INFN - Istituto Nazionale di Fisica Nucleare
Sezione di Genova

INFN/AE-96/08
2 Aprile 1996

IMSc-96/03/07

BEAM OPTICS OF THE DIRAC PARTICLE WITH ANOMALOUS
MAGNETIC MOMENT

M.Conte,* R. Jagannathan,' S.A. Khan', M. Pusterla?

* Dipartimento di Fisica dell’Universita di Genova
INFN, Sezione di Genova, Via Dodecaneso 33, 16146 Genova, Italy
CONTEMQ@GENOVA.INFN.IT

t The Institute of Mathematical Sciences
C.I.T. Campus, Tharamani, Madras - 600 113, India
JAGANQIMSC.ERNET.IN , KHANGIMSC.ERNET.IN

t Dipartimento di Fisica dell’Universitd di Padova
INFN, Sezione di Padova, Via Marzolo 8, 35131 Padova, Italy
PUSTERLAQPADOVA.INFN.IT

Abstract

Beam optics of a spin-% particle with anomalous magnetic moment is
studied in the monoenergetic and paraxial approximations based on the Dirac
equation; the treatment is at the level of single-particle dynamics, considers
the electromagnetic field as classical and disregards radiation aspects. The
general theory, developed for any magnetic optical element with straight axis,
is illustrated by computing the transfer maps for the spin components and
the transverse phase-space, including the transverse Stern-Gerlach kicks, in
the case of a normal magnetic quadrupole lens. The transfer map for spin
components embodies an accelerator optical and quantum mechanical ver-
sion of the quasiclassical Thomas-Bargmann-Michel-Telegdi (Thomas-BMT)
equation. The longitudinal Stern-Gerlach kick in a general inhomogeneous

magnetic field is also discussed.



1. Introduction

We present an approach to the quantum theory of accelerator optics for
a spin—% particle with anomalous magnetic moment, including the spin evo-
lution, at the level of single-particle dynamics and disregarding radiation
aspects, based, ab initio, on the Dirac equation. Here, we are concerned only
with monoenergetic and paraxial beams. The electromagnetic field is treated
as classical.

As is well known, the present understanding of accelerator beam optics is
based mainly on classical mechanics and electrodynamics (see, e.g., [1] and
references therein). The main framework for studying the spin dynamics
and beam polarization is essentially based on the well known quasiclassical
Thomas-Bargmann-Michel-Telegdi (Thomas-BMT) equation(see, e.g., [2]),
though the quantized nature of radiation is taken into account (see, e.g., [3]-
[5]) to understand the influence of the radiation effects on the orbital and
spin motions (fluctuations from the classical behaviour), particularly for elec-
trons and positrons. The Thomas-BMT equation has been understood on
the basis of the Dirac equation, independent of the beam optics, in different
ways (see [3] and references therein). Understanding the orbital motion in
an axially symmetric focusing magnetic field by solving the Dirac equation
has also been attempted [3]. Quantum mechanical implications for low en-
ergy polarized (anti)proton beams in a spin-splitter device ([6}-[10]), using
the transverse Stern-Gerlach kicks, have been analysed on the basis of the
nonrelativistic Schrédinger equation [11],[12]. But, so far, in the realm of
accelerator optics there does not seem to have been any serious attempt to

understand the quantum mechanics of both the orbital and spin dynamics



of spin- particle beam based on a single unified framework derived from
the standard Dirac theory. The main aim of this paper is to initiate the
development of such an approach.

