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Abstract

A data analysis based on an artificial neural network classifier is proposed to identify
cosmic ray antiprotons detected with the CAPRICE silicon-tungsten imaging calorimeter
against electron background in the energy range 1.2-4.0 GeV. A set of new physical vari-
ables, describing the events inside the calorimeter on the base of their different patterns,
are introduced in order to discriminate between hadronic and electomagnetic showers.
The ability of the artificial neural network classifier to perform a careful multidimen-
sional analysis gives the possibility to identify antiprotons with an electron rejection
408 + 85(stat) at 95.0 + 0.2 (stat)% of signal detection efficiency. The high accuracy
achieved by this method improves substantially the efficiency in the evaluation of the

cosmic ray antiproton spectrum.

* Corresponding Authors: Phone 39-80-5443173
e-mail: Bellotti@ba.infn.it — Castellano @ba.infn.it



1 Introduction

The study of cosmic ray antiprotons (p) is of fundamental astrophysical interest. De-
tailed measurements of the p energy spectrum provide a crucial test of models describing
p origin and propagation in the interstellar medium [1]. Since their discovery in 1979,
by two independent balloon-borne experiments [2, 3], the cosmic ray p measurement
remains a difficult experimental task [4]. The energy region explored so far, which spans
the interval from 0.2 to 20 GeV approximately, is limited and the statistical significance
of the flux and p/p ratio needs futher improvements.

The CAPRICE balloon-borne experiment [5] has been devoted to measure the flux of
low-energy antiprotons, positrons and light isotopes in the cosmic radiation. It was flown
by a stratospheric balloon on 8-9 august 1994 over northen Canada and it collected data
during more than 21 hours at a floating altitude less than 5 g/cm?. The detector system
employed is shown in fig. 1. It consists of: (1) a superconducting magnet, equipped with
multiwire proportional chambers and drift chambers, used as spectrometer; (2) a set of
plastic scintillators providing trigger, time-of-flight and absolute charge measurements;
(3) a Ring Imaging Cherenkov (RICH) as a 3 selector and (4) a silicon-tungsten imag-
ing calorimeter to identify different particles according to the topological and energetic
patterns of their interactions.

Nowadays many procedures currently used in high energy physics - from off-line data
analysis [6] to real time pattern recognition (triggering) [7] - are performed applying
neural network (NN) techniques. NNs are particularly apt to classify complex phenomena
and provide robust and reliable methods to design efficient and fast systems for particle
identification systems.

In this paper we study the p/electron discrimination capability of the CAPRICE
silicon-tungsten calorimeter (8], by means of a neural network classifier, with the task
to improve the CAPRICE p statistics. The limited depth of the calorimeter is insuffi-
cient for the full containment of the high energy electromagnetic showers (background
events), neverthless the high granularity and the energy resolution of the calorimeter
silicon wafers make them capable to measure the lateral and longitudinal shower pro-
files. In order to carefully describe the difference between hadronic and electromagnetic
showers, several discriminating variables have been introduced. The ability of NN algo-
rithms to perform a careful multidimensional analysis allows to take into account a large
number of discriminating variables in order to exploit the difference between hadronic

and electromagnetic showers. As a result a very high antiproton identification efficiency

has been achieved.



2 Discriminating variables

The CAPRICE silicon-tungsten calorimeter, positioned at the bottom of the balloon
payload, is composed of 8 silicon planes, sensitive both in the X and Y coordinates, each
interleaved with one radiation lenght (=3.5 mm) of tungsten, for a total calorimeter
thickness of seven radiation lengths. The sampling layer of the calorimeter is an array
of 8 x 8 pairs (X-Y) of detectors (6 x 6 cm?, divided in 16 strips, each 3.6 mm wide).
Each sampling layer consists of two arrays having 128+128 readout channels. A built-in
system equipped with ADCs and digital processors accomplishes the data acquisition.

An electromagnetic shower developing in tungsten consists of a cascade of photons
producing e* pairs producing photons in turn. Due to the pair production threshold of
order a few MeV, even photons or electrons of energy quite less than 1 GeV can initiate
such a shower. As a rule, all massive particles in the e.m. shower (e*) are relativistic
and the general shape of the shower volume is a well defined cone with vertex in the
first interaction point and a small aperture angle. The transversal development of an
e.m. shower is quite regular and is well described by the Moliére theory: the 99% of an
e.m. shower, at any energy, is contained in a cylindrus of ratio R=3,5 RM, where RM is
the Moliére radius whose value is fixed for each material (0.69 cm for tungsten). Quite
different is the behaviour of the particles inside a hadronic shower, usually initiated by
a proton or an antiproton. Here the cascade is mainly due to strong interactions with
tungsten nuclei; its volume is not so well defined and secondary particles at large angles
may be present.

In the CAPRICE calorimeter the j/electron recognition is achieved by exploiting the
different longitudinal and lateral energy deposit profile of electromagnetic and hadronic
showers. To this end, some discriminating variables have been defined for the detected
events describing their energy and the number of hits along with other information on
the shower development patterns.

These variables are as follows:

(1) The total energy released in the whole calorimeter.

(2) The total number of fired strips in the whole calorimeter.

(3) The total number of fired strips inside a cylinder of radius equal to 4 Moliere radii,
around the track direction.

(4) The total number of fired strips inside a cylinder of radius equal to 1 Moliere radius,

around the track direction.
(5) The total energy released in a cylinder of radius equal to 1 Moliére radius, around

the track direction.
(6) The maximum energy released in a single strip in the whole calorimeter.



(7) The total energy released in the two plane of maximun interaction, i.e. having the
higher energy deposit.
(8) The medium distance between the most separated fired strips in each plane.

