discretized equations

can supply useful guidelines for the comprehension of their meaning.

3.4 The Schrodinger and Heisenberg pictures

In discrete QM, as well as in the “continuous” one, the utilization of discretized Heisen-
berg equations is expected to be preferable for certain types of problem. As it happens
for the continuous case, the discretized versions of the Schrédinger and Heisenberg
pictures are also equivalent. However, we show below that the Heisenberg equations
cannot in general be obtained by a direct discretization of the continuous equations.
First of all, it is convenient to introduce the discrete time evolution operator for the

symmetric

U (t,to) = exp {-fﬁ_—t") sin™! (%)} (52)

and for the retarded equation,

-—(t—to)/T
] (53)

U(t,to) = [1 + %Tf{

In order to simplify the equations, the following notation will be used in all along

this Section

Af(t) — f(t”);f(t”) (54)

f(6) = Ft =) )

T

Arf(t) «—




For both the operators above it can be easily demonstrated that, if the hamiltonian

H is a hermitian operator, the following equations are valid:

A~ A A

AU (t,t0) = =0 (t,t0) A, (56)
N 1 - -
AUt (t,t0) = —i—ﬁUT (t,to) H. (57)

In the Heisenberg picture the time evolution is transferred from the state vector to

the operator representing the observable according to the definition

A = Ut (2,10 = 0) ASU (¢, = 0) (58)
For the symmetric case, for a given operator AS, the time evolution of the operator
AM(t) is given by

A~

AAH (1) = A [fﬂ (t,40 = 0) ASU (¢, 10 = 0)]

AAR (1) = % |44, &] (59)
which has exactly the same form as the equivalent equation for the continuous case. The
important feature of the time evolution operator which is used to derive the expression
above is that it is an unitary operator. This is true for the symmetric case. For the
retarded case, however, this property is not satisfied anymore. Differently from the
symmetric and continuous cases, the state of the system is also time dependent in the

retarded Heisenberg picture:

7_2}‘[2
h2

—(t=to)/7
|eH () = |1+ J | T5(to)) (60)

By using the property [A, f (A)} =0, it is possible to show that the evolution law

for the operators in the retarded case is given by:
. 17 . ) i
AAR (1) = {E [AS (t),H® (t)] + AAS (t)} (61)
(3
In short, we can conclude that the discrete symmetric case and the continuous

case are formally very similar and the Heisenberg equation can be obtained by a direct

discretization of the continuous equation. For the retarded and advanced cases, however,
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this does not hold. In the Appendix A we analyse the compatibility between the

Heisenberg and Schrodinger pictures.

3.5 Time dependent hamiltonians

When we restricted the analysis of the discretized equations to the time independent
hamiltonians this was made aiming at simplicity. When the hamiltonian is explicitly
time dependent the situation is very similar to the continuous case. It is always difficult
to work with such hamiltonians but, as in the continuous case, the theory of small
perturbations can also be applied. For the symmetric equation, when the hamiltonian

is of the form

H = Hy + V(t), (62)

such that V is a small perturbation related to ﬁo, the resolution method turns out to be
very similar to the usual one. The solutions are equivalent to the continuous solutions
followed by an exponentially varying term. It is always possible to solve this kind of
problem using an appropriate ansatz.

However, another factor must be considered, related to the existence of a limit
beyond which H does not have stable eigenstates. For the symmetric equation, the
equivalent hamiltonian is given by -

. h . _, /T »
H= = sin ! (EH) . (63)

Thus, as previously stressed, beyond the critical value the eigenvalues are not real
and the operator H is not hermitian anymore. Below that limit, H is a densely defined
and self-adjoin operator in the £ C L? subspace defined by the eigenfunctions of H.
When the limit value is exceeded the system changes to an excited state and the previous
state loses physical meaning. In this way, it is convenient to restrict the observables
to self-adjoin operators that keep invariant the subspace L. The perturbation V is
assumed to satisfy this requirement.

In the usual QM it is convenient, in order to deal with time dependent perturbations,
to work with the interaction representation (Dirac’s picture). In this representation,
the evolution of the state is determined by the time dependent potential V(t), while the
evolution of the observable is determined by the stationary part of the the hamiltonian
H,. In the discrete formalism, the time evolution operator defined for H,, in the

symmetric case, is given by
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T

Us (t,t0) = exp [—M sin”! (%)J (64)

In the interaction picture the vector state is defined, from the state in the

Schrodinger picture, as

|2'(8)) = U5(t) [2°(t0)) , (65)
where UJ(t) = Ul(t,to = 0). On the other hand, the operators are defined as

A= U (t) ASU, (1) (66)

So, it is possible to show that, in the interaction picture, the evolution of the vector

state is determined by the equation

" .
IRATY (x,t) = ;— [T (x,t +7) — T (x,t — 7)] = P10 (x,t), (67)
T

which is equivalent to a direct discretization of the continuous equation. For the oper-

ators we get that

Al(t-}—r) —Al(t—r) !
2T 4k

which is also equivalent to the continuous equation.

AAL(t) = AL B, (68)

Thus, for the symmetric case, the discrete interaction picture keeps the same char-
acteristics of the continuous one for the evolution of the operators and state vectors
once, obviously, the eigenstates of H remain below the stability limit. We can adopt,
for the discrete case, a procedure similar to that one commonly used in QM to deal
with small time dependent perturbations.

