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Abstract

We review the present theoretical comprehension of the B — D®) D®*) decay
channel, with particular attention to the strong and electroweak penguin di-
agrams contribution to the amplitude and to the strong phase problem. We
further present the complete angular analysis for the decay B — D*D* and
suggest some potentially useful isospin relation.
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1 Introduction

The B — D™+ D)~ decay, governed by the quark subprocess b — czd, is expected
to give an important contribution to the determination of the unitarity angle 8[1].
Now, while the D*D~ state is an eigenstate of CP with positive parity, the vector
channel D**D*~ is an admixture of CP-even and CP-odd states, due to the fact that
the decay occurs through three waves (s,p,d) with different CP-parity. However, as
already well known, angular analysis seems to provide an efficient tool for extracting
contributions of different CP-parity, leading to a potentially clean measure of the
angle 3 (see [2, 3]).

An important question related to such a measure is the role of the hadronic
uncertanties. The main potential sources of these uncertanties are the fact that two
amplitudes depending on different weak phases can contribute to the decay process,
and the presence of final state interaction (FSI) strong phases.

Before addressing the specific problem of our interest, we briefly rewiev the
general formalism about mixing and CP violation in B meson physics. We consider
the decay of the B in a CP-even eigenstate fcp:

B - fcp .
The amplitudes for the decay in such a state are defined in the following way:

A = (fcp|HAE=1|B) (1)
A = (fop|HAB=1|BY)

and the time dependence of the state due to the B® — B® mixing is given by:

|B°(t)) = e=™t=F [cos (452 | B®) — i¥sin (2g2t) | B°)] (2)
|BO(t)) = e~™=% [cos (45 | BY) — i2sin (42¢) | BY)] (3)
where ¢/p is the mixing parameter of the B® — B° system:
q _ Vt:inZ = =28 (4)
P ViaVe

From these equations it is possible to obtain the time dependent expression of
the rates:

2
D(B(t) = fep) « lAlze‘”[% ©)
+ 1__M cos(Amt) — ImA sin(Amt)]
2
D(B°(t) = fep) o |A|2e—n[%i\_l— )

1— AP i
- — cos(Amt) + ImAsin(Amt)]



where we have introduced:
A=212 (7)

We then define the time dependent asymmetry, which is the experimentally mea-
sured quantity:

a (t) — F(Bo(t) '_>fCP) —F(?O(t) —)fCP) (8)
YT T(B) — for) + T(B(E) — fop)
and substituing the egs.(5) and (6) we obtain:
— )2 — i
aop(t) = (1=} )cos(Almj)l/\PQIm/\s n(Amit) . (9)

The term depending on cos(Amt) represents the direct CP-violation effect, which
requires A # A or, since |g/p| = 1 with very good approximation for the B system,
|Al # 1, while the sin(Amt) term represents the indirect CP-violation effect due to
the B®— B® mixing. If there is only one amplitude contributing to the decay process,
or if there are several amplitudes but all with the same weak phase, it clearly results
A = A so that:

Al=1. (10)

Using this assumption, we can simplify the time dependent and time integrated
expression (9) of the asymmetry obtaining:

acp(t) = —ImAsin(Amt) (11)
acp = —ZzIm) ;

this corrisponds to CP-violation only through the mixing. The parameter Im) is
directly related to the CKM matrix elements, and, for the decay of our interest
B — DD it results:

ImA = —-sin28 . (12)

Until now we have treated the B meson decay to a CP eigenstate; if, however,
the final state of the decay has not a definite behaviour under CP, the situation
obviously is not so simple[2]. In the particular case of B — D*tD*~, the final
particles have spin 1 and consequently the final state is a superposition of different
waves, with different CP parity; we can therefore write the rates of the conjugated
B and B decays in the following way:

I'(Bt) —» D**D*") =Ty (1+a)+T_(1-a)
I(B%t) » D**D**) =Ty (1-a)+T_(1+a) (13)

where Iy and I'_ are respectively the CP-even and CP-odd decay widths and a
is the asymmetry parameter defined in (9) for a pure CP-even final state. Now,
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constructing the rate asymmetry, which is the experimentally tested quantity, we
find: _
I'(B%(t) - D*+*D*~) — I(B°(t) — D**D*")
At) = = =K 14
O=rEn= D+ D) + [(B%) — D D) ~ 1) (14)

where
r,-T._

RN Skl 15
K=r 77 (15)

As we can see, the asymmetry results to be diluted by an unknown parameter
which depends on the CP composition of the final state. As we will briefly show
in section 3, the angular analysis of the decay provides a tool for measuring the
dilution factor K, so the measurement of the unitarity angle 3 from this channel is
expected to have a good accuracy[3].

