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Abstract

We define two quantities, which for high Q2 tend respectively to Bjorken’s
and to Gottfried’s sum. We elaborate a nonperturbative evolution model for
such quantities, showing that at low Q2 they have the same evolution and
that at Q2 ~ 0 they match the nonrelativistic quark model predictions about

the axial charge and about the average quark isospin content of the proton.



I. INTRODUCTION

Several years ago two deep inelastic scattering (DIS) experiments [1,2] contradicted re-
spectively the Ellis-Jaffe [3] and the Gottfried [4] sum rule, both based on naive assumptions
- isoscalar sea and unpolarized strange sea - trivially satisfied by the non-relativistic quark
model (NRQM). Moreover the value of the nucleon axial charge extracted from neutron
beta decay is in contrast with the one resulting from NRQM calculation. Isospin symmetry
implies that, as to the first moment of the isotriplet component of the polarized nucleon
structure function, the NRQM prediction differs from the result of the Bjorken sum rule
[5], consistent with recent experiments [6] provided radiative corrections [7,8] are taken into
account. On the contrary the NRQM describes satisfactorily some static properties of light
baryons, like masses and magnetic moments. This suggests that, as far as hadron structure
functions are concerned, we can hope to reconcile the NRQM predictions with data by con-
sidering their evolution from low Q? - less than (100 — 300 GeV')? - to @2 of order 4 to 10
GeV?. This is in line with recent efforts of connecting the high-Q* and low-Q? descriptions
of hadrons [9-12].

In the present article we limit ourselves to the isotriplet sector, therefore we consider the
Bjorken sum and the Gottfried sum. For very high Q? these integral quantities consist almost
exclusively in the leading twist contributions, corresponding to Feynman graphs with only
one active quark. Since NRQM assumes approximate independence between constituent
quarks, the predictions of this model are to be confronted with quantities which are low-Q?
extrapolations of the leading twist contributions to the Bjorken or to the Gottfried sum.
In the following we shall define these quantities, which we shall call respectively Bo(Q?)

and Go(Q?). Then we shall elaborate a model of nonperturbative evolution for Bo(Q?) and



Go(Q?), showing that for very small @? they match the NRQM predictions. In particular,
at first, we shall propose a nonperturbative evolution model for Bo(Q?), suggesting two
different mechanisms, according as Q? is greater or less than 0.5 GeV?. Secondly we shall
show that the model describes as well the evolution of Go(Q?). Lastly we shall compare a
consequence of our model with experimental data of the New Muon Collaboration, NMC
[2].

Previously various attempts were done to explain the discrepancies of the NRQM pre-
dictions about isotriplet structure functions with respect to DIS data and, as regards the
polarized structure function, also with respect to the Bjorken sum rule. The result of this
rule, according to which the proton axial charge is predicted to be g4 =~ 1.2575 instead of
g, has been explained, in the framework of spontaneous chiral symmetry breaking [13], as a
spin dilution due to a nonperturbative interaction between valence quarks and gluons [14].
By the way, spontaneous chiral symmetry breaking has been shown to produce the same
effect of a Melosh [15] rotation, which therefore describes, in a modern terminology, the By
evolution from Q% = 0 to oo. On the other hand the violation of the Gottfried sum rule -
Go(Q? = 4 GeV?) = 0.240 £ 0.020 instead of the predicted value of 3, as results from the
NMC measurement - has been illustrated in different models, among which we recall the
one by Sawicki and Vary [16], Ball and Forte [17](BF), Wakamatsu [18], Cheng and Li [19]
and other authors quoted in refs. [16,17]. In particular BF start from the same viewpoint
that we adopt in the present paper, although they use a different evolution model. It is also
worth signalling some previous aprroaches relating the evolution of the polarized structure
function to that of the unpolarized one [20-24].

Sect. 2 is devoted to the definition of the quantities whose evolution we shall study. In



sect. 3 we present a model of nonperturbative evolution for Bo(@?). In sect. 4 we show that
by a plausible assumption the same model describes as well the evolution of Go(Q?), then
we compare our predictions with experimental results of the NMC. Sect. 5 is devoted to a

short dicussion of the results and to a comparison with the BF model.