We consider, in the interaction picture, the same basis of eigenstates associated with

the stationary hamiltonian H,, given by |n). Then,

MONEDIROKARIONDEDPEAOID

is the expansion, in this basis, of the state of the system in a certain instant f. It
must be observed that the evolution of the state of the system is determined once the

coefficients c,(¢) are known. Using the evolution equation (67) it can be obtained that



BA(n | U(1) =) (n|V|m) (m | ¥ (1))

m

Using the evolution operator to rewrite the perturbation V in the Schrédinger picture

we get that

ThAC, (£) = ) cm (t) Vam (t) exp (iwnmt) , (69)

m

w . sin~! L) gint (T
nm — - A sin 5 5

and we obtain the evolution equation for the coefficients ¢,(t), the solution of which

such that

gives the time evolution of the system.
As in the usual QM, it is also possible to work with the interaction picture evolution
operator, UX(t,t), which is defined as

[U(6)" = U'(t,t0) ()"

such that (67) can be written as

ihAUY(t, to) = V)T, to). (70)

The operator Ul(t, to) have to satisfy the initial condition Ul(t, to) = 0. Given this

condition, we have for the finite-difference equation above the solution

. =it —te) -y [TV
Ul(t,to) = exp [— sin (T)

T

Differently from the continuous case, where the approximate evolution operator
turns out to be an infinite Dyson series, a well determined expression is obtained. The
solution of the problem is obtained by correlating the elements of the matrix associated
with such operator to the evolution coefficients c,(t).

In general, the finite-difference equations are harder to be analytically solved than
the equivalent differential equations. In particular, such difficulty is far more stressed

for the system of equations obtained from the formalism above.
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An alternative approach is to use the equivalent hamiltonians.[47] Once the equiva-
lent hamiltonian is found the procedure is exactly the same as for the continuous theory.

If the perturbation term V is small the equivalent hamiltonian can be written as

-~ k. (T2 . . .
H = ;Sll’l (ﬁHO) + V(t) = Ho + V(t)

In the interaction picture, the state of the system is now defined as

|w(t)) = expi%‘EE |T5(1)), (71)

and the operators are given by

. ot \ - ]
Al = exp (zf‘%o—) ASexp (—iffﬁoi) : (72)

The states (71) evolve according to the equation

L 0 1 gl
zhawl(t)) = V(1)) (73)

where V! is obtained according to definition (72).
Now, small time dependent perturbations can be dealt with by taking into account

the time evolution operator defined by

|Wh(8)) = U, t0) | ¥'(t0)) - (74)

According to the evolution law (73) we have

d - . .
ihaUI(t,to) = Vi) U(t, t0). (75)
Thus, once given that Ul(to, top) = 1 it turns out that the time evolution operator is
given by
A 1 L, N
Ul(t,te) =1 — E/ ViU, to)dt
to
or

~

. A\ [t t1 tho1 .
O'(t,to) =1+ (—%) / dtl/ dtg---/ dt, Vit V(L) - - - V(tn),
n=1 t t

0 to 0
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where the evolution operator is obtained in terms of a Dyson series.

In order to draw a parallel between the elements of the matrix of the evolution
operator and the evolution coefficients c,(t) obtained from the continuous equation
equivalent to (69), we have to use the basis of eigenstates of the stationary hamiltonian
Hy. If the initial state of the system is an eigenstate |m) of that operator then, at a

subsequent time, we have

en(t) = <n|01(t,to)|m> .
The method of the equivalent hamiltonian is simpler to be used, since it takes full

advantage of the continuous formalism.

4 Some Applications of the Discretized
Quantum Equations

Turning back to more general questions, it is interesting to analyse the physical
consequences resulting from the introduction of the fundamental interval of time in

QM. In this Section we apply the discretized equations to some typical problems.

4.1 The simple harmonic oscillator

The hamiltonian that describes a simple harmonic oscillator does not depend explicitly
on time. The introduction of the discretization in the time coordinate does not affect the
outputs obtained from the continuous equation for the spatial branch of the solution.
This is always the case when the potential does not have an explicit time dependence.
For potentials like this, the solutions of the discrete equations are always formally
identical, with changes in the numerical values which depends on the eigenvalues of
the hamiltonian considered and on the value of the chronon associated with the system
described. We have the same spectrum of eigenvalues and the same basis of eigenstates
but with the time evolution given by a different expression.
For the simple harmonic oscillator, the hamiltonian is given by
1

2
N ” mw?* a
= —P? 4 ——X?
H 5 + 5 ) (76)

to which corresponds the eigenvalue equation

Hlu,) = En Ju,), (77)

35



so that F, gives the energy eigenvalue spectrum of the oscillator.
As mentioned previously, since this hamiltonian does not depends explicitly on time,
there is always an upper limit for the possible values of its energy eigenvalues. In the

basis of eigenfunctions of H a general state of the oscillator can be written as

ch ) |un) exp —z—sm )
h

with ¢,(0) = (u,|¥(t = 0)). Naturally, when 7 — 0, the solution above recovers the

countinuous expression with its time dependency given by exp ( =ibat ) Therefore, there
is only a small phase difference between the two expressions. For the mean value of an

arbitrary observable,

(B@IALE©) = 33 al mexp[%(gm_gn)t].

m=0 n=0

) tr?
Cexp [z (B — B2) 3775} Lo,
with Apn = um|A|un , we obtain an additional phase term which implies a small

deviation of the resulting frequencies when compared to the Bohr frequencies of the
harmonic oscillator. To first approximation, this deviation is given by the term de-

2 in the expression above.

pending on T

It must be emphasized that the restrictions imposed on the spectrum of eigenvalues
of H break the basis of eigenvectors: the number of eigenvectors becomes finite and
does not constitute a complete set and, therefore, does not form a basis anymore. For
eigenstates beyond the upper limit the states are unstable and decay exponentially with
time.