Even though other possible variables could be introduced, our experience and the re-
sults here presented show that the 8 variables defined above rappresent a set particularly
good for a multidimensional analysis of the event patterns in the CAPRICE calorimeter.

3 Experimental results

3.1 The simulated data sets

To evaluate the p/electron discrimination capability of the CAPRICE calorimeter,
using the set of discriminating variables above introduced and the NN classifier described
below, the detector has been simulated using the GEANT code [9]. In order to reproduce
the physical situation of the detector in the payload and in order to take into account all
passive materials crossed by the particles, we simulated: a) the aluminium box (2 mm),
embedding the whole silicon detector; b) the plexiglass layer (2 cm), placed at the top
of the apparatus in order to protect the first silicon plane; c) the real silicon-tungsten
detector.

The calorimeter response has been studied for electrons and antiprotons at momenta
of 1.2, 1.6, 2.0, 2.1, 2.6, 3.0, 3.1, 3.6, 4.0 GeV/c; particles (samples of 1000 events for
each energy) hit the calorimeter orthogonally, at the center of the first plane. After a
number of optimisations, the GEANT energy cut has been fixed at 10 keV; this means
that GEANT follows a secondary particle until its energy is above or equal this value,
then drops it out. For each active silicon strip, a threshold corresponding to an energy
of 0.7 mips (minimum ionising particle energy, fixed to 95 keV) has been imposed to
reproduce the real data analysis procedure that separates the noise of the electronics

from the signal and eliminates it.

3.2 The NN classifier

For the multidimensional analysis of the calorimeter events a “three-layered feed-
forward” Neural Network has been considered [10]. It consists of units (formal neurons)
arranged in contiguous layers, as shown in fig. 2. Each neuron k (k = 1,...,N,)
belonging to the hidden layer receives as input the output X; (I =1,..., N;) of all the [
neurons of the input layer, to which it is connected by w,(,:) synaptic strengths. On the
other hand, the neuron k is also connected, with strengths wg’ , to the neuron of the

output layer. The transfer function of the neurons is the sigmoid funtion:



1
9(=,0) = 1 + exp(—B(z — 6))

where 8 and 3 are the neuron threshold and the gain factor, respectively.

The synaptic matrix W) is trained by showing to the network a data set of ex-
amples (training data set) and updating the weights according to the delta rule, which
minimizes the mean squared error function E of the classification system [10]. After
each training epoch, the quality of the new model W{"<%) is estimated by means of an
independent data set (test data set). The learning session is stopped when the error
function E, evaluated on the test set, reaches its lowest value. The training and stopping
procedures are unbiased general criteria to build up a classification system in an accurate
way. Tables 1 summarizes the parameters for the NN classifier used in this paper.

Table 1. Characteristics of the neural network used to classify the calorimeter data.

Neurons in the input layer 9
Neurons in the hidden layer 5
Neurons in the output layer 1

B gain factor 1

0 neuron threshold 0.5

a momentum term 0.9

n learning rate 1
Learning algorithm Backpropagation
Learning mode Incremental
Number of Epochs 900
Training Set Cardinality 4500
Test Set Cardinality 4500

From the point of view of data analysis each input neuron is associated with a physical
variable. Therefore the NN enables one to explore a multidimensional input space by
taking into account several complex information about the physical event. The set
of discriminating variables introduced are fed to the artificial NN described in table
1 together with the rigidity of the event measured by the spectrometer. Moreover this
procedure enables to correlate automatically the rigidity of the particle with the different
behaviour of the discriminating variables in different parts of the energy spectrum.

For the purpose of evaluating the discrimination capability of the CAPRICE calorime-
ter its performance has been investigated in simulation using the multidimensional classi-
fier above described. Performance indicators are obtained evaluating the relative electron

rejection p = N, /n.; versus the antiproton efficiency € = nj;/N;; where:



n.; and ng; are the number of electrons misclassified as antiprotons and the number of
antiprotons correctly classified, respectively;
N, and Nj are the total number of electrons and antiprotons in the simulated data set.
A critical step has been to find the best NN architecture, where the number of hidden
neurons is considered optimal when it is large enough to ensure a high degree of classi-
fication and small enough to ensure a high degree of generalization. The experimental
evidence on the independent test set has shown that the best performance are obtained
with five hidden neurons, even though a difference of a few percent only is obtained using
a number of hidden neurons ranging from 3 to 20. The feature spaces for background
(electron) and signal (antiproton) events are shown in figs. 3 and 4. The electron rejec-
tion as a function of antiproton efficiency is shown in fig. 5. This result is one order of
magnitude better than those achived by means of mono- and bi-dimensional cuts on the

chosen discriminating variables [8].

4 Conclusions

In this paper a classification system based on a neural network is proposed to identify
antiprotons detected by the CAPRICE calorimeter. Results show that the neural net-
work classifier is capable of discriminating between antiprotons and electrons with very
high efficiency. Specifically, the data analysis method here proposed permits to identify
antiprotons with an electron background rejection of 408 + 85(stat) at the efficiency of
95.0 + 0.2 (stat)%. This result is particularly useful in the context of balloon-borne
experiments where, in searching rare events with the constraint of short exposure time,
a detection efficiency as large as possible is required. The neural network based analysis
presented here will be used to improve the evaluation of the energy spectra of cosmic

ray antiprotons in the CAPRICE experiment.
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Fig. 1. Schematic diagram of the Wizard-CAPRICE apparatus used for the 1994
balloon flight to identify low energy cosmic ray antiprotons
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Fig. 2. The three-layered feed-forward neural network classifier used to select an-
tiprotons with the CAPRICE silicon-tungsten calorimeter.
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Fig. 3. The neural network output for calorimeter signal events.
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Fig. 4. The neural network output for calorimeter background events.
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Fig. 5. Electron rejection factor versus antiproton signal efficiency.




