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As pointed out by some authors ( [12]), monopoles might form bound states with protons or heavier nuclei by
means of magnetic moment interaction. However it is likely that if monopoles capture protons or nuclei, they will
also capture a number of electrons, by the Coulomb force, which will nearly neutralize the electric charge. Similarly,
if monopoles captures electrons, Coulomb repulsion will likely prevent them from capturing a large number. Thus, if
capture is possible, the resultant state will not have a net electric charge much greater than that of a proton or an
electron. Since monopole-electron and electric charge-electron scatterings are of a transverse and longitudinal nature
respectively, the stopping power of a dyon would be the incoherent sum of the individual monopole and electric
charge stopping powers. In the calculations which follow, we will consider the problem of the energy loss of both bare
supermassive magnetic and electric charges. The stopping power for dyons should then be given by the sum of these
two.

III. CALCULATION OF STOPPING POWER IN A CLASSICAL ELECTRON GAS

As we have stated previously, the treatement of stopping power in [10] overestimates the energy loss in non-
degenerate electron gases such as is found in main sequence stars. Electrons in non-degenerate gases can collide with
the supermassive charged particle in both head-on and overtaking collision resulting in a transfer of energy both to
and from the electrons. The motion of such a particle through the gas results in a surfeit of head-on collisions an thus
a net loss of energy to the gas. This mechenism was first proposed by Fermi [13] [14] to describe the acceleration of
cosmic rays through multiple interactions with massive, slowly moving, magnetic regions in the interstellar medium.
The calculations of the stopping power of massive charged particles in a non-degenerate gas is similar, except here we
concentrate on the energy loss of the massive particle rather than on the acceleration of the gas particles.

Consider that a particle of mass M > m (m is the electron mass) moves with a velocity V through a nonrelativistic
nondegenerate electron gas of temperature T', and suppose that the particle has either magnetic charge g or electric
charge ¢ = ze, where z could be fractional, such as in the case of the fractional electric charged particles with mass
of the Planck scale in certain superstring model [15]. If we choose the +2z axis along the particle’s trajectory, we can
write the electron momentum distribution in the particle’s rest frame as

n(F)d3F = (2mmkT)~3/2Ne=mY /2T o= [2mkT o=p:V/KT g3 5 (3.1)

Here N is the electron density, k is Boltzman’s constant, and 7 is the electron momentum in the particle’s rest frame.
The time rate of change of energy transferred to the particle by scattered electrons with initial (final) rest frame
momentum F; (P’) is

dE P~y - 4o
o= [ [ ar6s000) L niz) 5 FGw)a0. (3:2)
7 Q
Here p = |Bi| = | Ft|, p/m is the magnititude of electron velocity in the particle’s rest frame, dQ2 = sin Ydypda, 7 is

the angle between p; and pt, a is the corresponding azimuthal angle, 6 (6¢) is the angle between the z axis and pi
(5t), do/dQ is the differential scattering cross section for electrons on the particle, and AT is the lab frame energy
transfer to the particle by a single electron. Since the amount of the lab frame energy that an electron gains in a
scattering is Vp (cosfs — cosf;), the energy conservation law gives

AT = —Vp(cosfy — cosb;) . (3.3)

We now choose a new (primed) coordinate system (see Fig.2) which also moves along with the particle but which
is rotated so that the z’ axis lies along 7; and the z axis lies in the 2’2’ plane. The unit vector 7 which lies in the
direction of Py can be expressed in terms of the unit vectors of the new coordinate system as # = sinYpcosa i +
sinsin a j' + cos k' . Similarly, we have k =sinf;# + cosf; k' so that we can now express cos ¢ in terms of 6;, ¢

and o as

cosf¢ = 7 - k = coscos f; + siny cos asin b . (3.4)
We can now rewrite eq. (3.2) as
dE 3. v, P [ . . do
== —/d pi n(pi) V— /51n1/)d¢da [(cos¥ — 1) cos @ + sin ¢ cos asin 8] == (¥) - (3.5)
dt m dQ
2 Q