For a time independent hamiltonian, the retarded equation always furnishes damped
solutions characteristic of radiating systems. In this case there is neither stationary
solutions nor upper limit for the energy eigenvalues. The larger the eigenvalue the
larger the damping factor and more quickly its contribution to the state of the system

tends to zero. If we write the state of the oscillator as

[#0) = Y ea0) unh [ 1+ 575 g

n

which has a norm decaying according to
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2E2 $
T } (78)

(POIR0) = T en(0) ) [1+ 2

we have for an arbitrary observable that [with (A(t)) = (A4) (¥)]:

n

T

(A(8)) = ; Z ¢ (0)cn(0) Amn exp [—;ln [1 + ;L—zEnEm ~ 2 (En - E)”

or, to the first order in 7,

(A(t)) = Z Z ¢ (0)en(0) A exp [% (B — E,) t] exp [—i (E2 - E?) #]

so that, beside the Bohr frequencies defining the emission and absorption frequencies
of the oscillator, we obtain a damping term which causes the average value of the
observable —which is explicitly independent of time— to tend to zero with time. A
cursory analysis shows that even for very small eigenvalues, smaller then 1.0 eV, the
damping factor is large, so that the decay of the average values is very fast. The
damping factor of the norm in equation (78) can be evaluated, and its behaviour can

be seen in picture 2.

4.2 Free particle

For a free particle, an electron for example, the general solution of the symmetric
equation (35) can be obtained, in the coordinate representation, using for ansatz the
solution for the continuous case. Thus, it is obtained a spectrum of eigenfunctions

(plane waves) given by

U,(x,t) = (271-h)_3/2 exp (—ia(lpl)t + z(p_hx_)> _
Inserting this expression into the symmetric equation, we obtain for the frequency
a(|pl) that
2

a(lpl) = it (7). (79)

When 7 — 0, a(|p|)% coincides with the energy of the particle. As has been observed
for the bound particle, here we also have an upper limit for the spectrum of eigenvalues.

Thus the upper limit for the possible values of momentum is given by
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[igure 2: Typical behaviour of the damping factor associated with different eigenvalues
of energy (retarded case)
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p S PMax = =10 MCV/C (80)

for the electron. In other words, there is a limit beyond which the frequencies cease to
be real.
As in the continuous case, the state of the particle is described by a superposition
of the eigenstates and can be written as
1 (p-x)

Y= oo [ @etp)exo (=iatiphe +i 220

The coefficients ¢(p) are determined from the initial condition ¥(x,0) = Wo(x).
From the expression for «, it can be observed that beyond a certain value of p the
expression loses meaning. When p > 1/2—’—:2, the complete solution will be defined only

if ¢(p). From the stationary phase condition we have that

t
x =2

-6 ()

and, supposing that ¢(p) corresponds to a distribution of probabilities with a peak at

P = Po , then the wave packet will move in the direction pg with uniform velocity

2 4 -1/2
mo h dmi

which coincides with the group velocity of the packet. It can be promptly observed that
when p reaches its maximum value permitted, the velocity diverges: v — oc. Thus, the
introduction of a fundamental interval of time does not bring in any restriction to the
velocity of the particle, although results in a limit for the canonical momentum of the
eigenfunctions. Starting from the condition of stationary phase it is possible to redefine
the momentum associated with the particle, so that this new momentum does not suffer
any restriction at all. So, it is possible to conclude that it is possible the existence of
free electrons with any energy, differently from what happens for the bound electron.

For p > pmax the frequency a(|p|) fails to be real and its dependence on p is shown
in figure (3). An analysis of equation (79) shows that if a(|p|) is complex then, for
p < pmax, the imaginary component is null and the real part is given by expression
(79). When p > pmax, then
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Figure 3: Real and imaginary components of the a(|p|) obtained for the symmetric
equation compared to continuous case.

i

Re (a(p)) = -
m(a(p) = —2mn || 2| (222 -
miep)) = 'rn 2moh 2moh ’

with the real part being a constant and the imaginary one tending logaritmically to
—oo. Using the expressions above we can observe that, for p > pwmax, the eigenstates
become unstable, with a time dependent decay term. When we look for an equiva-
lent hamiltonian H that, for the continuous Schrédinger equation, supplies equivalent
outputs, we have that this is only possible if H is a non-hermitian operator. It is s-
traightforward to see that this is the case for H=H, +1H,, with Hy and H; hermitian
and such that H; [p) = i Re(a(p)) |p) and H; |p) = & Im (a(p)) |p) -

For the retarded equation, using the same ansatz of the symmetric case, the damping

factor appears for every value of p. There is not any limitation on the values of p but,
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Figure 4: Real and imaginary components of the (|p|) obtained for the retarded equa-
tion compared to continuous case.

when p — oo, the real part of a(|p|) tends to the same limit value observed for the
symmetric case. Figure (4) illustrates the behaviour of the components of a(|p]). The

general expression for an eigenfunction is found to be

, 't 2 1 2 2
U,(z,t) x exp [% - l;tan_1 ;m;] exp [—2—T—ln [1 + <2pm;> ” :

Performing a Taylor expansion and keeping only the terms to the first order in 7 we

obtain the continuous solution multiplied by a damping factor:

' 1
U,(z,t) x exp <3%3—: — iwt) exp <—2-w2rt> (81)
with w = p?/2mh is the frequency obtained for the continuous case.
It must be remarked that the damping term depends only on the hamiltonian,
through the frequency w, and on the chronon associated with the particle. As the later
is constant for a given particle, that term shows that for very high frequencies the
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Figure 5: Displacement of the inflection point with time.

solutions decay quite fast and, as the system evolves, the decay for smaller frequencies
also also comes true.

In figure (5) it can be observed that the inflection point, delimiting the region of the
spectrum where the decay is faster, moves in the direction of smaller frequencies as time
goes by. The consequence of this decay is the narrowing of the frequency bandwidth
which are relevant for the wave packet describing the particle. This is an echo of its
continuous decrease of the energy. As in the symmetric case, obtaining an equivalent
hamiltonian is only possible if non-hermitian operators are considered.