II. DEFINITIONS

The most natural way of defining Bo(Q?) and Go(Q?) is to extend to any @Q*-value the

limiting formulas of quark-parton model, valid at very large Q?, i. e.,

Bo(@) = ¢ [ dalti(z, @) — Ad(z,Q"), (2.1)
Go(@?) = 5 [ dali(z, @) — d(z, @), (2.2)
d=q++q-+7, +7_, Afd=¢qy—q-+7, —7_, (2.3)

where ¢ = u ("up”) or d ("down”) and +(—) denotes helicity parallel (antiparallel) to the
nucleon spin. We relate the above defined quantities to those leading twist operators that
contribute to the first moments of isotriplet unpolarized and polarized structure functions,

i. e., respectively, to the isotriplet axial current and to the isotriplet scalar density:

1 —_
Bo(@)s, = ZC(Q) <pr sl 1smTsdlp,s >, (2-4)
2 —_—
Go(@) = 3CU(Q@") <psTs ¥lp,s >; (2.5)
s is the spin four-vector of the proton and C and C' are functions which in the pertur-

bative regime - that is for Q? large enough - tend to the reduced Wilson coeflicients in the

operator product expansion, i. e.,

c(Q*

(2 (6 (2 (8
1-=-3. —)% —20. =P —(~ =)+ :
— —3.5833 (—)° - 20.2153(—)° - (~ 130)(=")* + (2.6)

C'(Q) = 14(~0.01)a,+.... (2.7)



In such a regime the anomalous dimension of the isotriplet axial current vanishes, whereas
the one of the isotriplet scalar density is nontrivial only to two loops. Therefore, to the extent
that we limit ourselves to one-loop approximation and neglect the residual @*-dependence
in the Wilson coefficients (which amount to a 10 % correction for By, 0.3 % for Go), both
quantities have no evolution. This is a consequence of the one-loop splitting function,
corresponding to the elementary process ¢ — qg for massless quarks, which does not create
nor destroy quark-antiquark pairs and preserves flavour and helicity of the initial quark. As

we shall see, By and Gy have, to a good approximation, the same evolution for low Q2.

III. NONPERTURBATIVE EVOLUTION OF By

Let us consider the evolution of By. The component of the hadronic tensor corresponding
to j3, - named T, from now on - consists in the convolution over the proton state of the
triangle electromagnetic anomaly, as shown in fig. 1. At infinitely large Q? the active
quark - a current quark - is not dressed by strong interactions and therefore, according
to Bjorken’s sum rule, By = %g,q, where g4 is the axial coupling constant derived from
the neutron beta decay. At finite but large @Q? gluon radiative corrections are taken into
account, resulting in the reduced Wilson coefficient C(Q?) (see eq. (2.6)). At sufficiently
small Q? (less than Q2 ~ 4 GeV?) nonperturbative contributions become of some relevance.
For Q? < A2sp (Ayss =~ 1 GeV) spontaneous chiral symmetry breaking occurs and at these
energy scales a very suitable effective lagrangian appears to be the one proposed by Manohar
and Georgi [9](MG), who assume that for AZ < Q? < AZgp (where A, ~ 100 — 300 MeV
is the confinement scale) the elementary objects are the constituent quarks and the (quasi)

Goldstone bosons. The MG effective lagrangian is particularly appropriate for describing



the nonperturbative evolution of the quantities in question, in that it ensures continuity
with respect to the QCD lagrangian. In the original version also gluons were assumed as
fundamental fields, but recently Glozman [25] has shown that they are by no means necessary
at small Q2?, where they could even create some trouble in gluon polarization [26]. We shall
assume this more recent version of the effective lagrangian.