Pi



INFN — Isti zionale di Fisi lare
Laboratori Nazionali del Gran Sasso

INFN/AE-96/35
11 Ottobre 1996

Energy loss of supermassive magnetic monopoles and dyons
in main sequence stars

S.P. Ahlen!, I. De Mitri®> *, J.T. Hong' ! and G. Tarlé3
! Physics Department, Boston University, Boston, MA 02215, USA
2 Dipartimento di Fisica dell’Universita’ di [’Aquila and INFN, L’Aquila, 67100, Italy
® Department of Physics, University of Michigan, Ann Arbor, MI 48109, USA
(October 10. 1996)

We estimate the energy loss rate for a supermassive magnetic monopole or dyon in the interior of
a main sequence star. For this purpose, the medium is shown to behave as a non-degenerate classical
electron gas, the nuclear contribution to the stopping power being negligible. A linear dependence
of the energy loss from the velocity of the particle is obtained. This result would provide a basic
input to detailed calculations of the dynamics of monopoles and dyons in our galaxy.

I. INTRODUCTION

Attempts to unify the forces of the nature have led to the prediction of supermassive magnetically charged par-
ticles. It has been demonstrated that any unified gauge theory in which Uemy (1) is embedded in a spontaneously
broken semisimple gauge group necessarily contains magnetic monopoles with masses of the order of 10'" GeV [1] [2].
Cosmological theories forsee the value, for the abundance of such particle in the Universe, which is either too large to
be in agreement with experimental observations or to low to be detectable (see [3] or [4] for a review on monopoles).
A number of astrophysical arguments have been used to obtain several upper limits to the magnetic monopole flux.
The most popular one is the so called Parker bound [5] (see also the Extended Parker Bound in [6]) which is based
upon the assumption for the galactic magnetic field not to be destroyed in accelerating magnetic charges. In the
following we will estimate the energy loss suffered by a supermassive monopole or dyon crossing a main sequence
star. In particular, we will evaluate the stopping power for both supermassive electrically and magnetically charged
particles, then we will obtain the correponding expression for a dyon. This will be very important for a complete
treatement of the dynamics of both monopoles and dyons in our galaxy.

II. ENERGY LOSS MECHANISMS OF MAGNETIC MONOPOLES IN MATTER

Ahlen [9] has summarized the status of monopole stopping power calculations prior to 1979. Most of these were
similar to calculations of the stopping power of fast electrically charged particles and were valid only for velocities
V' >> vy where vg is a typical electron velocity in the stopping material. In this regime it is reasonably accurate to
obtain the stopping power of monopoles from that for electric charges of the same velocity and charge @ by replacing
Q@ with g8, where 3 = V/c and g is the magnetic charge of the monopole. This prescription does not work for V' < v
as is shown by Ahlen and Kinoshita [10] in their calculations of the stopping power of slow monopoles in a degenerate
electron gas. It is found that the stopping power of slow monopoles is proportional to V', which is the same behaviour
displayed by electric charges. This is in contrast to the case of large velocities where the stopping power of electric
particles is proportional to 1/V? while that for monopoles is roughly constant.

It is not possible to take results from [10] and apply them to the Sun and the main sequence stars'. The reason
for this is that the electrons in this case are at a sufficiently high temperature and low density that the interparticle
separation is larger than the thermal De Broglie wavelength. Thus, the electrons are distinguishable and form a
classical ideal gas to a good approximation (see Fig.1) The electron gas considered in {10] was degenerate. Thus, in
any monopole-electron collision in [10] the monopole could not gain energy since the electron gas was in its ground
state. For a classical electron gas, this is not the case and the electrons can either lose or gain energy in collisions with
monopoles. This leads to a reduced value of stopping power compared to what would be obtained from the results of
[10]. In the next section we will show that is not difficult to take this effect into account.
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'It was done in [8] and [11].