Independently, an algebraic approach to the quantum theory of electron
optics (or charged-particle optics, in general) has been under systematic de-
velopment using the Dirac, Klein-Gordon and the nonrelativistic Schrodinger
equations ([13]-[18]) (see also [19] for a formal scalar quantum theory of
electron optics with a Schrédinger-like basic equation in which the beam
emittance plays the role of Planck’s constant %, and [20] for a path integral
approach to the optics of Dirac particles). In Refs. [13]-[15] and [18], devel-
oping the spinor theory of electron optics mainly with applications to high
voltage micro-electron-beam devices in mind (see [21] for the traditional ap-
proach to the quantum mechanics of electron optics), the spin dynamics has
not been explicitly considered. Here, closely following [13]-[15] and [18], we
present an approach to understand the accelerator beam optics, at the level
of single-particle dynamics, neglecting radiation effects, and treating the evo-
lutions of the transverse phase-space, longitudinal momentum and the spin
components within a unified framework : the main point here is that in this
approach the spin dynamics, responsible for both the Stern-Gerlach kicks and
the Thomas-BMT spin precession, and the orbital dynamics follow uniquely
as parts of a single dynamics obtained directly from the canonical Dirac equa-
tion without having to add an effective semiclassical spin Hamiltonian [22]
to a semiclassical orbital Hamiltonian.

In Section 2 we present the general framework of our theory for any ar-

bitrary magnetic optical element with straight axis; details are given for the



first order (paraxial) approximation. In Section 3 we illustrate the general
theory by computing the transfer maps for the spin components and the
transverse phase-space, including the transverse Stern-Gerlach kicks, in the
case of a normal magnetic quadrupole lens and also discuss briefly the lon-

gitudinal Stern-Gerlach kick [23] in a general inhomogeneous magnetic field.

2. Beam optics of the Dirac-particle : General theory for a mag-

netic optical element with straight axis

We are interested in studying the spin dynamics and optics of an almost
monoenergetic paraxial Dirac-particle beam transported through a magnetic
optical element with straight axis comprising the static field B = curl 4
associated with a vector potential A. Let us consider the Dirac particle to
have mass m, charge ¢ and anomalous magnetic moment p,. The beam

propagation is governed by the stationary Dirac equation

Hp |¢yp) = E |¢p) , (2.1)

where |1p) is the time-independent 4-component Dirac spinor, E is the en-
ergy of the beam particle and the Hamiltonian Hp, including the Pauli term

is given by

Hp = Pmc®+ca-(—ihV —qA) — p.0% - B,



It should be noted that we are dealing with the scattering states of the time-

independent Hamiltonian Hp with conserved positive energy

E = +y/m2ct + c?p?, p=|pl, (2.3)

where p is the momentum of the beam particle entering the system from the
field-free input region. Let the system have its straight optic axis along the
z-direction. We shall consider the beam to be paraxial and moving along the

positive z-direction such that for any constituent particle of the beam

prp:>0, |p:|<p, |pyl<p. (2.4)

We shall use the right handed Cartesian coordinate system with z point-
ing along the design trajectory, y as the vertical coordinate and z as the
horizontal transverse coordinate.

Since we want to know the changes in the beam parameters along the
optic axis of the system (i.e., the +2-direction) we have to study the Dirac

equation (2.1) rewritten as

ihoo- [40) = Hp o) (25)

To this end, we multiply (2.1) from left by a./c and rearrange the terms to
get the desired form (2.5) : The result is that

Hp = -pBxe.—qA. 1+ a.a) &) + (fa/c)Ba.¥ - B,

(& o (1 0 _ |E+mc?
X = (o —5‘11)’ ]l_(o 1)’ = E —mc?’

w1 = (-ihVL—qA))=(p. —qAL). (2.6)



Noting that, with

M= Z(ltxe), M =—5(1-xa), (2.7)
one has
M(Bxe. )M =, (2.8)
we define
[¥p) = M [y) . (2.9)

This turns (2.5) into
ol W) =W W), H=MHpM™ = —pf+E+0,  (210)

with the matrix elements of £ and @ given by

by = —ghia—(pa/20){(¢+€) o L B+ (¢-¢7) 0B},
&2 = En=o0,
b = —qh1—(pa/20){(€+€") 0 L-BL—(¢-¢7)0.B.},
(2.11)
and

On = Op=o,

O = &lo L itL—(pa/2){i (€ - &) (Bioy - Byoy)
—(¢+€7) B.a}|,

On = —&7 [o L L+ (na/2) {i (€ - €7) (Baoy — Byos)
+(e+&7) B.a}| . (2.12)