Now we pass to the theoretical description of the amplitude; the diagrams de-
scribing B — D®+DM~ decay are depicted in Figure 1: they are the tree di-
agram (7), the strong (ST) and electroweak (EW) penguin (P) diagrams and
the exchange (£) diagram. Neglecting the exchange process, which is expected to
be suppressed!, the two main contributions to the amplitude come from tree and
penguin diagrams. The effective hamiltonian up to one loop order in electroweak
interactions (and to all orders in strong interactions) for the decay b — céd can be
written in the following way[5]:

B e . . 10
- oo saon - vvien] oo
i=3

where the operators O; and the Wilson coefficients c;(u) (at g = my =~ 5 GeV)
are[6, 7):

0, = dy, Lecy* Lb ¢, = 1.1502

O, = daY,LcgCay* Lbg, c; = —0.3125
O35y = dv,Lbey*L(R)c cas) = 0.0174(0.0104) (17)
Oue) =  davuLbplsy*L(R)ca  cys) = ~0.0373(—0.0459)
Owey =  3dvy.Lbe.cy*R(L)c  cyg) = 1.050 x 1073(~0.0101)

Os0) = 3davuLbgecCay*R(L)ca cpoy = 3.839 x 1074(1.959 x 1072)

where L(R) = (1 ¥ v;)/2, a and 3 are color indices.

O, and O represent tree level processes, while O3_g are the so called strong penguin
(STP) operators, due to one gluon exchange, and O;_yo describe the electroweak
penguin (EWP) processes, mediated by v and Z° exchange.

!One would expect a suppression factor of order fg /mp ~ O(A?) in the amplitude[4]; in any
case this channel depends on the same weak phase as the tree diagram, so it does not represent a
polluting contribution. See the discussion in section 4.
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Figure 1: The four diagrams reponsible for b — czd process: (a) tree (T), (b) strong

penguin (STP), (c) electroweak penguin (EWP), (d) exchange ().




‘The Wilson coefficients ¢; were calculated at the next to leading order corrections
in QCD by the authors of ref. [6, 7], using a,(mz) = 0.118, aem(mz) = 1/128,
my = 176 GeV.

As we see from eq.(16), the tree amplitude is proportional to CKM elements
Ves Vg, while the penguin contribution from the internal loop with a ¢ quark depends
on Vi Vg, so that we can parametrize the decay amplitude in the following way:

A(B = D DM~y = VuVAT — Vi Vi P (18)
= VoVa(T +P) + Vu VP,

where use has been made of the CKM matrix unitarity relation
Vo Vg + Ve Vig + ViV =0 .

Since the CKM coefficients of each term are of comparable magnitude, we cannot
neglect the contribution of the penguin diagram in comparison with that of the
tree diagram, albeit the coefficients of the penguin operators are much smaller than
those of the tree operators (see eq.(17)). On the contrary this happens in the
case of the decay B — J/UK,, where there is a suppression factor of the order
[Vie Vil /1Ves Vi | ~ A? in the Wolfenstein parametrization. Therefore, together with
the Vip V5 term, which is related through the mixing angle ¢/p to the unitarity angle
B, there is also a polluting contribution from the V,,V;%; term (or the Vi,V term,
which is the same).

Concerning the strong FSI effects and restricting to the scalar decay B° —
D* D™, we can account for them by a relative strong phase § between the tree and
penguin amplitudes?: this, too, leads to an uncertainty on the extracted value of 0.
These combined effects can be parametrized in the decay amplitude in the following
way:

A(B = D*D7) = VyVyT (1 - Ree?) (19)
where for convenience we have defined:
ViaVip | P
R=- = , 0=dp—4
Vi | T P T

with ép and d7 the strong phases respectively of the penguin and tree amplitudes;
(3 is the unitarity angle defined as (see also eq.(4)):

= drg |- {203 (20)
tdVth

2This is valid also for the decay B° — D* D where there is only one possible polarization state,
namely longitudinal polarization. D*D, however, is obviously not a CP eigenstate. The decay to
two vector mesons has three amplitudes corrisponding to the three different polarization states of
the final particles so the situation is much more complex. See the discussion in the next sections.



and the amplitudes 7" and P are real. Using this expression, we find that the asym-

metry parameter ImAp in the presence of penguin contribution takes the following

form:

—2sin fcos(23 — &) + Rsin(28)
1 — 2R cos(f — §) + R2

Obviously for R = 0, i.e. neglecting the penguin processes, we obtain the ‘clean’
expression (only tree diagram) already given, see eq.(12).

ImMp = —sin(26) + R

(21)

We can obtain an analogous expression for the time dependent asymmetry eq.(8),
which is what we actually measure, in terms of R, § and f:

ar(t) = ag sin(Amt) + by cos(Amt) (22)

where we have introduced

2sin B cos(203) cos§ — R%sin(24)

= sin(2 R 23
a0 = sin(26) + 1 —2RcosfBcosd + R2 (23)

by = —R 2sin Bsind

1 —2RcosfBcosd + R?
and the time integrated expression reads:
zag + bo

R T 24
"= UE ) (24)

where 2 = Am/I" = 0.73+0.05[8]. These expressions have to be confronted with the
R = 0 case, namely eqgs.(11). In this contest, we stress that, due to the contribution
of the penguin diagram, the simplified assumption in which |A| = 1 is no more true.
In other words, this means that the asymmetry is not correlated in the usual simple
way to I'mA; in particular, the time dependent expression will now contain a term
depending on cos(Amt).