The integral over o of the second term in square brackets is zero since do/dS) is a function only of the scattering angle
. The same integral for the first term is just 2. The stopping power dE/dz, where z is the pathlength in cm, can
be obtained from dE/dt by dividing by the particle velocity as follows:

dE.  1dE _2n 3= =2 . do

vl e d°pi n(pi) p cos&l/dzp smz,l)(l—cosw)dﬂ(lp) . (3.6)
pi

A. Energy loss of electric charge.

Suppose that the particle has an electric charge g. The differential cross section of electrons scattering off the
particle follows the well-known Rutherford formulae:

22,2
(ﬁ> S mee (3.7)
dQ /g 4p*sin®(¢¥/2)
Substituting this cross section into eq. (3.6), we first evaluate the integral over ¢ and we obtain
T siny(l — cos ) . Ymin
—————"tdyp = -8l —_, 3.8

where min is the minimum scattering angle. We will return to the evaluation of 9¥min later. The integral over p is
evaluated in the Appendix as denoted by Ig, from which we obtain

dE\ _ 8ym¢*e¢*Na . Ymin
( T >E = 35T Cg(a)Insin (3.9)

where a = /mV?/2kT = 17.2,8/T71/2 B = V/c and Ty is the temprature in unit of 107 K, Cg(a) is defined in
eqgs. (A20a) and (A21) and plotted in Fig.3.

B. Energy loss of magnetic monopole

Let’s now consider the case of the magnetic monopole, i.e., the particle with a magnetic charge g. Kazama, Yang
and Goldhaber [16] have solved the Dirac equation for electron-monopole scattering thereby including the dynamical
effects of the electron spin. They obtain

do _ gt _ (do
<35)M T aprsin®($/2) (dQ)Rf(¢’g) ’ (3.10)

where (do/dQ)g is the Rutherford differential cross section for an electron scattering off a nucleus with electric charge
Q = gv/c, v = p/m is the electron velocity in the monopole’s rest frame, f(¢,g) is a function of ¥ and g. For the
Dirac monopole [17] g = +gp = +hc/2e and the Schwinger monopole [18] g = +2gp = +hc/e, the function f(%, g) is
tabulated in ref. [16], and it varies between 1 and 2 for scattering angle between 0° and 180°. With this cross section
substituted, the integral over ¥ in eq. (3.6) is evaluated in eq. (3.8) for f(%,g) = 1. If we perform this integral over
1 exactly, we can obtain a multiplicative correction factor F'(¥min, g) given by

. -1 N f(¢ag)
F(Wmin, 9) = 2 Insin(¥min/2) /,ﬁm.m tan(y/2) dv . (3.11)

A graph of F(¢min,g) evaluated as a function of ¢min for ¢ = gp and g = 2gp appears in Fig.4. For ¢ < 20° this
correction amounts to < 10% increase in the stopping power. The integral over pi in eq. (3.6) is evaluated in the
Appendix as denoted by Iy , from which we obtain

dE\ _ 16y/mg’¢*Na . . Ymin
(dm)M_ 3me2 Cm(a)F (¥min, g) Insin 5 (3.12)

where a is the same as in the case of electric charge energy loss, Cnm(a) is defined in egs. (A13a) and (A13b) and
plotted in Fig.3.