The significance of the transformation (2.9) is that for a paraxial Dirac

spinor propagating in the +2-direction [¢') is such that its lower spinor com-

ponents are very small compared to the upper spinor components. To see



this, let us consider the standard free Dirac plane-wave associated with pos-

itive energy F, namely,

1 |[¥m

s ()
(rol¥p)p(2) = (ry |¢§Z)£()
(rL [¥p4)p (2)

_ 1 _€ep
4 1r3h3E {s- p—+8+pz}/£p
{s4p+ —s_p.}/ép

o yrs )

P+ = Pc +ipy, P- =p;—ipy, 1'_1_=(:B,y),

lsy >+ |s_|?=1. (2.13)
Correspondingly,
(ry W’i )r (2)
o - [ EEEEE
(ro[¥i)r(2)

{s+(p+p:) +s-p-}/p
1/ €ep {s-(p+p:) — s4p:}/p
4V 233 E | —{s+(p—p:) —s-p-}/ép

{s-(p —p:) + s+p+}/ép

x exp{= (B 7s+2.2)} (2.14)

and for a paraxial plane-wave moving in the positive z-direction, satisfying
the condition (2.4), the upper spinor components of |¢), namely, [¢])r
and [v;) -, are obviously very large compared to its lower spinor components

|¥3) - and |9}) .. We can take this to be generally true for any paraxial beam.



Then, in the paraxial situation, the even operator £ in (2.11) does not cou-
ple the large upper components and the small lower components while the
odd operator @ in (2.12) couples them. This is exactly like in the nonrela-
tivistic situation obtained in the standard Dirac theory with respect to time
evolution. This, and the striking resemblance of (2.10) with the standard
Dirac equation (2.1) make us turn to the Foldy-Wouthuysen (FW) transfor-
mation technique [24] (see also, e.g., [25]) to analyse (2.10) further; note that
in (2.10) the analogue of mc? is —p since ih% corresponds to —p,.

Let us recall that the FW-technique is useful in analysing the Dirac equa-
tion systematically as a sum of the nonrelativistic part and a series of rela-
tivistic correction terms. The FW-technique is essentially based on the fact
that § commutes with any even operator with off-diagonal 2 x 2 block ele-
ments equal to o, and anticommutes with any odd operator with diagonal
2 x 2 block elements equal to 0. So, applying this technique to (2.10) should
help us analyse it as a sum of the paraxial part and a series of nonparaxial

(aberration) correction terms. To this end, we substitute in (2.10)

[¥') = exp (2%/:’@) [ ™) . (215)
The resulting equation for |’l/1(1)> is
iha% BO) = HW[p0),

HY = exp (—515;6(’5) H exp( p )
. 1 _.\0
i (3,00) 5 {oe (390

— _pﬂ + }-‘:'(1) + @(1) ,

B = £ po" 4
2p



-~ 1 -~ 3 6 ~
W = _= T
o 257 { 0,€] +in azo} toee (2.16)

The effect of this transformation is to eliminate from the odd part of ' the
terms of zeroth order in 1/p ; note that O™ of H() contains only terms of
first and higher orders in 1/p (not shown explicitly above). By a series of
successive transformations with the same recipe (2.15) one can eliminate odd
parts up to any desired order in 1/p. We shall stop with the above first step
which would correspond to the paraxial approximation. Let us write down
explicitly, for later use, the 11-block element of H() :

HiY = —p1+EY

€h2 2h2

1
4—p2(curlB)z + 58;3— (Bi + 72Bf)} 1

1
—-; {(q + G)BZSZ +7€B_]_ . S_]_}

€ n " N -
+2_p2{7(BzSJ_'7rJ.+S.L'7rJ_Bz)"(BJ_'7|'J_+7"_L'BJ_)SZ},

1
i} =2 4+d, €=2mps/h, v=E/mc, S=§ha.