As to the hadronic tensor T°

©,» we assume, according to the MG lagrangian, that the

active quark involved in the triangle anomaly is a constituent quark. As a check of this
assumption we invoke the uncertainty principle. The collision of the spacelike photon with
the active quark can be viewed as a t-channel annihilation of a photon into a quark-antiquark

pair, whose offshellness is of order
As = 4m? — ¢* = 4m? + @7, (3.1)

m =~ 360 MeV being the mass of the constituent quark. The larger As, the smaller
the interaction time. For As > 1 GeV?, and therefore for @? > 0.5 GeV?, the process is
perturbative. By the way, the lower limit we obtain for Q? from the uncertainty principle
nicely agrees with the MG apparently "perverse viewpoint” [9] of separating chiral symmetry
breaking from confinement.

In order to determine the coefficient C(Q?) (eq. 2.4) in this interval of @)%, we adopt the
calculation by Peris [27], in the framework of a nonlinear sigma model (see also ref [28]).
We have chosen a specific model in order to carry on calculations, however we believe our
conclusions to be independent of the details. Peris determines the one-loop corrections to the
axial coupling, using the linear sigma model as a regulator of the divergences of the nonlinear
sigma model. The sum of these corrections - which consist in the vertex corrections and

wavefunction renormalization, as shown in fig. 2 - is independent of any ultraviolet cutoff



[Fig.1] - The antisymmetric isotriplet component of the hadronic tensor.
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[Fig.2] - Axial vertex and corrections due to nonlinear sigma model.



and in logarithmic approximation we have

2 2

! ma
Gh=1- g log(Cg),  me=dnf (3.2)

where fr = 93 MeV and g is the pion-quark effective coupling constant, running from
2, for Q* < Algp, to 0 for @Q* > Q2. As a result Peris gets g4 ~ 0.8, in good agreement
with the phenomenological value of the axial coupling constant, i. e., ¢/, = ggA.

In our calculation also the corrections to the two electromagnetic vertices should be
taken into account. However in logarithmic approximation they do not lead to any net
contribution, as can be seen either by direct computation or invoking the Ward identity,
owing to which the divergences of the vertex and wavefunction corrections compensate each
other. Therefore for 0.5 GeV? < Q% < A255 we have C(Q?) = g4 and Bo = Lgag/y, which,
by the way, matches the perturbative QCD correction at Q* = O(A24p).

For Q? smaller than 0.5 GeV? the photon-quark collision lasts a sufficiently long time for
the quark, before interacting with the photon, to evolve towards a more stable asymptotic
state - a colour singlet - by emitting one or more quark-antiquark pairs. This suggests that
the By evolution depends on different degrees of freedom. In particular at scales of order A2
we assume - according to the Weinberg lagrangian [29], whose fundamental fields are light
hadrons (see also [30]) - the active constituent quark to be dressed by the quark-antiquark
pair(s), so as to form a virtual hadron (see figs. 3 and 4). Therefore the axial current consists
of light hadrons instead of quarks. Since coupling of the axial current with light bosons is
very unlikely (pion forbidden, p-meson weakly coupled), the most likely candidate hadron
is the nucleon, for which the coupling constant to the axial current is g4. By the way, three
remarks are in order:

i) With respect to the axial current, the nucleon plays the same role in the Wein-



[Fig.3] - Corrections to the antisymmetric isotriplet component of the hadronic tensor at
small Q2.

[

[Fig.4] - Virtual dressing of the active quark at small Q.
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berg lagrangian as the constituent quark in the MG lagrangian, since both are regarded as
fundamental fermions in different regimes.

i) The coupling constant g4 includes pion exchange corrections as well as the constant

!

9a-

iii) The offshellness As of the nucleon is at least of 1 GeV?, so that the (virtual) hadron
is very short-lived and only the original active quark collides with the photon, such an
interaction being kinematically very unlikely for one of the other two quarks.

From the preceding considerations it follows that at confinement scales the first mo-
ment of the leading-twist contribution to the isotriplet component of the polarized structure

function becomes
By = —g4 ~ =1.59, (3.3)

which almost equals the prediction by NRQM. The small discrepancy with respect to
By = Bs = £ is consistent with the slight mixing of irreducible SU(2)® SU(2)r representa-
tions caused by interactions responsible for hyperfine baryon structure, that is, quark-gluon
or quark-Goldstone boson [25] interaction. In this connection, multiplying Bs by the mixing
angles found by LeYaouanc et al. [31] and Conci-Traini [32], we get values close to the result
(3.3).