Clearly, to extract § from the measurement of ap in this channel, we must
somehow evaluate R and §. We note here, however, that R is not properly a
constant, since it contains a hidden dependence on the unitarity angles o and S
through the the CKM elements |V,4V;|/|VeaVe|: this makes evident the complexity
of the case. For the purpose of obtaining a numerical estimate, we will make the
following somewhat arbitrary approximation:

ViV

~1
VedVeh

which is the central value of the range permitted by the present experimental know-
ledge of the CKM elements{8] and corresponds to the choice 8 = 7 — 2. Therefore,
the numerical values of R given in the following must be considered only as order
of magnitude estimates.



In the next section, we will review the actual theoretical estimates (if there are
any) of R and ¢, making use of factorization of the hadronic amplitudes and of
the approach [9] to the calculation of perturbative strong phases. In section 3, we
will pass to the complete angular distribution for the decay B — D*D*, and in
section 4 we will see how angular and isospin analysis can help in the evaluation
and perhaps the measurement of these parameters. Finally, we will present some
conclusive remarks in section 5.

2 Theoretical Predictions

In order to obtain numerical results for the penguin/tree ratio R we will make use
of the hypothesis of factorization of the hadronic amplitudes (which seems to be on
a rather firm basis for color allowed decays like that of interest). We can obtain
explicit expression for the amplitudes from the following definitions of the relevant
matrix elements[10]:

(D(p)|Au|0) = ~ifpp,

(D" (p; €)|Vil0) = mp- fp-¢;
2 _ 2

(DEIVAIB(P)) = (P+p)uFila’) + —2 7P, (R(e) - Fa())
(D*(p; €)| 44| B(P)) = i(mp + mp-) 41 (g?) <e; - e*q;qq#> - (25)

*

—idy(¢?) —— 4 ((p +P)u -

mp + Mmp-
2V (¢%)
PVpPe*e
mp + mp- €uvpe D

2 2 *
mB € 'q

— m5,. .
le—qu) + 22mD.A0((12)—q2—q#

(D*(p; €)|Vu|B(P)) =

where in all cases ¢ = (P — p). Using these definitions we easily find the following
expressions for the decay amplitudes:

1. scalar-scalar (SS):
Gr

AB - D*D™) = 7

[Vcchfial - ‘/tb‘/tz (04 + 2(0,5 —+ ag)D —+ am)] Fss (26)

2. scalar-vector (SV):

- G
A(B" = D*D*) = T; [VesVeaar = VooV (as + o) Fov - (27)

3. vector-scalar (VS):

D * - G * *
A(BO — D +D ) = —\/g [‘/cb‘/cdal — Wb‘/td (0,4 - 2(0,5 -+ ag)D' + alo)] Avs
(28)



4. vector-vector (VV):

A(B® = D™*D*") = =X [VaVor — VooV (aa + ano) Avy (29)

f[

where N is the number of colors,

6211—62114—% a2i=32i+02;\;1)
and
D= m% , D' = m%
(mp — me)(me + my) (mp + mc) (me + my)
Fss =1i(m} — mp) foFe P (m3) (30)
Fsy = A3 (m}, mb,., m}) fp- FEP (m3.)
Ays = “Al/z(m%’sz"sz)fDABD*(sz)
6 v UPUppn*ﬂ'e*l_l

A — . . (2 Lyp VBD* )

vv = mp- fp e —— (mD.)

: - . (e"-q)(n* - P) ,BD-
—imp- fp- [(mB +mp-)(e* - n*)APP* (m),.) — 2mD—ABD (mp-)

In the V'V case the form factors ABP*, 48P+ and VBP* contribute respectively to s, d
waves (CP-even) and p wave (CP-odd). In the cases SV and V'S there is obviously
only one possible state of polarization for the D* particle, i.e. the longitudinal
polarization.

Using now the above expressions, we can obtain predictions for the amplitudes,
in particular for the ratios R and

The results are, for the SS and V'S cases:

001 for N=3 009 for N=3
R ~ ~ 31
ew {0.02 for N=oco X {0.09 for N = 0o (31)
and for the other cases:
0.04 for N=3 { 003 for N=3
Rew =~ ~ 32
ew { 005 for Nooo 1003 for N=oo (32)

It results that the EWP contribution is always small, so that we can safely neglect it
at this level; the penguin contribution to the overall decay amplitude is important in
the SS case, where roughly it can reach the 10% level. On the contrary, reflecting
the vector character of (at least) one of the final particles such a contribution is

8



suppressed over the tree by a factor of ~ 30 in the other cases. (This agrees with
the results of references [11, 12]).

We must here remember that these results are model-dependent, they were ob-
tained using factorization. However, within this approach they are independent of
form factors models and, as it can be seen, the results are not strongly dependent
on the value chosen for V, in particular for the case N = oo in which factorization
is supposed to be exact. So we can retain the value obtained with good confidence,
at least at the order of magnitude estimates level.