At this point, it is worthwhile to reconsider the question of the physical meaning
of the three discretized Schrodinger equations. Apparently, the choice of the equation
to be used in a particular situation is determined by the boundary conditions, by the
restrictions they impose on the system. The symmetric equation is used for special
situations for which the system neither emits nor absorbs radiation, or does it in a



perfectly balanced way. This is the case for the electrons in their ‘atomic orbits’. So,
the particle is stable until a certain energy limit beyond which the behaviour of the
states is similar to that of the retarded solutions. For energies far below that limit, the
particle behaves almost identically to the continuous case, only that the new frequencies
associated with each wave function differ from the continuous frequencies by a factor
of order 72. The probability that a particle is found with energy larger than the limit
value decreases exponentially with time. For the bound electron, the limit is that one
equivalent to the rest mass of the muon. If a parallel with the classical approach is valid,
the symmetric equation describes an isolated system, which does not exchange energy
with the surrounding environment; or a situation of perfect thermodynamic equilibrium,
in which a perfect balance between absorbed and dissipated energies is verified. For the
classical theory of the electron the symmetric equation is only an approximation which
ignores the radiation reaction effects. In QM, however, the existence of non-radiating
states are related to the own essence of the theory. The symmetric equation shows
that, below the critical limit, the states are physically identical to the outputs from the
continuous theory: are non-radiating states.

The retarded equation represents a system which somehow loses enefgy for the
environment. The mechanism of such energy dissipation is related to the hamiltonian
of the system but also to some property of the environment —even the vacuum— as it
can be inferred from the description of the free particle. From the solutions obtained
it is now observed that time has a well defined direction of flux and that the frequency
composition of the wave packet associated with the particle depends on the instant of
time considered. It is clear that it is always possible to normalize the state in a certain
instant and consider it as being an initial state. This is permitted by the formalism.
However, in a strictly rigorous description, the frequency spectrum corresponds to a
specific instant of time which took place after the emission. This is an aspect that can

be interesting on the point of view of possible experimental verifications.

4.3 The discretized Klein—Gordon equation

Another interesting application is the description of a free scalar particle —a scalar
or zero spin photon,— using a finite~difference form of the Klein-Gordon equation for
massless particles.

In the symmetric form the equation is written as
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U(t+27) — 20(¢t) + U(t — 27)
4ctr?

Using a convenient ansatz we obtain, for this equation, in the coordinate representation,

that

0?4, =0 — — V2U(t) = 0. (82)

t
Ui(z,t) = Aexp <—12— cos™'(1 — 2c27'21c2)> exp (tkz),
T

which can be written as

T

t
U,(z,t) = Aexp <—z2— cos™!(1 — 2c2T2E2/h2)> exp (ipz/k),

since £ = p?c? and p = hk. Expanding the time exponential in powers of 7, we find that,
to the second order in 7, a solution which is very similar to the continuous expression:

i

U, (z,t) = Aexp < - (E't - px)),

with

6h*

A difference of the order of 72 is observed between the energy values of the photons

2.2
E’zE<1+E—T—>.

in the continuous and discrete approaches. The general solution is given by a linear
combination of the eigenfunctions found. A priori, the value of the chronon for the
particle is not known. The time dependent exponential term in the expressions above
lead to a upper limit for the energy allowed, which is given by E < i/7. We could
suppose that the value of the chronon for this ‘photon’ is of about the fundamental time
interval of the the electromagnetic interactions, around 107° s , resulting in a critical
value of approximately 6.6 keV, which is a very low limit. A smaller chronon should
increase this limit but, if there is any generality in the classical expression obtained for
the electron, we should expect a larger value for this massless particle.

Whether, instead of a ‘photon’ we consider a scalar ‘neutrino’ , taking for the value
of the chronon 7 ~ 10713 s —typical time for the weak decay—, the limit for the energy
associated with the eigenfunctions is now approximately 0.007 eV. This means that in
the composition of the wave packet describing this particle the only contribution comes

from eigenfunctions the energy of which is below that limit.
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The eigenfunctions obtained for the hamiltonian considered are “plane waves” so-
lutions. The dependence of these solutions on energy and time is displayed on figures
(6) and (7). For smaller values of 7 the decay of the modes with energy above the
maximum is faster.

Apparently, it seems to be possible to determine a limiting value for the chronon
starting from the uncertainty relations. This could be obtained, when describing parti-

cles, using the expression

h

2m,c?

T <

that provides for the electron a maximum limit given by 6.4 x 107%* s. However, this
value is two degrees of magnitude larger than the classical value of the chronon for the
electron, which is a considerable difference. For a complex system it is also possible to
make use of this relation, as we are going to mention ahead.

We have also to consider the conditions a ‘photon’ must be supplied with in order
to be described by the symmetric equation. For the electron it seems clear that do not
irradiate in a bound state —which is imposed by QM- implies using the symmetrical
equation. For the photon, as for a free particle, but using the retarded form of the
Klein—-Gordon equation, it is also obtained a solution wherein the highest frequencies
decay faster than the lowest. There is always a tendency in the sense that the lowest
frequencies prevail. If we are allowed to assign physical meaning to such discretized
Klein Gordon equation we are also allowed to think that, the farther the light source
more the spectrum of the emitted light will be shifted for the larger wavelengths, even
whether the source is at rest related to the observer. Thus, we could obtain a red shift
effect as consequence of the introduction of the chronon which could be used in the
construction of a ‘tired-light’ theory.

Finally, we have to keep in mind that the discretization considered for the Klein-
Gordon equation does not follow exactly the same procedure which led to the discretized
Schrédinger equation, since it is a relativistic invariant equation. We did not change
the proper time but the time coordinate itself into the discretized form. We considered

a discretized version of the hamiltonian operator by applying the transformations:

h
P — Tva
1

H — ihA,
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with A as defined in Subsection (3.4), on the hamiltonian of a relativistic free particle,

H = +/p%c? + m2ct

as usual in the continuous case.