(2.17)

Before proceeding further, let us find out the nature of |1/J(1)> by looking
at the field-free case again. For |¢) in (2.13)

|,¢,(1)>F = exp (—g};ﬂxal 'PJ_) 1) p ~ (]1 - %ﬂxal 'PJ.) 1¥')F

éh P;F(z)
(ra ) ()= | P20
F (o 83”) ()

(7'.]. 1/;‘(11)>F(z)
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B (PO
L1 | s ap i {(5) 3
AVERE ] e (1o - e b {(0-5) 5

R R IR (RO |

X exp {%" (P 7T +Pzz)} ) (2.18)

showing clearly that the transformation (2.15) keeps the upper spinor com-
ponents of |1/J(1)> large compared to its lower spinor components.

Since the lower pair of components of |¢(1)> (|1/J;(,l)> and |1/J(,1)>) are al-
most vanishing compared to the the upper pair (|¢'§1)> and |¢v§1)>) and the
odd part of H() is negligible compared to its even part we can effectively
introduce a Pauli-like two-component spinor formalism based on the repre-
sentation (2.16). Naming the two-component spinor comprising the upper
pair of components of |’l/1(1)> as |1Z> and calling H{Y) as H it is clear from (2.16)
and (2.17) that we can write

. 6 - L _ |¢l>
i [#) = A). )= ,
2 -
[42)
- 1.,
H =~ |-p—qd: + E;W.L
1
> {(g+€)B.S, +~eB.-8,}, (2.19)

where H has been approximated by keeping only terms up to first order in
1/p (see (2.17)), consistent with the assumption of paraxiality condition (2.4)
for the beam. Throughout the paper we shall approximate the various ex-

pressions by keeping only up to the lowest order nontrivial terms consistent
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with the paraxiality condition for the beam and the approximation symbol
(=) will usually imply this, even if not stated explicitly.

Up to now, all the observables, the field components, time, etc., are de-
fined with reference to the laboratory frame. But, as is well known, in the
covariant description the spin of the Dirac particle has simple operator repre-
sentation in terms of the Pauli matrices only in a frame at which the particle
is at rest. So, as is usual, we shall prefer to define spin with reference to the
instantaneous rest frame of the particle while keeping the other observables,
field components, time, etc., defined with reference to the laboratory frame.

To this end, we transform the two-component |¢~> to an ‘accelerator optics

representation’ |¢(A)> defined by

|¢~> = exp {ZLp (frzoy — i'ryaz)} |¢(A)> . (2.20)

The reason for the choice of this transformation will become clear shortly.

Now, the z-evolution equation for |(4)) is

iﬁ% Ay = W),

1 m
HA o~ (—p— gA, + 2—&1) +1™q,.s,
P p

with 2, = —7im {¢B+e(By+vBL)}, (221)

where B)| is the field along the z-direction (or the longitudinal component
of B on the design trajectory). When ¢ = te we can write € = qa =
g(g — 2)/2 where g and a are, respectively, the gyromagnetic ratio and the
magnetic anomaly of the particle; for neutron € = gle|/2. It may be noted

that the accelerator optical quantum Hamiltonian H(4) is hermitian though
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Hp in (2.6) is nonhermitian. The nonunitary similarity transformations we
have made have resulted in this change and the hermiticity of H(4) implies the
approximate constancy of the total intensity of the beam in any transverse
plane along the optic axis.

Since the z-evolution of I't,b(A)) is unitary we can associate the beam with

a wavefunction normalized in such a way that, at any z,

<¢(A)(z) |¢(A)(z)> =§; /dzn < ,(A)(z)l n) (u

When the beam is described by a 2 x 2 statistical (density) matrix
it iy
p) = ; (2:23)

ng) ng)

Y=1. (2.22)

with the normalization

Te (p4)(2)) = / &y (r

at any z, the accelerator optical z-evolution equation is

()| 71y =1, (2.24)

0
1ha—p(‘4) = [H(A) : p(A)] . (2.25)

If the beam can be described as a pure state we would have p(4) = |’¢(A)> <¢(A) |
Let us now define the average of any observable O at the transverse plane

at 2 to be given by

<O(A)>(z) — ((A)(z) (A))
Z //dzrldz'rl "'J_

1,j=1

pl] )(z)l rJ_> <7'J. |

L),

(2.26)

where O4) is the operator representing O in the accelerator optical repre-

sentation.
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For any observable O, associated with the operator Op in the standard