Now we turn our attention to the strong FSI phases, which can be of two kinds:
soft F'SI phases, which are due to genuine non perturbative long-distance effects such
as rescattering of the final particles and the contribution of inelastic channels to the
final state[13], and hard phases, determined by short-distance physics and calculable
by means of the perturbative theoryl[9].

The latter are given by the absorptive parts of the loop integrals of penguin
diagrams, namely from the internal loop propagation of on shell ¢ — ¢ quarks, which
generates an imaginary part of the respective Wilson coefficient. In this contest, we
must include in the effective hamiltonian (16) responsible for the quark level process
b — ctd the contributions of the penguins processes with internal ¢ and w quarks;
this can be done by rewriting the hamiltonian in the more general form[14]:

Hofr ™ = 3 [ViaViaues + ViVt + VaViset] O; (33)
1

where O; are the operators already defined in eq.(17) and ¢; are Wilson coefficients:
c; contain the contributions of tree diagram and penguin diagram with internal c-
quark, while ¢} and ¢! contain internal u-quark and ¢-quark contributions. Clearly,
due to the values of the masses, only v and ¢ quarks can access on shell states in
the internal loop, so that no absorptive part is generated for the top-quark penguin
and ¢! is surely real. However, the statement of CPT invariance requires that also
¢i is real, because a ¢ — ¢ pair is created in the final state[15, 16]. Naively we could
say that the rule for CPT conservation requires that, at the considered perturbative
order, all flavour-diagonal contributions are real, i.e. that no absorptive part is
generated for those terms in which the internal quarks pair coincides with the final
one. Finally one obtains that, in this case, only ¢ contributes with an imaginary
part.

By introducing this contribution in the calculation of the amplitude, it is possible
to compute the perturbative strong phase between tree and penguin diagrams at
O(a?), obtaining[11]:

§~12°, (34)
and we can assume this value as an estimate of the true relative strong FSI phase
between tree and penguin amplitudes.

Before continuing, we note that including the contributions of the ¢ and v pen-
guins in the effective hamiltonian of the process affects the results just obtained for

9



the penguin/tree ratio R. It results that, at the O(a,) order, the penguin terms
could change up to 24%(17], so that the values previously cited for R retain an
uncertainty of this order of magnitude.

On the other hand, the problem of evaluating soft phases effects is usually ap-
proached by isospin analysis: the possible values of the isospin in the final state
DD are I =0and I =1 and corrispondingly there are two amplitudes 4, and A;.
However, both tree and penguin processes contributes to Aq and A; so that in this
case we cannot separate their contributions by means of isospin analysis (see the
discussion in section 4). Moreover, since D+ and D~ do not belong to a same isospin
multiplet, a conventional isospin analysis with the use of the charged B decays is
not possible (contrary to the case of B — m7). Also, we cannot expect that these
phases should be small as in B — 7, because the final particle are heavy so that
they are emitted with slow velocity.

In addition, in the case of B® — D*tD*~ there could be relative strong phases
between the different amplitudes[18] corresponding to the polarization states so that
the number of unknown parameters is potentially greater. However, by means of
the angular analysis which we will present in the next section it is possible to fit the
values of the strong relative phases between the amplitude. An analogous analysis
was recently performed with success for the B — J/¥K* decay[19).

Now, if we the assume that the relative strong phase between penguin and tree
amplitudes is the same for the three polarization amplitudes involved in the vectorial
decay (V'V), as it should be on the basis of factorization and perturbative approach,
since the three partial waves have a common overall factor depending on the Wilson
coefficients (see eq.(29)), also in this case the main source of uncertainty on the
extracted value of 3 remains just the strong phase ¢ initially introduced in eq.(19).

Under the previous assumptions, we can finally use the results obtained to give
an estimate of the error on the measured asymmetry due to the presence of penguin
and strong phase contributions. Substituting the numerical values in eq.(24) we
obtain (SS decay):

[ —0.482 for B = 45°
o2 ={ 0087 fo B=5 . (35)
These results have to be confronted with the corresponding values of eq. (11):
[ —0.476 for B = 45°
dop = { —0.083 for f=5° . (36)

As we can see, the percentual variations due to the polluting contributions of pen-
guins and strong phases is relatively small ((0(0.05)) if the strong phase has the
considered (small) value. We have studied the dependence of the asymmetry func-
tion az(R,d; B) over a complete range of values for § (0 — 7) and with R varying
between 0 and 10%. The results are plotted in figure 2 and refer to fixed values of
the angle 3, respectively § = 5° (a), 8 = 25° (b), B = 45° (c), where cases (a) and
(c) represent the minumum and maximum permitted values of G[20].
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Figure 2: The asymmetry function in dependence on § and R for different values of
B: =75 (a), B =25 (b) and 3 = 45° (c).
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Figure 3: The asymmetry function in dependence on § and 3 for fixed values of R:
R =0.03 (a) and R = 0.09 (b).
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From this study, we can see that the effect on the asymmetry from the presence
of the strong phase § varies almost linearly with R. To be more precise, the following
approximated relation holds:

Aar[0 — 7] ~ 2R . (37)

This means that if the penguin contribution is relevant (as for B — D*D~) the
uncertainty due to the strong phase is significant too, while, on the contrary, if the
penguin amplitude is suppressed, the influence of ¢ will be correspondigly smaller.
Moreover, this result holds over the complete variability range of 3, as can be seen
from figure 3, where the asymmetry function is plotted depending on (B, 9) for fixed
values of the penguin/tree ratio: R = 0.03 (), R = 0.09 (b). In particular, we note
that, for fixed valus of the parameter R, the biggest discrepancy from the ‘clean’
value is reached at § = 7/2.

The implications of this result are important: even if the parameter R is known,
the uncertainty on the asymmetry (and thus on ) due only to the contribution of
the strong phase ¢ is of order O(R), and this it true both for the scalar and the
vectorial decay, if, as one could expect, the relative penguin/tree phase is the same
for all the polarization amlitudes of the V'V decay. This means that, in the case
of B — DD, we predict an uncertainty Aas ~ 20% (when R is known); on the
contrary, for B — D*D* we expect an uncertainty of the 6% level (with R = 3%).
In this sense, the vectorial channel should be more reliable for the measurement of
the unitarity angle than the scalar one. Moreover, as we will see in the next section,
we can use the simplifying assumption in which we neglect the penguin contribution:
the accuracy of this approximation is O(0.06).

3 The decay B — D**D*

We now turn our attention to the study of the vectorial channel B — D*t*D*~: as
already said, since the D* mesons are spin 1 particles, the decay goes through three
waves (s, p, d). By means of the usual symmetry considerations, it is possible to
parametrize the decay amplitude in the following way:

(D**(p,€), D* (k, )| T|B(P)) = (38)
Lk Lk e xV [p DO
(" u*) fs + %‘)—f(t + ie#ﬂpae—i;%__fp

where we conventionally chose the B meson rest frame, (p,¢) and (k, 1) are respec-
tively the D** and D*~ four-momentum and polarization vector, and f; (i = s, p, d)
are the amplitudes corrisponding to the three waves. Following from the conser-
vation of angular momentum, there are only three possible polarization states for
D**D*=, namely the longitudinal polarization state (D} (0)D;~(0)) and two trans-
verse polarization states (D3t (+)D5 (4)). We then define the helicity amplitudes

13



corrisponding to the polarization states as follows:
Hyy = (Di(£)Dy (£)[T|B%)
Hy = (D" (0)Di(0)|T|B® ; (39)

now using eq.(38) and susbtituing the explicit expressions of the polarization vectors
we easily find:

1 m2, — 2m?2,. m4(m% — 4mi.)
H. = _Mmp D- , Mplmp D
0 m2,. 7 s 4m?. Ja

m

H = f+ 2—§(m'g — 4md.)V?§, (40)
m%.
mp

H, = f— 2m%. (m% - 4m2D-)1/2fp .

Recalling the expression of the amplitude eq.(29), obtained using factorization and
the Bauer-Stech-Wirbel model[10], it is possible to write the explicit expressions for
the three waves amplitude:

fo = SEV(@omb. (TR 4y m )

fo = 2ZEV@form (2 dy(m) (41)
G .

fo = 2 V(@) formb. () V(mb.)

where we have introduced:
Via) = Vo Va1 — ViVii(aq + ano) .

Remembering that the three waves have definite CP-parity (s and d are CP-even
and p is CP-odd) we can construct the amplitudes with definite behaviour under

CP; we define:
1

V2

where Ay and A are CP-even and A, is CP-odd. Now, making use of the Heavy
Quark Efective Theory[21] it is possible to obtain numerical results for the relative
rates corresponding to these definite CP contributions; one finds that[22]:

To(B — D**D*-)

Hil - (A” + A_L), Ho = Ao . (42)

[B D D) = o0
F||(B — D*+D*—)

~ 4 4
F(B — D*+D*-) 0% ( 3)
F_L(B — D*+D*—) 6%

=~ 0 .

T'(B— D**D*)
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The model so predicts a final state which is almost a pure CP-even eigenstate:

o ye— 94% CP-even ,

DT = { 6% CP-odd . (44)
This numerical result is expected to be quite stable since it does not depend on the
particular parametrization chosen for the form-factor of the Isgur-Wise model and,
moreover, it can be essentially rederived in the framework of the Bauer-Stech-Wirbel
model (in this case retaining a form-factor dependence). From this value, we obtain
a prediction for the dilution factor introduced in eq.(15); the result is:

K =0.88. (45)