4.4 Time evolution of the position and momentum
Operators: The harmonic oscillator

[t is possible to apply the discretized equations to determine the time evolution of the
position and momentum operators, which is rather interesting for the description of
the simple harmonic oscillator. In order to do that, we use the discretized form of
the Heisenberg equations which, in the symmetric case, can be obtained by a direct
discretization of the continuous equation. Starting from this equation we determine the

coupled Heisenberg equations for the two operators:

p(t+7)-p(t—r)
2T

= —muw?k(t), | (83)
i(t+r)2—7-§c(t—r) _ %f)(t) (84)

Such coupled equations yield two finite-difference equations of second order the gen-

eral solutions of which are easily obtained. The most immediate way to determine the
evolution of these operators is to use the creation and annihilation operators. Keep-
ing the Heisenberg equation and remembering that for the harmonic oscillator we have

H=w (AT& + %), we get for the symmetric case:

At+7)— At =)
2T

= —iwA(1), (85)

At(t+7)— At(t = 1)
2T

= iwAl(t), (86)
such that

~

A(t) = A(0) exp <—i£sin‘1 (wr)), (87)
At(t) = AT(0) exp (é sin™! (wr)), (88)
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where we used the fact that, for ¢ = 0, the Heisenberg and Schrodinger pictures are
equivalent: A(t = 0) = A = A(0) and Al(t = 0) = At = AY(0), with A and At
independent of time. In order to obtain these equations we considered that, for the
non-relativistic case, there is neither creation nor annihilation of particles, such that we
can impose restrictions on the frequencies in the phase term of the operators. For
the creation operators, e.g., the terms with negative frequencies —associated with
antiparticles— are discarded.

We can observe that the Number, as well as the hamiltonian operator are not

altered:
N = Al()A(t) = AT(0)A(0),

- 1

H = hw <N + %—) = fiw (AT(O)A(O) + 5) .

Thus, starting from these operators, we obtain for the symmetric case:

%(t) = (0) cos [3 sin~! (wr)] L PO [% sin™! (wr)]

T mw

B(t) = p(0) cos [3 sin~! (wr)] — mwk(0) sin [; sin™! (wr)]

.
which differ from the continuous case since the frequency w is here replaced by a new
frequency % sin™! (wT) that, for 7 — 0, tends to the continuous one. Also, there is now
a upper limit for the possible oscillation frequencies given by w < 1/7. Above this
frequency the motion becomes unstable, as it an be observed in figure (8).

The existence of a maximum limit for the frequency is equivalent to a upper limit
for the energy eigenvalues given by E, = (n + %)hw < h/7, which is equal to the upper
limit obtained using Schrédinger’ s picture. Since,

to.o ~ 1 3, 4
—sin (wr) Zw+ Thadld + O(7%),
the difference expected in the behaviour of the oscillator faced to the continuous solution
is quite small. If we take, for example, the vibration frequency of the hydrogen molecule
(H,), we have that w ~ 10'* Hz, while the term of the second order in 7 is smaller than
10~3 Hz (if the analogy with the classical theory is valid, the chronon is expected to
be smaller for more massive systems). In terms of average values we have that, for the

position operator
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hyvpotheses.
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<}A((t)> = <)A((t)>cont + mt(f\)(t)) )

2 is expected to be considerably smaller than the mean

in which the term of order
value for the continuous case. At this point, naturally, the mean values are determined
taking for the system a state made up of a superposition of stationary states. For the
stationary states |u,) themselves the mean values of X and p are zero.

For the retarded case the solutions can be obtained using the time evolution opera-
tors for the Heisenberg equation (appendix A). As expected, decaying terms come out.

The creation and annihilation operators obtained for this case are then given by

~ -

A(t) = A(0) [1 + twr 4 r2w?¢]

L
p

~ A(O) exp (—iwT) exp [— (f + %) w27't] ,

A

Al(t) = AT(O) [1—twr + T2w2f]

- L
=

~ AT(0) exp (iwT) exp [— (§ + %) w27't],

with ¢ being a real positive factor. The relation (AT)T = A continues to be valid but

the Number operator and, consequently, the hamiltonian, is now not constant anymore:

H(t) = hw {AT(O)A(O) [(1 + w2T2§)2 + w27'2} —i + l} :

Taking into account the terms to the second order in 7, we get that the oscillation
frequencies also decays with time. These results are consistent with the fact that the
system is emitting radiation, with the consequent reduction of its total energy. How-
ever, it is remarkable that the energy of the quanta associated with the creation and
annihilation operators is not constant, even with a very tiny variation rate. In the
same way, when we calculate the position and momentum operators a damping factor
is obtained. Figure (9-a) shows the strange damping factor associated with the Number
operator. It can be observed that this damping occurs within a period of time which

is characteristic for each frequency, being slower and postponed for lower frequencies.
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Figure 9: (a) Damping factors associated with the Number operator calculated for some

frequencies. (b) Damping of the oscillations for the harmonic oscillator described by
the retarded equation.
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Figure (9-b) shows the dampening of the oscillations as described by the retarded equa-
tion. Once the expressions for the position and momentum operators are determined,

we obtain that, to first order in 7,

mw

(%(t)) = {)‘((O) cos (wr) + P gin (wr)} exp [— (5 4 %) ﬁt] ,

(R(0)) = (%()eons XD [— (g s %) wzrt].

Taking into account the higher order terms, we can observe a small variation in the
oscillation frequency just as observed in the symmetrical case. The introduction of time
independent perturbations does not cause any additional variations apart from those
found even in the continuous case. It must be pointed out that the results obtained
with the procedure above are in agreement with those obtained following Schrodinger’s

picture.