To summarize, By has the following evolution:

i) it equals approximately the NRQM prediction for very small @2, of order A2,

ii) it decreases down to ~ g3 for 0.5 GeV? < @Q* < A%;

iii) lastly it raises to £ga(1 — 2¢) for Q% > Q2.

We conclude this section with one more remark. The apparent paradox, according to

which a low energy result (neutron beta decay) controls the high energy behaviour of a
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structure function, can be explained intuitively. The two situations involve either the charged
or the neutral axial quark current, coupled respectively to the lepton charged current (via
four-point interaction) and to a gamma pair (via axial anomaly); obviously leptons have no
strong interactions, on the other hand at infinitely high @? the quark triangle anomaly is

not dressed by any gluon radiative corrections.

IV. EVOLUTION EQUATIONS FOR By AND Gy

As is well-known, the hadronic tensor is often conveniently regarded as the elementary
quark-photon cross section convoluted with parton distribution in the nucleon. Here we
show that the elementary processes implicitly assumed for TS,, in the preceding section
describe as well the symmetric isotriplet leading-twist component of the hadronic tensor,
which therefore has the same evolution for Q% < Q2.

In particular for 0.5 GeV? < Q* < @2 the elementary processes corresponding to the
vertex and wavefunction corrections of the axial current are represented in fig. 5. By the
way, as regards the process represented in fig. 5¢), it is worth noting that, after convolution
with quark distribution in isotriplet combination, only the interference term - corresponding
to the graph of fig. 2e - survives. As stressed by Eichten et al [20], the quark reverses its
helicity after emitting the pion. Since the pion carries isospin 1, helicity and isospin changes
are strictly correlated: as we are going to show, the model describes simultaneously the
evolution of By and Gy.

To this end we consider the evolution due to pion exchange of ¢+(z,Q?) = q+(z,Q?) +

g.(z,@?%). According to our preceding consideration, the following transitions are allowed:

rtezchange : W(T) (=) ¢ d(d)—(4); (4.1)
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[Fig.5] - Graphic representation of the elementary cross section describing the nonper-
turbative evolution at not too small Q? of the isotriplet - symmetric and antisymmetric -

components of the hadronic tensor.



— 13—

nlexchange:  u(@)yc) ¢ u(@)-(4),  d(d)y(-) > d(d)_(3). (4.2)

Then, a small change from Q2 to Q%+ AQ? causes a change in quark densities described

by a system of integrodifferential equations analogous to the Altarelli-Parisi one, i. e.,

Adiy ~ Ac™ @ (d — 63) + Ac™ ® (G- —Gg) + oons, (4.3)
At~ Ac™ @ (dy — G4_)+ Ac™ @ (g —G_) + ooy (4.4)
Ady ~Ac™ @ (i — dy)+ Ac™ @ (d_ —dy) + ..., (4.5)
Ad_ ~Ac™ @ iy — d_) + Ao™ @ (dy —d_) + ..., (4.6)

where Ao is the variation of the elementary cross section o(yQ — 7Q’) (see fig. 5b) at

changing the energy scale by AQ? and

70 0= [ Law.@)o() (@)

ellipses indicating isosinglet contribution to the evolution of quark densities. Taking
into account isospin invariance yields Ac™ = 2A0™ = 2A¢™ = Ac™ = Ac". Now we
consider two different combinations of the four preceding equations, both in the isotriplet
sector: take the differences between the first and the third equation and between the second
and the fourth equation and consider both the sum and the difference of the two differences.
If we take the first moments of the two integro-differential equations so obtained, recalling

the definitions of By and Gy, we get

ABy, AGy

By Go

= —2AF", (4.8)

where @ is the first moment of the elementary cross section.
A comment is in order. In our model By and Gy have the same evolution in the interval

0.5 GeV: < Q% < @3, where, contrary to the perturbative regime, the evolution is nontrivial
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even to lowest order, since pion emission, unlike gluon emission, does not conserve the helicity

nor the flavour of the quark.