Having defined the amplitudes involved and rewieved the theoretical prediction,
we pass to the complete angular analysis of the decay. The full angular distribution
of the rate in the V'V case is specified by three angles; in the helicity basis (see
fig.4a) they are defined to be the polar angle of 7+ in the D** rest frame (19;), the
polar angle of 7~ in the D*~ rest frame () and the angle between the D** and
the D*~ decay planes (¢). In this frame we have:

d’I'(B® — D**D*) k 9 1 .94 2 2 2
dcos¥idcostodp ~  4m% 8. (27r)2[§ sin” ) sin” 0, (IHII + |H-1] )
+ sin® 9, sin® 9, (Re(H, H* ) cos(2¢) (46)

— Im(HH?,)sin(2¢)) + 2|Ho|? cos? 9, cos® 9,

+ % sin(29,) sin(29,) (Re(HoH*, + H,H;) cos ¢

— Im(HoH?, + H1H)sin¢)] ,

where the amplitudes were defined in eq.(39) and & is the final momentum of the

D* mesons:
\Vm% — 4m3.
p=Y_B “ D (47)
2
Another basis particularly useful in studying the composition in CP-eigenstates
of the final state is transversity basis: in this system (see fig. 4b) the angles are the
polar angle of the 7% in the D** rest frame (9, ), the polar angle between the normal
to the D*+ decay plane and the 7~ flight line (¢9;,) and the relative azimuthal angle
(¢+). With these definitions we obtain the following angular distribution:

&T(B - D*D*) ko9
d cos ¥y d cos Vi depy, - 4m% 8 - (27r)2[
+ |AL|*sin? 9, cos? O,
+ 2]A4g|*cos? 9, sin? Iy, cos? ¢y,
+ Im(ALA})sin® 9 sin(29;,) sin ¢y, (48)

| Ay |? sin® ¥, sin® ¥, sin® ¢,
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1 . . .
+ ERe(AOAﬁ) sin(29,) sin® ¥, sin(2¢y,)
+ iIm(AE‘,AL) sin(29,) sin(29,,) cos ¢, .

V2

where the amplitudes with definite CP were introduced in eq.(42). The following
relations hold for the angles in the two basis:

cos ¥y = — sin ¥y, COS @y,
sin ¥, sin ¢ = cos I, (49)
sin ¥, cos @ = —sin Yy, sin ¢, .

This basis has the important property that the dependence on the so called transver-
sity angle ¥ distinguishes between different CP contributions. Infact, integrating
over dcos¥, and d¢,, we obtain:

dl'(B° — D*D*)
d cos Y,y

x Ty (1+ a)% sin® ¥ +T_(1 — a)g cos® U, (50)

where a is just the asymmetry parameter proportional to sin(28) and the definite
CP widths and amplitudes were defined in eq.(13) and eq.(42):

Ty = |47 +]4o|?

As we have seen in the previous section, the penguin contribution to the rate in
the factorization framework is rather small (R ~ 3%). So, with a great advantage
in simplicity, we can work with a relatively good accuracy in the approximation in
which we neglect the penguin contribution to the amplitude and consider the tree
amplitude as completely dominating; in this case it is possible to parametrize the
time dependent transversity amplitudes as follows[18]:

Ay (t) = Metneimi=Tiz [e’ﬂ cos (__A;nt) + ie~#sin ( ;nt)]

. . . A :
AL(t) = M eloremimi=Tt/2 [—e’ﬁ cos (—%t) +ie™# sin (A;nt)} (52)

Ao(t) = Myei®og=imt=Tt/2 [eiﬁ cos <A72nt) + ie=P sin (A;’nt)]

&

where M, are the absolute values of the amplitudes introduced in eq.(42) and o
are the strong phases (¢ =0, ||, L). From these it results:

T (t) = [y + [Ao(t) [ = (M] + M) e [1 + sin(26) sin(Am)]
T_(t) = |[AL(t)]* = M%e Tt [1 —sin(28) sin(Amt)] . (53)
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Figure 4: (a) Helicity Frame, (b) Transversity Frame.
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We can now substitute these parametrizations in egs. (46) and (48) to obtain
the complete expressions of the rate: explicit formulas are given in the Appendix.

We recall that, in the factorization hypothesis, all the amplitudes are assumed
to be real, so that it is not possible to obtain any information about the phases: we
can now see how the complete angular analysis permits to fit the values of the three
amplitudes and of the relative strong phases between the amplitudes o) — ap and o)
(where we have conventionally chosen iy = 0). This point is particularly important,
because the knowledge of these phases could allow to shed further light on the strong
phases effects in this channel and so, possibly, to reduce the uncertainty which we
must retain at the moment. In particular it is possible to construct conveniently
chosen rate asymmetries which directly depend on strong phases. As examples, we
present the following two expressions in the helicity frame (see appendix):

e Up-Down asymmetry:

1 1 o]
/_ldcosﬁl/_ldcosﬁg/o dtAUP = % <4Mﬁ_ - g% sin a0> (54)

where we have defined

" 2 1 dT(BY — D*+D*")
([ -
/0 a¢ /n d¢ dcosV,dcosPodp '

e Left-Right asymmetry:

1 1 o 47p zsin(28)MoM sin(ap — o))
LR _ _*TB I |
/_ldcosﬁl/_ldcosﬁg/o dtA"" = " 1+ 22 |
(55

where

3m/2 /2 d3T(B% — D*tD*7)
ALR — _
[/w/z d¢ /—w/2 d ] d cos ¥,d cos Uodo

Obviously analogous expressions could be found in the transversity frame.