4.5 Hydrogen atom

The hydrogen atom is basically a system made up of two particles attracting each other
through coulombian force, which is therefore inversely proportional to the square of the
distance between them. The basic hamiltonian is given by

. P?  ¢?

Hy = 5; R (89)
and is composed of the kinetic energy of the atom in the centre of mass frame, and of
the coulombian electrostatic potential (x is the reduced mass of the system electron-
proton). A more complete description is obtained by adding correction terms (fine
structure) to the hamiltonian, including relativistic effects such as the variation of the
electron mass with velocity and the coupling of the intrinsic magnetic moment of the
electron with the magnetic field due to its orbit (spin—orbit coupling). Besides, there are
also the hyperfine (hf) corrections which appear due to the interaction of the electron
with the intrinsic magnetic moment of the proton and, finally, the Lamb shift, due to
the interaction of the electron with the fluctuations of the quantized electromagnetic

field. The hamiltonian can finally be written as[56]

~

4

. R P " “ .
Hy=moc®*+ Hy— ——— LS+ Hus + Hiamb. (90)

m2c?R3
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The introduction of the magnetic moment of the nucleus through the hyperfine
correction causes the total angular momentum to be F = J + I. The hamiltonian does

not depends explicitly on time such that, for the symmetric Schrodinger equation

i%[\p (x,6 4+ 7) — U (x,t — 7)) = ¥ (x,t), (91)

we obtain, using the separation of variables, the following uncoupled equations:
H1®(x) = E®(x)

i%[T(H—T)—T(t—T)]:];IIT(t),

with the general solution

T (x,1) = @ (x) exp [—i;t_—sin"l (%)] . (92)

The difference related to the continuous case appears only in those aspects involv-
ing the time evolution of the states. Since the hamiltonian is time independent, its
eigenvalues are exactly the same obtained in the continuous case[56]

1 mec® [ n 3 -
~ 2 _ L 2 2 e 9\ a4
E("lvj) ~ o€ 2 MeC & Ind <] + % 4) + Ehf + ELamb-

A situation where a difference between the two cases can appear is when taking into

account the probabilities of transition between the eigenstates for an atom submitted to
a time dependent potential. In the discrete approach it is possible to use the method of
the equivalent hamiltonian in order to obtain the transition probabilities. As mentioned
previously (Subsection 3.5), the problem is treated using the conventional approximate
methods for time dependent perturbations.

If we consider, for example, the non-relativistic interaction of an atom with an
electromagnetic field described by the vector potential A(x,t), we have for the low

intensity limit, in the Coulomb gauge, the hamiltonian

Ht)= B - V()= B — —A (1‘1, t) P, (93)
where the potential term is taken as being the perturbation. If we consider that the

potential describes a monochromatic field of a plane wave, then



A (x,t) = Ap € [exp (iwn x iwt) + exp (—iwn x + iwt)] (94)
c c

where € is the linear polarization of the field and n is the propagation direction. The
term depending on (—iwt) corresponds to the absorption of a quantum of radiation Aiw
and the (iwt) term to stimulated emission. Let us assume that the system is initially in
an eigenstate |®;) of the time independent hamiltonian. Keeping only the perturbations
to the first order in V/(t), we obtain that

St
cl(t) = —%/ exp (twnit') Vpi(t')dt’
0

where w,; in the discrete case is given by

1 .1 TEn . -1 TEI'

Wni = — |sin —— | —sin — .

T h h

Working with the absorption term, we get by contrast that

. t
(1) — 1eAo iwi-X/fc(s ) . L "4
¢, (1) mgch<q)n|e (€ p)|<I),>/O exp [t(wn; — w)t']dt .

Thus, the probability of transition from the initial state |®;) to the final state |®;) is

given by .
o (1) 2 62|A0|2 whi-X/c( 2 2 ! . N34/ ’
Palt) = [0 = 555 [(esle e p)la)| | | exp ity —w)tlde| |
m2c 0
or
_ 4e?| Ayl 2 sin? [(wy: — w)t/2]

Pyi(t) =

b

m§c2h2 <(I)f|e‘wn.x/<:(é . p)l‘I),'> (wfi — w)2
so that the determination of the matrix elements of the spacial term, using the electric
dipole approximation, provides the selection rules for the transitions. What is remark-
able in this expression is the presence of a resonance showing a larger probability for

the transition when

17. ,(TE . [ TE;
w=wpi = - [sm ! (Tf) —sin™! (—h—)] . (95)

This expression is formally different from the one obtained for the continuous ap-

proach. When we expand this expression in powers of 7, we get that
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FEr—FE;, 1 E3? — E?
w ! + = f 3 T2,
h 6 &
The first term supplies the Bohr frequencies as in the continuous case; the second, the

(96)

deviation in the frequencies caused by the introduction of the time discretization:

1 E3—E?

If we consider the chronon of the classical electron, T &~ 6.26 x 10724 s, it is possible

2

to estimate the deviation in frequency due to the time discretization. Then, for the
hydrogen atom,
Awp ~ 2.289 x 1072 (B} — EY) .