Dirac representation (2.1) the corresponding O™ can be obtained as follows :

O = the hermitian part of the 11 — block element of
(exp {-% (7,5, — 'fryi},,)}
1o\ (1
xexp|——BO ) MOpM~"exp | —FO
2p 2p
X exp {% (7 Xy — 7?”2,)}) . (2.27)

In the Dirac representation the operator for the spin unit vector correspond-
ing to the spin as defined in the instantaneous rest frame of the particle

(see [3]) is given by

o — 2O TR0 ) P
s 3 2E(E+mc?) E (2 28)
R=—= . .
2 it —o 4 &lo Tiwo )
E 2E(E+mc?)

If we now compute the corresponding operator ng) in the accelerator optical
representation, using the formula (2.27), it is found that up to first order

(paraxial) approximation

ot

s ~ 3 (2.29)

as is desired. In the Dirac representation the position operator in free space
can be taken to be given by the mean position operator as indicated by the
FW-theory (or what is same as the Newton-Wigner position operator). In
presence of the magnetic field we can extend this position operator by the
replacement p — # and symmetrization (to make it hermitian). Then,
the operator for the transverse position coordinate in the accelerator optical

representation becomes just the canonical position operator »; in the first
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order approximation. From these considerations it is clear that in the accel-
erator optical evolution equation (2.21) S represents the spin as defined in
the instantaneous rest frame of the particle; the field components and other
operators are all defined with respect to the laboratory frame. It should be
noted that in this formalism, with z as the evolution parameter (analogous
to time ¢), —H(4) corresponding to —ihb%, will represent p,, the z-component
of canonical momentum operator (analogous to the energy operator); hence,
the operator —(H{#) 4 ¢A,) will represent m, the z-component of the kinetic
momentum.

If we now work out the equations of motion for the average values of
r, using (2.25), they have to be consistent, ¢ la Ehrenfest, with the tra-
ditional transfer map for the phase-space, including the transverse Stern-
Gerlach kicks (see, e.g., [8,23]), in the paraxial approximation. The transfer
map for the averages of spin components, in the lowest order approximation,
has to be consistent with the Thomas-BMT equation. This is confirmed eas-

ily by a preliminary analysis as follows. From (2.25) and (2.26) we have, in

general,
di (OW) (2) = -ih ([0, B#?D]) (2) + <330“<A)> (2). (2.30)
z 2z
To compare (2.30) with the time evolution of classical O we can use the
correspondence
d

d ;- d ;- d ;-
-CEO — 7 <0(A)> ] ‘Uz—d; <0(A)> ~ _'yLmE <O(A)> ’ (2.31)

since

v = i) = =2 (AW +g4.)
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p 1 ) 1
—_——— - —(2,-8)~x — .
ym  2ymp (#2) p P o (232)
Then, for », we get
LA ([rr, BY]) (2) = 1w (2.33)
dt hym ’ Tm ’ )

identifying 7, as the transverse kinetic momentum. For 7

d,. i . 0
S~ T2l BO]) - 2L (0 4,)

1

~ #(%(ﬁ-xB—Bxﬁ-)l>—(Vl(n,-S))
= 7im<%(ﬁ-xB—Bxﬁ-)L>

+7Lm (V. {(g+€)B.S. +(a+7€)BL-5.}) ,

with #, ~p. (2.34)

Equation (2.34) is just in accordance with the quasiclassical equation for
motion under the Lorentz and Stern-Gerlach forces up to the approximations
considered. From this it is clear that (»,) and (#.)/p ((p.)/p in the field-
free regions) can be identified with the transverse position and slope of the
classical ray corresponding to the wavepacket represented by pA),

In the case of spin

—(8) ~ —z——([8, HW]) = —% (S, 2,-8))=(R,xS), (235

as should be expected from the Thomas-BMT equation. The vector P char-

acterizing the polarization of the beam is given by the relation

(8)=3(e) =3P (2.36)
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To obtain the required maps for transfer of the averages ((r), (%), (S))
across an optical element we can employ the quantum mechanical version [18]
of the technique developed by Dragt et al. (see [26,27]) in the context of
classical accelerator optics. We shall explain this in the next section through
the example of a normal quadrupolar magnetic lens. Though we have taken
(%;) =~ pin the above preliminary analysis, following (2.32), to understand the
small variations in the longitudinal kinetic momentum, including the Stern-
Gerlach kicks [23], a more careful analysis of the evolution of (#,)(z) along
the z-axis is needed. We shall discuss this in the next section by examining
the case of a general inhomogeneous magnetic field.