C. Determination of ¥min

In order to calculate the energy loss dE/dz, we now need only to estimate ¥min, the minimum scattering angle.
Since ¥min appears in a logarithmic term, dE/dz is insensitive to the actual value of ¥min, the crude evaluation given
below should suffice. It is well known that for the case of electrically charged particles the Rutherford cross section
diverges at small angles due to the long range nature of the Coulomb force. In an ionized medium, such as is found
in stellar interiors, the ions are shielded by the collective action of electrons resulting in an effective cutoff for the
Coulomb interaction [19] at radius Rz, given by 7Ry N = Z, where Z is the charge of the ion. In the case that the
particle is electrically charged, we can effectively treat Rz as the cutoff for Coulomb interaction between the electrons
and the particle. In the case of a magnetic monopole, no shielding of the magnetic charge by electrons can occur,
but the presence of the ions limits the effective lateral extent, A, of the electron wave packets to roughly the electron
mean free path [. By assuming that the electron-ion scattering cross section is approximately mR% , it can be shown
that [ ~ Ry . Since the uncertainty principle relates A, or Rz , to the minimum allowed transverse momentum of the
electron via P min & h/Rz , we have ¥min = h/(mvRz), where v is the electron velocity in the particle’s rest frame.
Since the typical electron velocity in the lab frame v; in a main sequence star is much larger than the the lab frame
velocity of the incident particle V, we have v ~ v . For a fully ionized gas where the atomic charge to mass ratio
A/Z ~ 2 for Z > 2, the electron number density is

N = pNa(1+ Xu)/2, (3.13)

where p is the mass density of the gas, Na = 6.02 x 10> g~ is the Avagadro’s number and Xy is the hydrogen mass
fraction. If we use the peak of the thermal distribution, v; ~ (3kT/m)1/ 2 as a representative velocity, we find that
1/3
p(1 + Xu)
777
This result is the same as obtained in ref. [19] where this minimum angle is used to calculate the conductivity in
stellar interiors. When more than one species of ion is present, Z can be replaced by the number average atomic
charge <Z>. Inside a main sequence star, any element other than hydrogen and helium is of negligible abundance,
thus the atomic charge avraging over hydrogen and helium is <Z>= 2(Xy -+ 1)/(3Xyg + 1). Inserting this result into
eq. (3.14), we obtain that

Ymin = 3.4° (3.14)

benin & 2.7°p3(1 + 3Xp) /3T 1% (3.15
7

which is reported, as a function of the distance from the center of the Sun, in Fig.5.

D. Simplified expressions

Simplified Expressions for the stopping power can be obtained by using the fine structure constant o = e?/hc =
1/137 and the Dirac quantization condition gpe/hc = 1/2, by using the previous expression for N, and by dividing
dE/dz by p to obtain dE/dX where X is the pathlength in g /cm?. When this is done and the constants are evaluated,
we obtain the stopping power of a magnetic monopole with magnetic charge g

2
4B 9398 (L) (14 Xu)Ty Y 1nsin Ymin b i 9)On(17.28T5 /%) GeV g~ tem? (3.16)
dX M ap 2
and that of a supermassive particle with electric charge ¢
dEN _ 05898 (2)" 1+ Xu) 77 Insin Ymin 0 (17.28T; /%) GeV g~ tem? . (3.17)
dX /g e 2

As stated above, the stopping power of a dyon,(%)p, should be simply given by the the sum of (%)M and (%)—()E.

In particular

(dE/dX)p q/e )2 ;' Ce(17.28T7 %) (3.18)
(dE/dX)m 9/9p/ F(¥min,9) Cr(17.28T7 /%) '

The eq.(3.16) was obtained by two of the authors of the present paper (S.P.A. & G.T.) with a missing factor of two
[20]. This incorrect result was used in [7] to evaluate the dynamics of supermassive monopoles in main sequence stars.
The monopole stopping power in a classical electron gas was estimated in [24] in the first order approximation for
V/v, resulting in a value, for (dE/dX)ar, which is one order of magnitude smaller than the result obtained here.