If we take into account, for example, the transitions corresponding to the first lines of

the series of Lyman and Balmer, i.e., of the non-disturbed states n = n; — n = ng, we

have
n; | ng | AE (eV) v (Hz) Avp (Hz)
1] 2 10.2 2.465 x 10'° ~ 10
113 12.1 2.922 x 104 ~ 10
114 12.75 3.082 x 10 ~ 10
213 1.89 4.566 x 10 <1

where AE is the difference of energy between the states, v is the frequency of the photon
emitted in the transition and Avp is the frequency deviation due to the discretization.
Such deviation is always very tiny. We must remember that the hyperfine corrections
and those due to the Lamb shift are of order of a Gigahertz. For the transition n =
1 — n =2, e.g., the correction due to the Lamb shift is approximately 1.06 GHz.
Larger deviations caused by the discretization occurs for mono-electronic atoms with
larger atomic numbers. For the first transition the deviation is of approximately 90 Hz
for the 2He, 1.1 kHz for the 3Li, and 420 kHz for the C. However, these deviations
are still quite smaller than that one due to the Lamb shift. That is also the case for
the muonic atoms. For a muonic atom with a proton as nucleus, using for the chronon
a value derived from the classical expression for the electron (7, = 3.03 x 107% s) the
deviation is of about 1.4 kHz for the transition n = 1 — n = 2. For that transition the

frequency of the emitted radiation is approximately 4.58 x 10'7 Hz.
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For the retarded equation, a difference with respect to the symmetrical case is present
in the time evolution of the states. The procedure is identical to the one used above
and the general solution is now given by
TE ] T

U(x,t) = ®(x) [1 +i

so that the transitions now occurs with frequencies given by

—1ih iTEf iTEi -
w_u,fl_T[ln<l+ 5 >—ln<l+ 5 >] (9()

As results from the characteristics of the retarded equation, this is a complex fre-

quency. The real component of such frequency can be approximated by

E,~E 1E}-E?
Re(wf,-) ~ / 5 + § fﬁS TZ,

where the first term is the expression for the continuous case. For the particular tran-

sitionn = 1 —» n = 2 we have that the deviation due to the discretization is of about
18 Hz. '

The imaginary component, on the other hand, can be approximated by
R

In the expression for the probability of transition we have the module of an integral

Im(wg) =

involving the time dependency of the general solution. In this case, the characteristic
damping causes the probability to tend to a fixed, non zero value. An example of such
behaviour is showed in figure (10), which shows the variation of the time dependent
term between a initial instant {, = 0 and some hundreds chronons later. In order to
observe the decay of amplitude factor we have used a larger value for the chronon, of
about 107'® s. When the chronon is of the order of the one we have been considering
for the electron the decay is slower.

As it can be observed, the effect of the time discretization on the emission spectrum
of the hydrogen is extremely small. Using the expressions obtained above we can
estimate that, in order that the effect of the time discretization is of the same order
of the Lamb shift, the chronon associated with the electron should be of about 10718
s. far above the classical value (but close to the typical interval of the electromagnetic
interactions). In any case, it should be remembered that the Lamb shift measurements

do not seem to be in full agreement[61] with quantumelectrodynamics.
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Figure 10: Behaviour of the time dependent component of the probability of transition
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Closing this Subsection, it is worthwhile to remark that, for a time independent
hamiltonian, the outputs obtained in the discrete formalism using the symmetric equa-
tion are very similar to those from the continuous case. For such hamiltonians, the
effect of the discretization appears basically in the frequencies associated with the time
dependent term of the wave function. As already observed, the difference in the time

dependency is of the kind

exp[—iEn(t — to)/B] — exp [—i sin”! (f") (t — to) /T]

The discretization causes a change in the phase of the eigenstate, which can be
quite large. The eigenfunctions individually describe stationary states, so that the
time evolution appears when we have a linear combination of such functions, this way

describing the state of the system. This state evolves according to

#(0) = 3 ex@esp [—isin™ (T2 ) = )] 1),

n

considering that H|¢,) = En|¢,) is the eigenvalue equation associated with-the hamil-
tonian.

When the stationary states of a particle under, e.g., one-dimensional squared poten-
tials are studied, the same reflection and transmission coefficients and the same tunnel
effect are obtained, since they are calculated starting from the stationary states. When
we consider a linear superposition of these stationary states, building a wave packet,
the time dependent terms have to be taken into account, resulting in some differences
with respect to the continuous case. Some attempts have been carried out in order to
find out significant measurable differences between the two formalisms[57, 58] but no

encouraging case has been found yet.

5 Density Operators and the “Coarse Graining”
Hypothesis

5.1 The “coarse graining” hypothesis

First of all, it is convenient to present a brief review of some topics related to the
introduction of the coarse grained description of a physical system. This hypothesis
is then going to be used to obtain a discretized form of the Liouville equation, which

represents the evolution law of the density operators in the usual QM.
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An important point to be remarked is that the introduction of a fundamental inter-
val of time is perfectly compatible with a coarse grained description. The basic premise
of such description, in statistical physics, is the impossibility of a precise determination
of the position and momentum of each particle forming the system, in a certain instant
of time. Let us consider, for the sake of simplicity, a system composed by N similar
pointlike particles, each of them with three degrees of freedom described by the coordi-
nates (qi,qs,¢3). We can associate with this ensemble of particles an individual phase
space (named p-space) defined by the six coordinates (qi,qz,43; p1, P2, p3) so that the
system as a whole is represented by a crowd of points in this space.

Since the macroscopic observation is unable to precisely determine the six coordi-
nates for each particle, let us assume that it is only possible to know if a given particle
has its coordinates inside the intervals (¢; +dg;) and (p; 4 dp;), with ¢ = 1,2, 3. In order
to describe the state of the system in the u-space, we divide it into cells correspond-
ing to the macroscopic uncertainties 8¢; and ép;, each one occupying in the p -space a

volume

w; = bq, 8q2 6q3 6p1 6p2 bps3 . (98)

These cells must be sufficiently small related to the macroscopically measurable
dimensions but also sufficiently large so as to contain a great number of particles.

When considering the system as a whole, its macroscopic state is given by a collection
of points n; corresponding to the number of particles inside each cell. Now, if we take
into account the 6N-dimensional phase space I', in which each of the states assumed by
the system is represented by a point, to each configuration n; corresponds in I' a cell

with volume given by

N
(8V)e = [ (wo)™.

n=1
Considering that the permutation of the particles inside the cells of the I' space does
not change the macroscopic state of the system, then to each collection of numbers n;

corresponds a volume (2, in the I" space ¥ given by

w (Qn) = Hj:[’l;' H (wi)"' (Z n; = N) .