Before closing this section let us note that the Pauli-like two-component
spinor formalism developed above is valid for all p, from the nonrelativistic
to the extreme relativistic case; it will, of course, become identical to Pauli’s

two-component formalism in the nonrelativistic case when we can take p ~
\/2m(E — mc?).
3. Transfer maps for phase-space and spin

First, let us consider an ideal normal magnetic quadrupole lens field given
by
B = (-Gy,—Gz,0), (3.1)

a.ssocia.ted with the vector potentia.l
A= (0 0 —lG (:c2 - yz)) (3.2)
1Y 2 ?

where G is assumed to be a constant in the lens region and zero outside. Let

the z-coordinates of the zy-planes at the entrance and exit of the quadrupole
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magnet of length £ be 2, and 2, (the subscripts ‘n’ and ‘x’ denoting e‘n’trance
and e‘x’it, respectively, and £ = z, — 2,). Throughout the present section we
shall be working with the accelerator optical representation and shall omit
the superscript (A).

Now, the basic accelerator optical Hamiltonian of the system is

( HF:—p-i-%)ﬁf, for 2 <z, and z > 2z,

H(z) =  Hi(2) = —p+ 3,81 — 346G (=* —9*) + P (yor +20,),  (3.3)

for 2, < z< 2z, with n=(q+v¢)GLh/2p*.

The subscripts F' and L indicate, respectively, the field-free and the lens

regions. Let us write H as a core part H plus a perturbation part H :

H(z) = H(z)+H(z),

Hr =Hp, for z< 2z, and z> 2y,
H(z) =

Hi(z)=-p+ %}ﬁ}_ - 129G (z?2 —y?), for z,<z<z.
ﬁp=0, for 2< 2z, and z > 2,
H(z) = i (3.4)
Hi(z) = 2 (yo, +zoy) , for z, <z<z.
A formal integration of the basic z-evolution equation (2.25) for p leads,
in general, to

p(z) = U (z,20) p(zo)Uf (2,20) y, 2220, (3.5)

with the unitary z-propagator U given by

U, = p oo {5 [ dc B Q)] (3.6)
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where p indicates the path-ordering of the exponential. Further, U is such
that
0
ith (Z, Zo) = H(Z)U (Z,Zo) y U(Zo, Zo) = I, (3.7)

where I is the identity operator and for any set of points {z,29,:-,2;} in

the interval [zg, 2] with z > z; > zj_1 >+ > 29 > 21 > 2,
U (z’ 20) = U(zv ZJ')U(ZJ"ZJ'—I) toe U(z2a ZI)U(ZI’ 20) . (3'8)

A convenient expression for U is given by the Magnus formula [28]: for any

2> 2,
Uuiz",7) = exp{—%/:” d¢ H()
i (Y [ [ acme), w6
e (Y [t [Pt [ ac (1), H (), H (G

£ [E), B, B G} - } . (3.9)

Let us now compute p(z) via an interaction picture. Defining

pi(2) = U0t (2,2) p(2)T (2:20) s T (2,20) = [exp {-% [ aAQ)}],
(3.10)

we have

ih%p; = [ﬁ, ’ p,'], ﬁ,’ = [jf (Z,Zo)ﬁf] (z,zo) . (3.11)

Then, since p;(z0) = p(20),

pi(z) = [j,-(z,zo) Pi(zo)ﬁ! (2, ZO) = ﬁi (2’20) p(ZO)ﬁ! (Z’ZO) )

b (2,2%) = p[exp{—ih /z:d(ﬁ;((;)}]. (3.12)
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Now, from (3.10) and (3.12), we see that
p(z) = U(z,20) U; (2,20) p(zo)ﬁ,f' (2,20) Ut (2,20) .