—1=63x 10-2(



IV. LIMITATIONS OF THE CALCULATION

In the preceding calculations we have assumed that the stopping medium was a pure non-relativistic non-degenerate
electron gas. In Fig.1 we display the conditions of density and temperature under which this assumption is valid and
also the range of conditions one might expect to find throughout the Sun and the center of other main sequence stars.
The horizontal line separating the relativistic from the non-relativistic region denotes the temperature, T' = me?/(3k),
at which typical electron thermal energies are comparable to the electron rest energy. Above this temperature the
calculation would have to be modified to include the correct expressions for the relativistic electron momentum
distribution and energy transfer. As the De Broglie wavelength of the electrons become larger than the collision mean
free path, the phase space available to the electrons will be restricted and the gas will become degenerate. A rough
dividing line between the region of electron degeneracy and non-degeneracy can be identified by setting the classical

electron gas pressure, NkT', equal to the pressure, £2)(3)2/3 N5/ 3, calculated for a completely degenerate electron
g 20m/\w g

gas. When we substitute the previous expression for N, this leads to the relation

(1+ Xu)p
2

represented in the diagonal in Fig.1. Above this line the stopping power formulas presented here are valid, while
below this line the calculation in [10] would be more apppropriate. As one can clearly see, the conditions existing in
main sequence stars, are ideal for the application of the stopping power expression obtained here.

Throughout the calculation we have neglected nuclear contribution to the stopping power. The De Broglie wave-
length of the massive ions will always be smaller than that for the electrons while the collision mean free path will be
comparable. The ion gas will, therefore, be non-degenerate whenever conditions favor non-degeneracy. As a result, we
can use egs.(3.16) and (3.17) to evaluate the nuclear stopping power for a supermassive particle provided that both
(gﬁ) and ¥min are multiplied by the factor \/m/my, where my is the ion mass, to account for the increased mass and
thermal momentum of the ion. For a wide range of conditions existing in main sequance stars, the contribution of
the nuclear stopping power is small. For the Sun the ratio of nuclear to electronic stopping power varies from ~ 6.6%
at the center to ~ 4% near the surface. No large errors would be incurred by neglecting the nuclear stopping power
completely. It should be noted that this discussion of nuclear stopping power applies for velocities V' smaller than
~ 10~2¢. For large V, exact results can be obtained for nuclear stopping power by replacing m by my in all the above
formulae. As V — ¢, the relative stopping power of ions to that of electrons goes as m/my.

Hamilton and Sarazin [21] have claimed that, in addition to the velocity dependent stopping power which we have
calculated here, there is a velocity independent contribution to the stopping power of monopoles in classical gases. This
is supposedly due to collective motions of the plasma induced by the magnetic field of the passing monopole. However
collective effects were shown [22] to contribute insignificantly to the stopping power of monopoles in electron gases
with exception of superconductors and even then only for extremely small velocities (8 < 10~%). Other calculations (
[23] and [24]), anyway, gave as a result an energy loss, for collective effects, of about one order of magnitude smaller

than the one due to binary collisions reported in this paper.

~ 2.4 x 107873/ (4.1)

APPENDIX

In this Appendix, we shall evaluate the following two integrals:

Iy = /n(ﬁ)cos 0d%p (A1)
P

e (A2
- p-
P

where n(7) is described in eq. (3.1). Here we have dropped the subscript i of the variables p; and 6; for simplicity.
These two integrals over the electron momentum space are needed to calculate the energy loss of a supermassive
particle, either with a magnetic charge or with an electric charge. We define a set of new dimensionless variables:

mV and F= 2 (A3)

2kT V2mkT ’

then p,V/kT = 2az cosf, where z = | #|. Using these new variables we may rewrite eq. (3.1) as

a



n(ﬁ)daﬁz F—3/2Ne—aze—x26—2azcosBdBE; )
Therefore egs. (A1) and (A2) can be rewritten as

[o0]
Iv = 27r‘1/2Ne_“‘/ z2e”" Iy(az)dz ,
0

N 2

Ig=———¢° —= d
E \/7_1'ka6 /0 e Ig(az)de |

where

s
Iy(az) 5/ e~ 202058 ¢os fsin 6df
0

This integral over # can be easily evaluated if we define a new variable y = cos 6:

1
Ip(az) = / ye 2 dy
-1
= (2a®z%)~ ! sinh(2az) — (az) ™' cosh(2az) .
a. We first evaluate the integral Iy. Substituting this Jp(az) into eq. (A5), we have
N * —|(r—a 2 =(Tr+a 2
IM:W/O [(I—Qam)e( )—(1+2ax)e(+)]dm

N
= N [M(a) — M(—a)] .