$Jancel[62] calls it a star.
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The state of the system is determined by the star occupied by the representative
point of the system in the I' space. This way, macroscopically, it is only possible to
distinguish in which star the system is, such that any point in this star corresponds
to a same macroscopic state. When we consider a system which is not in equilibrium,
a change in its macroscopic state can only be observed when the point describing the
system changes star. The crossing time is small but finite. During this period of time
the macroscopic state of the system does not change notwithstanding its microscopic
state is continuously changing.

Thus, from the point of view of statistical physics, the introduction of a fundamental
interval of time appears in a very natural way. That is still more significant when we
remember that the predictions of QM are always obtained as mean values of observ-
ables. The uncertainty relations, according to the usual interpretation of QM —the
Copenhagen interpretation—, are independent of the arguments above. If we accept
that they play a fundamental role in the microscopic world —and this is postulated by
Copenhagen—, then the concept of chronon, as a fundamental interval of time, must

be related to them.

5.2 Discretized Liouville equation and
the time—energy uncertainty relation

An attempt to set up a relationship between the chronon and the time-energy uncertain-
ty relation has been put forward by Bonifacio (1983)[63], extended the coarse graining
hypothesis to the time coordinate. In the conventional QM the density operator evolves
according to the Liouville-von Neumann equation

9p

o7 = —iLa(t) = —% [H ,ﬁ] : (99)

where £ is the Liouville operator. It is immediate to observe that, if H is time inde-

pendent, the solution is given by

H(T) = exp (—19 5(0) exp Q%) (100)

which gives the time evolution of the density operator starting from an initial time o,
such that T' = t — ty is the evolution time.
When we build a coarse grained description of the time evolution, by intro-

ducing a graining of value 7 such that the evolution time is now given by T' =
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kr (k=1,2,...,00), we have that the resulting density operator p does not satisfy

the continuous equation (99) but a discretized form of it given by

p(t) — p(t =) = —iLh(t), (101)

.
with t = k7, which reduces to the Liouville-von Neumann equation when 7 — 0. In

the energy representation |n), once satisfied certain conditions which ensure that p(k)
is a density operator, we have that (101) rules for p an evolution which preserves trace,
obeys the semigroup law and is an irreversible evolution towards a stationary diagonal
form. In other words, we observe a reduction of state in the same sense as in the
measurement problem of QM. This reduction is not instantaneous and depends on the

characteristic value 7:

o) =3 pun(0)lm)(n]

It is important to observe that the non diagonal terms tend exponentially to zero

according to a factor which, to the first order, is given by

2
—w), Tt

2

Thus, the reduction to the diagonal form occurs provided we have a finite value for 7, no

exp

matter how small, and provided we do not have w,,,7 < 1 for every n,m, where wp, =
(E, — E,)/hk are the transition frequencies between the different energy eigenstates.
This later condition is always satisfied for systems not bounded.

These results, together with an analysis of the discrete Heisenberg equation defined

in terms of the average values of observables

Aty ="Tr (p(t) A)

in the coarse grained description, suggest an interpretation of 7 in terms of the uncer-
tainty relation AEAt > h/2 such that 7 is a characteristic interval of time satisfying
the inequality

T>rE= ——— with AE =\/(H?) — (H)?, (102)
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= exp [—%ln <1 + T;ip>} exp [—i(t—;ti)tan"l <I—ﬁ}£>} (124)

Comparing (122) and (124) we obtain the equivalence of the hamiltonians once

and £ are given by

SN P
w K = 27_n h2 .

For the advanced case we obtain the same expressions except by a minus sign for &.

For the symmetric case, below the critical limit, we have

. _ b (7H
I/—TSIII = |

k=0.
Above that limit 7 ceases to be hermitian and, in this case, the evolution operator

can be written as

; : t—t
Usym(t, to) = exp |:_z_7f.(t _ to)} exp _( 0) In
2T -
so that
. h
Y=o
ot |,
K = . n 5

with » being now independent of the hamiltonian and & ceases to be zero.
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The expressions obtained above show the characteristics that # and & must fulfil in
order that the continuous equation reproduces the outputs of the discretized equations.
By observing the continuous evolution operator we have that the anti-hermitian part
of H shows a non-stationary behaviour, resulting in a damping or amplifying term
associated with the evolution of the quantum state. Thus, the stationary solutions
appear only for the symmetric case below the critical limit. In all the other cases the
transient term always appears.

In QM, the non-hermitian operators have been used only as mathematical shortcuts,
as in the case of the Lippmann-Schwinger equation in the scattering theory. It has
already been observed that the introduction of such operators could make possible the
description of unstable states, by phenomenologically linking the transient factor to the
lifetime of the considered stated.[56] If in a certain instant to = 0 the system is in one of
the eigenstates |n) of the hamiltonian H then, if such state is unstable, the probability

of the system to be found in the same state in a later instant ¢ is

Pa(t) = |(nI0"01n)| = exp (~t/72),
and that allows us to specify a lifetime 7, for the retarded case, as being

.
L= ———,
In (1+52)

and for the symmetric case, above the critical energy,

(125)

T
2ta (| + /58 1)

Such lifetimes are connected with states that, in the discretized formalism, are

T, =

intrinsically unstable. Only the retarded equation seems to be associated with quantum
states which decay with time. If that is really valid, we have an expression which could
be used for phenomenologically determining the value of the chronon. Finally, we
can conclude that the time discretization brings forth a formalism which, even if only
hermitian hamiltonians are involved, is equivalent to the introduction of non-hermitian

operators in the continuous QM.
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