Hence, for the average of any observable O we have

(3.13)

<O> (2) = Tr <p(z)0> =Tr <17 (2,20) Ui (2, 20) p(20)U} (2, 20) Ut (2, 20) 0)

= Tr(p(20) {T] (2:20) U (2, 20) OT (2,20) Ui (2, 20)}) -

(3.14)

This equation (3.14) provides the general basic formula to compute the trans-

fer map for <0> across the system as will be seen below in the case of the

present example.

Let us take zp and 2 to be respectively in the field-free input and output

regions of the quadrupole magnet : 2 < 2,, 2 > 2. Using (3.8) and (3.9),

and after some straightforward algebra we get

[_](Z, 20) = ijF(Z, Zx)ﬁL(zx,zn)ﬁF(zn’ 20) ’

[7.' (2, Zo) = ﬁi,F(zazx)ﬁi,L(Zxazn)(ji,F(znsz) = f]i,L(zxa Zn) ’

_ i 1
Ur(z,2¢) = exp {%Az> (p - Z’ﬁi)} , with Azy, =2z — 2

_ i 1, 1
UL(zx, Zn) = exXp {ﬁz [(P - %P}_) + EPK(:BZ - yZ)]} ’

with K = ¢G/p,

_ i 1
Ur(zn,20) = exp {%Ak (p - Z’ﬁf)} , with Az, =2z, — 2z,
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ﬁi,L(zxa zn)

el (60-0)-
(=5

A exp {—%n [((1 + KTP) pz + g (1 + %) 13,) oy
(e

Now, using (3.14) and (3.15) the transfer maps for (r,) and (p,) (=

(#.) in this case) are obtained as follows

: with A = h/p, the de Broglie

wavelength,

()2 \ (Th T 0 0\ ([ (=)(z) )
(6=) (2)/p Th T 0 0 (Bz) (20)/p
(y)(2) ) 0o 0 T Th (y)(20)

\ B,)(2)/p) \ O Th T ) \\ () (2)/p ]

+7

( Th T )
I T5
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( 1 Az ) cosh (\/I—(Z) #sinh (\/I?E) ( 1 Az )
0 1
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(3.16)

So, we have got a fully quantum mechanical derivation of the traditional
transfer map for the transverse phase-space, including the Stern-Gerlach ef-
fect (see [8]), in the case of a spin-} particle beam propagating through a
normal magnetic quadrupole lens : the lens is focusing (defocusing) in the
yz-plane and defocusing (focusing) in the zz-plane when K > 0 (K < 0).

The transverse Stern-Gerlach kicks to the trajectory slope (6(p,)/p ~ 1) are
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seen to disappear at relativistic energies, varying like ~ 1/vy. At nonrela-
tivistic energies, with 4 ~ 1, the kicks are ~ G€u/mv? where u is the total
magnetic moment. These results are in general agreement with the conclu-
sions reached earlier [8],[23] based on semiclassical treatments. The spin map
obtained above contains the Thomas-BMT map plus the lowest order cor-
rections; it should be also noted that the polarization transfer map is linear
in the polarization components only when there is no spin-space correlation.

Using the general theory, let us now understand the longitudinal Stern-
Gerlach kicks [23] in a general inhomogeneous magnetic field. For #, =

—(H 4 qA,) we get, from (2.30) and (2.31),
Sy ~ P lLga W _ (9 (g
= (#2) m{h([ﬂ + Az, BO]) — (=~ (W + ¢4,)
_ ? /i W] _10..\_[0 .
N 'ym<h[qu’H ] 2paz7rl> <(9z(ns S)

- i(%(ﬁ-xB—Bxir)z>—<%(ns's)>

ym

l

= L<%(1‘pr—Bxir)z>

ym

+7im <% {(¢ +€)B.S. + (g +7v€)By - Sl}> . (317)