Evaluate M (a) we have
o0 2
M (a) E/ (1—2az)e” =9 dz
0
= / (1—2a®— 2am)e_”2dm

=2"1/7 (1 — 2a®) [1 + erf(a)] - ae=%

where erf(a) = 2a~1/2 [} e—tdt is the standard error function [25]. Thus we obtain

1 g2 1
M=—N [ﬁae +(1- 2a2)erf(a)

We can rewrite it as

IM=—7—F

where the magnetic correction factor

Cnla) = 3‘/’7[ Loy (1‘2_515') erf(a)] .

da |+/ma

Alternatively, we can expand this Cy(a) into a power series as

_ > (—1)" 2n
Cwmi(a) = 3:‘:6 en+ )(2n+3)

(A8)

(A10)

(A11)

(A12)

(A13a)

(A13b)

Either of the above two expressions of Cpm(a) can be easily calculated numerically. A curve of Cw(a) as a function

of a is plotted in Fig.3, from which one can see that Cum(a) = 1 is an excellent approximation for a <01,

b. We now evaluate the integral Ig. Substituting eq. (A8) into eq. (A6), we have



Ne %

e =5z P (A14)
where
0 2
E(a) = / e™®" [m_zsinh(2aa;) — 2az ! cosh(2az)] dz . (A15)
0
If we differentiate E(a) over a, we can integrate the differentiated integrand to a closed form expression.
d 2
Bla) = —4a/ e~ " sinh(2az)dx (Al6a)
da 0
= —2/mae erf(a) , (A16b)

where the integral in eq. A16a is evaluated using the same approach as the evaluation of Iy and M (a) in egs. (A9)
and (A10). From eq. (A15) one can see that E(a = 0) = 0. Thus we have

E(a) = —2\/7_1'/ zezzerf(z)dz (Al7a)
0
= —4/ dz/ dit ze* et (A17b)
0 0
= —4/ dt/ dzze* et (A17¢)
oa : ] ,,
= —2/ et (e"' - et') dt (A17d)
0
=-2 [2‘1\/7_1'6“2erf(a) - a] . (Al7e)
Therefore we obtain that
N iy 2
-[E = —m [\/T_erf(a) - ae_“ ] . (A18)

Similar to Iy, we can rewrite Ig as

Ig 3ﬁkaCE(a) ; (A19)
where the electric correction factor
3 [/7 a2
CE(G) = %5 [Terf(a) — ae ] . (A20a)
Just like Cm(a), the above expression can be expanded into a power series:
Ce(a) =3 i —(_l)-"—az" . (A21)
= nl(2n+ 3)

Again similar to the case of the magnetic correction factor Cwm(a), both of the above two expressions for the electric
correction factor are easy to evaluate. And a curve of Cg(a) as a function of a is plotted in Fig.3, from which one can
see that Cg(a) = 1 is an excellent approximation for a <o0.1.
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FIG. 1. Temperature-density plot showing that in the Sun and in all main sequence stars the electron gas can be considered

both non-relativistic and non-degenerate (see text).
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FIG. 2. References frames used in the stopping power calculation.
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FIG. 3. The factors Cg(a) and C(a) as a function of a. In both cases taking these factors as equal to 1 is an excellent
approximation for a <0.1.
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FIG. 4. The correction factor F as a function of the minimum scattering angle ¢¥min for a couple of values of the monopole’s

magnetic charge.
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FIG. 5. The minimum scattering angle ¥min as a function of the distance from the center of the Sun.
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