4 Isospin analysis

We have seen in the previous section how angular analysis permits the determination
of the different polarization amplitudes and of the relative strong phases. Another
useful tool to obtain information on the considered channel is represented in principle
by isospin analysis: even if, as already said, a conventional analysis as that performed
for the B — m decay is not obviously applicable in this case, we can anyway make
some interesting comments.
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We can express the decay amplitudes for B — DD in terms of isospin amplitudes
and FSI phases; one finds:

A(B® - D*D™) = .;. (Aoeiéo _ Alei‘sl)
A(B® —» D°D%) = ';- (Aoei‘5° + Ale"‘”) . (56)
In the factorization model the amplitude for the exchange process vanishes:
Ageet(B° - D°D% =0

however in this framework the amplitudes are assumed to be real: this means that
the following relation holds

AO = _Al . (57)

Obviously, taking into account the presence of FSI phases can modify this prediction:
infact, if the phase d; = dy — &, takes the value §; = 7 one would clearly obtain a
quite dramatic result (from eq.(56)):

AB°—» D*D7) =0.

It is therefore interesting to obtain phase-independent quantities which could be
experimentally tested; from eq.(56) one finds the following combination:

B(B® - D*D™)+ B(B® — D°D%) ~ 4.7 x 10~* (58)

where the numerical value is obtained using factorization.

A theoretical evaluation of the FSI phase can come from inelastic effects: the
decay B — DD, infact, could pass through a two-step process such as B° —
D*D* — DD with the generation of inelastic FSI phases[13]. In this framework
also the absolute values of the amplitudes are affected and one obtains a branching
ratio for the exchange process B(B° — D°D°) which is suppressed by a factor
10! — 10~2 with respect to B(B® — D*D~), which is probably a more realistic
estimate. Obviously this result is strongly dependent on the particular choice for
the parameters which describe the inelastic scattering process.

According to simple isospin symmetry and neglecting the exchange process, the
following equality holds:

A(B® = D™+ DW=y = A(B~ — DM D7) (59)

where in the vectorial case the relation is intended to hold separately for the three
polarization amplitudes. So, even if it is not possible to obtain simple relations be-
tween isospin strong phases, because neither D¥ D~ nor D°D~ belong to the same
isospin multiplet, we can use isospin correlated charged decay in order to estimate
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amplitude absolute values, in particular to evaluate the parameter R previously de-
fined. Moreover, since charged B do not mix with each other, this measure should
presumably be more clean than that directly obtained from B® decays. This discus-
sion is valid for the scalar as for the vectorial decay, since, obviously, the angular
dependence of the neutral and charged B decays to two D vector mesons is the
same. As an example we compare the expressions of the rate of the B° and B+
decays in the simple case of transversity analysis (see eq.(50)): we account for the
presence of penguin and strong phases using the parametrizations (19) and (52) of
the amplitudes. We find:

dl'(B® — D**D*")
d cos Uy

(Mi+ MH)[1 + R?

sin(20) sin(Amt)
— 2Rcosd(cos 8 + sin G sin(Amt))
— 2Rsinésin g cos(Amt)]g sin® ¥,

+ Mi[1+R? (60)
— sin(20) sin(Amt)
— 2R cosd(cos f — sin B sin(Amt))

3
— 2Rsindsing cos(Amt)]§ cos® 9y,
where we have supposed that the relative penguin/tree strong phase ¢ is the same
for the three amplitudes (see previous discussion), and correspondingly:

dl'(B* — D*+D*9)
d cos U¢,

x (M3 + ML +R?

— 2Rcosdscosf

— 2Rsiné, sin ,B]Z— sin® 9, (61)
+ M3l +R?~2Rcosé, cosf

— 2Rsind, sin ﬂ]—;3 cos® s,

with d, the relative penguin/tree strong phase of this decay. From these expressions
it should be possible to fit separately the values of R and M; (i =||, L,0) from the
charged decays, even if no direct relation exists between the strong phases of the
two decays.

Actually, the complete relation between charged and neutral B decays has the
form([4]:

A(B_ N D(*)OD(*)—) _ A(Bo N D(*)+D(*)—) +A(BO — D(*)OD(*)O) . (62)

Since from the previous discussion we know that the left hand side of eq.(62) is phase-
independent, the measurement of B> — D~D? could furnish the value of the isospin
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amplitude Ao, which, in the factorization framework, is the same as A; (see eq.(57)).
Thus, the separate measurement of BY — D~D* and B — D°D° would give the
value of the relative F'SI isospin phase §;. From these considerations we see that the
measurement of the decay B® — DYDY can have a significant relevance for detecting
the FSI effects and could potentially allow to extract the value of the relative phase
d; between the two different isospin amplitudes. We stress, however, that, since both
tree and penguin processes contribute to / = 0 and [ = 1 amplitudes, this phase
is not directly related to the relative penguin/tree phase § previously introduced
in eq.(19) and responsible for the uncertainty on the CP asymmetry. However, as
results from a recent analysis[23], a careful study of the isospin amplitudes of the
B — DD together with the information extracted from the B — J /UK, channel
could lead, at least in principle, to the determination of the penguin-induced phase
contribution.