If we take Q2 < Algp and QF = Q% + AQ? > @3, we get

207" = ~[7" (@) + 7 (@] = -2[7"(QY)] = —g;fg? tog(2), (4.9)

since, as explained in the preceding section, we assume g = 0 for Q3 > Q2. Substituting

the first eq. (4.9) into eq. (4.8), and exploiting the smallness of 7" (Q?), we get

Bo(Q?) = Bo(Q3)[1 — 277(Q%)], (4.10)

which, owing to the third eq.(4.9), turns out to coincide with formula (3.2).

For Q% < 0.5 GeV?, as we have seen, the elementary cross section - corresponding to
the amplitude represented in fig. 4 - consists in a quark emitting two quark-antiquark pairs
before colliding with the photon. This process leads to a multiplicative, spin independent
correction, since the quark is very unlikely to flip; indeed, the spin dependent interactions
between constituent quarks are weak even in real nucleons, a fortiori they will be negligible
in highly virtual ones. On the other hand pion emission by the active quark or by the quark-
antiquark pairs influences in the same way polarized and unpolarized structure functions, as
we have already seen above. Then we conclude that also for @% < 0.5 GeV? - and therefore
for any Q* < 4 Q2 - Bo and Gy have the same evolution.

As a consequence we predict

Bo(Q?)  Go(Q?)
Bo(AD) — Go(A?)’ (4-11)

We can test this conclusion for Q% = Q° = 4 GeV2. Assuming that for Q2 = A2 Gy has
the value predicted by the Gottfried sum rule and By the value calculated according our

model in the preceding section, i. e.,
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1
Go(A2) = 3 Bo(A2) = = gl49a, (4.12)

L
6
and recalling the result of NMC about GO(QZ) and formulas (2.4) and (2.6) for BO(QZ)

yields

2

Go(@)
Go(A2)

—Bo(—az)— =0.72

=0.71 £0.08, 4.13
Bo(AD) (4.13)

in good agreement with our prediction.

V. DISCUSSION

First of all we spend a few words on higher twists. As to the Gottfried integral, it is
likely to coincide with Gp for any @2, since it is quite unnatural that at small @? higher
twist contributions violate the Gottfried sum rule. On the contrary the Bjorken sum can be
shown to vanish at Q2 = 0, as follows from the Drell-Hearn-Gerasimov sum rule [33]. This
is due to the negative polarization caused by resonances, like A(1232) [34], i. e., by higher
twists.

Secondly a comparison with the BF model is in order. This model describes the non-
perturbative evolution of the Gottfried sum, tacitly identified with Gy. That model differs
substantially from the one presented in this article, in that it attributes the raising of Gg to-
wards small Q2 exclusively to the interaction between quarks and (quasi-)Goldstone bosons,
among which the pion plays the most important role, since it is by far the lightest one.
Furthermore according to the BF calculation quark-pion interaction persists up to very
large Q2. That calculation is based on the use of the effective vertex functions [35] of quark-
(quasi-)Goldstone interactions. While such vertex functions look suitable at small @2, where

pseudoscalar bosons and constituent quarks can be regarded as elementary, it appears rather
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arbitrary to extrapolate these vertex functions to large @*, which correspond to too short
time intervals for a boson to be formed from a current quark-antiquark pair. By the way
the BF extrapolation is based on an asymptotic behaviour which is not easy to check (see
ref. 36 of BF). Furthermore, in the BF model, at asymptotically large Q?, when the pion
nonperturbative correction vanishes, the Gottfried integral is predicted to raise again to the
SU(6)-value.

Unfortunately the available data on the Gottfried and on the Bjorken sum do not allow to
discriminate between the two models. More precise experiments, especially in the interval
(4 — 20) GeV?, would be useful in clarifying the question. Furthermore, in view of our
above consideration on the Gottfried integral, a measurement of the isotriplet unpolarized

component of the nucleon structure function at smaller Q* would be equally important.
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