The first term of the r.h.s. of (3.17) obviously represents the Lorentz force
and the rest of it accounts for the Stern-Gerlach force due to the longitudinal
gradient of the field (i.e., gradient in the z-direction). Multiplying both sides
of (2.34) and (3.17) by 1/v, = ym/p and collecting them together we get for

the z-evolution of (#)

4w~ (1 >
dz('rr) ~ p<2(1r><B B x #)

+=(V{(g+€)B.S. +(g+v€)BL-S.}). (3.18)

I
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For any given field configuration B, with a specified A, the solution of this
equation (3.18) is given by (#)(z) = Tr <p(z0)U“(z,zo)'i‘rU(z,zo)>, for any 2
> zp, and hence the spin-dependent Stern-Gerlach kick to the kinetic mo-
mentum and the resultant spin-dependent splitting of the kinetic energy at
any z > 2o can be calculated.

From (2.34) and (3.17), or (3.18), it is clear that

d . qg /1,. N
:ﬁ(ﬂ') R~ —<§(1pr—Bx1r)>

Ym

1
+7_m (V{gB-S+¢(B,S,+vB.-S.)})

_ i(%(fr><B—Bx1‘r)>—(Vﬂ,-S), (3.19)

ym
in which the first term represents the Lorentz force and the second term rep-
resents the Stern-Gerlach force. This equation for orbital motion (3.19), ac-
counting for both the Lorentz and the Stern-Gerlach forces, and the Thomas-
BMT spin evolution equation (2.35), together, justify the term §2,- S as the
effective spin Hamiltonian [22] to be added to the orbital Hamiltonian, on
the basis of the Dirac equation.

In the instantaneous rest frame of the particle with oy = 1 the second term

in (3.19) is seen to correspond to the familiar Stern-Gerlach force
FSG = ——VU, U= — Qo - B 3 (320)

where p is the total magnetic moment of the particle; note that in (3.20),
apart from the spin, the field components, the coordinates, etc., are also
defined in the rest frame of the particle. Having derived the classical Stern-
Gerlach force (3.20) from the Dirac equation, of course up to the parax-
ial approximation in the context of beam dynamics, one can use the stan-

dard classical relativistic dynamics [29,30] to compare the relative merits and
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demerits of spin-splitter devices employing the transverse and longitudinal
Stern-Gerlach kicks. Such a comparison (see [23] for details) seems to suggest
that, at high energies, while the transverse kick decreases as - increases, as
we have seen already above, the longitudinal kick has a much more favourable
feature of becoming almost independent of energy as < increases; of course,

the kicks are larger at lower energies in both the cases.

4. Conclusion

In fine, we have demonstrated how one can obtain a fully quantum me-
chanical understanding of the accelerator beam optics for a spin—% particle,
with anomalous magnetic moment, starting ab initio from the Dirac-Pauli
equation. To this end, we have used a beam optical representation of the
Dirac theory, following [13]-[15] and [18], and have shown that such an ap-
proach, in the lowest order approximation, leads naturally to a picture of
orbital and spin dynamics based on the Lorentz force, the Stern-Gerlach
force and the Thomas-BMT equation for spin evolution, as is to be expected.
Only the lowest order (paraxial) approximation has been considered in detail.
To illustrate the general theory we have considered the computation of the
transfer maps for the spin components and the transverse phase-space, in-
cluding the transverse Stern-Gerlach kicks, in the case of a normal magnetic
quadrupole lens, and a brief understanding of the longitudinal Stern-Gerlach
kicks in a general inhomogeneous magnetic field. It is found that the above
theory supports the spin-splitter concepts based on transverse and longitu-
dinal Stern-Gerlach kicks ([6]-[12],[23]). It is clear from the general theory,

presented briefly here, that the approach is suitable to handle any magnetic
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optical element with straight axis and computations can be carried out to any
order of accuracy desired by easily extending the order of approximation. In
fact, even the lowest order approximation considered reveals some correction
terms not usually realized in the traditional quasiclassical theory. Exten-
sion of the theory to include electric fields is straightforward (see [14,18]).
Inclusion of the effects of radiation in this approach should be possible by

following a procedure like in [5].
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