Introducing for completeness the B — DD* channel, which obviously is not
a CP eigenstate we note that, since only one wave contributes to the decay, the
angular analysis is not useful in this case. However, one can construct the linear
combination with definite CP-parities:

1
7

It has been demonstrated[24] that, in the heavy quark limit (HQL)[21], the process
B — |4) occurs at the tree level, while B — |-) can occur only through the
exchange diagram. As a result, the state D**D~ + D*~ D% is predicted to be a
CP-eigenstate with an error that should be as small as 1%. Clearly, this result
is model-dependent and can be somewhat affected by deviations from the HQL.
Moreover, the measurement of the rate of the B — D°DP decay can provide useful
tests about the significance of the exchange contribution. However this channel,
having only one polarization amplitude, avoids the problem of the ”multiplication”
of strong phases which occurs in the decay to two vector mesons, and, moreover, has
little contribution from the penguin diagram since a vector meson is present in the
final state (R ~ 0.03). Therefore, B — DD* decays offer interesting opportunities
for the measurement of the unitarity angle 8 coming from D*D* and DD decays.

+) = == (ID**D7) £ |D*"D*)) . (63)

5 Conclusion

In this note, we have presented a theoretical analysis of the B — D™ D™ decay
modes, with particular attention to the strong penguin and strong phases pollution
to the CP violating asymmetry. We have found that, since the penguin/tree rate
R is expected to be important in the scalar case the uncertainty on the asymmetry
coming from the presence of the strong phase § can be substantial, reaching the 20%
level.
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On the contrary, the penguin contribution to vectorial decays is a factor of 3
smaller and consequently even the strong phase effects are expected to be less impor-
tant. This allows, as a first approximation (roughly at the 6% level), to neglect these
contributions, performing a much more simplyfied analysis. In any case, the study of
isospin correlated charged B decays and in particular of the decay B° — D°D? can
provide important informations on the absolute values of the amplitudes involved
and moreover could give the values of the isospin amplitudes and relative phases.
At least in principle, this could allow the extraction of some information on the
relative strong phase § between penguin and tree amplitudes, which at the moment
is probably the main source of uncertainty on the CP-violating asymmetry.

Finally, the 'mixed’ vectorial decay B — DD*, though not being a CP eigen-
state, is expected to be a source of interesting experimental information and could
provide comparative tests on the measurement of the unitarity angle § from the
other channels.
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Appendix

These are the complete angular distributions (we have chosen a; = 0).
Helicity Frame
d*T'(B°(B%) — D*tD*")
dcos¥,dcos 9dg
k 9 regl o0 o 2 2
= 2T e t{—2— sin® 9 sin® 9o [(Mf + M) = (+)
—(+) (M% - Mﬁ) sin(20) sin(Amt)] +
1
+ 3 sin? 9, sin? ﬁz[((Mﬁ - M)+ (=)
+(=) (M} + M?)sin(26) sin(Amt)) cos(2¢) —
+(-)
+
+

2M M L (sin o cos(Amt) + (—)
cos ) cos(23) sin(Amt)) sin(2¢)] +
2 cos? ¥ cos® 9o M3 + (—)M2sin(23) sin(Amt)] +

%sin(2191) sin(299)[(M ) Mo cos(ay — o) + ()
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+(=) MMy cos(ay — ag)sin(23) sin(Amt)) cos ¢ —
—  (MiMysinagcos(Amt) + (=)
+(—=) MM cosagcos(28sin(Amt)) sin ¢]}

Transversity frame

d*T(B%(B%) — D**D*")
d cos ¥,d cos V- d oy,
k 9 —Ttf pq2 _
i s onEe M+ (=)
sin(20) sin(Amt)) sin® 9, sin® 9, sin? ¢y, +
M3 (1 — (+) sin(28) sin(Amt)) sin® 9, cos® I, +
2M3E(1 + (=) sin(28) sin(Amt)) cos® 9, sin? 9y, cos? ¢y,
MM, sin® ¥, sin(209;,) sin @, [sin oy cos(Amt) + (—)
cos(20) cos oy sin(Amt)] +
%MOM“ sin(29, ) sin® 9, sin(26y,) (1 + (=)
sin(20) sin(Amt)) cos(qy; — ap) +
%MOMJ_ sin(29, ) sin(29,,) cos ¢y [sin g cos(Amt) + (=)

cos(203) cos ag sin(Amt)]} .

+ + +
+ T+ T+ A+ 47

+
L
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