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All the rivers run into the sea;
yet the sea is not full...
Ecclesiastes 1,7

Foreword

These lectures discuss methods for analyzing the decay of beauty hadrons (B
mesons and beauty baryons) produced in pp interactions. At the c.m. energies
around 14 TeV planned for the Large Hadron Collider (LHC) at CERN, the B
meson production rate is expected to be ~ 10° larger than in an e*e™ B factory.
The pp collider could then offer, in principle, important advantages. However, the
detection of beauty hadrons produced in a pp collider will be a task of great com-
plexity. In particular, the triggering difficulties of events in a large background will
be one of the major problems. Therefore, it would be useful to discuss the various
aspects that can be investigated in beauty physics arising from pp interactions.

We first describe the general features of the formalisms of B mixing and search
for CP violation in the meson decays. Then the specific problems appearing for
beauty hadrons produced in pN interactions are considered. Some comparison
between investigations which could be carried out with B factories and pp colliders
are also mentioned, although this is not the main concern of these lectures. Finally,
we also present some elements of beauty baryon decays which can only be studied
efficiently by means of pN interactions.
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1 - Generalities

1.1 - Quarks and hadrons

Before discussing the physics related to the decay and production of beauty
particles, let us recall some general comments about hadrons. All the hadrons
are assumed to be formed by quarks and/or antiquarks. All these quarks have
spin S = 1/2 (S, = +1/2). The fundamental SU(3) triplet is formed by an isospin
doublet u,d (I = 1/2, I, = 41/2) and an isospin singlet s (I = 0), the last
having a strangeness quantum number § = —1. The quantum numbers can be
summarized as follows where e, represents the charge of the g quark!?:

Quark| I I, eq | S
w o |1/2 +1/2]2/3
d |1/2 -1/21-1/3]0
S 0 0 [-1/3]-1

The charge and the quantum numbers I,, S,, S are reversed for the charge conjugate
(c.c.) triplet (u,d,s). Later, two additional quarks have been introduced in order
to describe new hadrons discovered in several experiments. They are:

— the charmed quark ¢ having charge e, = 2/3 and a mass m. ~ 1.5 GeV
— the beauty quark b having charge e; = —1/3 and a mass my ~ 5.2 GeV.

In the standard model, the weak decays of hadrons are described by the decay
of the heavy quarks contained in these hadrons. For these processes, the quarks
are classified into left-handed weak isodoublet fields (Chapter 2). In this approach
each doublet has an up quark of charge eup = 2/3 and another, the down quark,
with egoun = —1/3. Within this approach an expected top quark was missing.
Recent experimental results® found to be in favor of a sixth (t) quark (e = 2/3
and a mass of m; ~ 150 GeV) yield the following six quark model:

U c 4
H ? N (1'1)
(d)left <S>left <b>left

The charged current reactions in the weak decay processes relate the up to the
down quarks through V - A interactions. This will be discussed in Chapter 2.
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The main aim of these lectures will be the study of particles containing a b or
b quark. In general, the light quark will be denoted by ¢ (u,d,s) while @ will be
used for the heavy quark (b,¢,t). The mesons and baryons that will be considered
have the following quark contents:

B~ =bu Bt =bu
B= |By=btd|B= | B =0d

B =t3 BY =1bs

Bl =te BY =
Ny = bqq Nb=> 5@'

Within the actual notation the meson having a b (b) quark is considered to be
a B (B) meson in opposition to the definitions of the beauty baryon N, = bgq
(antibaryon Ny = bgg). One has to note that these definitions are different from
those used for the charmed hadrons,

where D (D) mesons and charmed baryons (antibaryons) contain a ¢ (¢) quark. In
the following we will use the above notation for describing the charm and beauty
hadrons. Let us now give some indications about the ¢ and b quarks.

1.2 - Comments about the ¢ and 5 mesons

The presence of the ¢ and b quarks were indicated by experiments over the
past ~ 20 years showing the existence of two families of heavy neutral resonances:
the ¢ (or charmonium) and the T (bottomium or beauty) families. The striking
feature observed in both families* is that the energy level spacing between suc-
cessive members in each family is small compared to the overall mass scale (the
J/ or the T masses is used to represent the lowest ones in each family). This
suggests interpreting the states as bound systems of heavy quarks that are moving
non relativistically in the Q@ rest frame®~2 (Q denotes here the c or the b quark).
The families considered are then defined by

% = c¢, ¢ = charmed quark , e, =2/3
T = bb, b= beauty quark , e, = —1/3

but where the charge of these quarks has been deduced from experimental results®.



The above remarks led to the idea of identifying the masses of the QQ states
within a quarkonium family with the energy eigenstate given by a Schrodinger type
of equation® 81011 At that time it was also necessary to know if these families are
formed by quarks where some of their quantum numbers are different from those
belongling to the quarks forming the hadrons known at that time. Today, we know
that the c.and b quarks are isosinglets and have each an additionnal quantum
number called charm and beauty, respectively (and having an opposite sign for
the Q). This means that in strong interactions, for instance, the total charm and
beauty quantum numbers have to be conserved.

The so-called T family in which we are here interested was discovered in 1977
by studying the effective mass of u* and u~ produced in pN interactions'?. The
observed resonances were linked to a virtual photon (see Fig. 1.1) and have then
spin (J), parity (P) and charge conjugation (C) values of the photon, JF¢ = 17~.
The convenient ways for studying these resonances were to observe them as s-
channel resonances in ete™ collisions where the production process is dominated
by a virtual photon exchange. In these cases, the precision of the mass and width
measurements of the (narrow) resonances will depend essentially on the energy
resolution of the e*e™ collider (and not on the spectrometer properties). Figure
1.2 shows the diagrams contributing to the production of leptons or hadrons at c.m.
energies corresponding to the s-channel resonances. The diagram representing the
non-resonating background (continuum) is also shown in Fig. 1.2a and Fig. 1.2b.
The third case in these figures is the so-called vacuum polarization contribution.
Figure 1.2c indicates the b7 and bg production above their threshold. Some bb
states discovered as s-chanmnel resonances in ete™ interactions are presented in
IFig. 1.3. For the observed resonances the relative orbital momentum between the
two (fermion) quarks is [ = 0 in order to reach the JP¢ = 17~ values. These
s-channel resonances will therefore be represented in the following by T(nS) where
n represents the radial quantum number of the S wave describing the bb system.
From the quantum number conservation a D wave between the two quarks is
allowed. The existence of such an s-channel resonance is, however, negligible!3.

Other bb systems cannot be reached by the direct e*e™ collisions when these
states have not the photon quantum numbers. They can be reached by hadronic or
radiative transitions. This is shown in Fig. 1.4 presenting the observed energy-level
diagram of the T family* Some of the detected transitions are indicated.

1.3 - Some properties of the T(nJ9)

Before discussing the beauty hadrons, let us describe some properties of the bb
states. The states, presented in Fig. 1.4, have been studied essentially through



Table 1.1 - Parameters of the T(nS) resonances with n < 4. The data are taken
from the Particle Data Group (Phys Rev. 45D, 1992). The I'y and I'; represent the
Y(nS) — I~ and total widths, respectively. Note that Tee = Iyy ~ T'7r where

the subindices indicate the type of produced leptons. The mass of the T(1S5) is
taken as ~ 9460 MeV.

T(nS) — T(1S5) Tec I
mass difference (KeV) (KeV)
(MeV)
T(15) - 1.34£0.04 | 521+21
T(25) 563 0.586 + 0.029 43 + 8
T(35) 895 0.44£0.03 | 243 +3.9
T(45) 1120 0.24 +£0.05 |(23.8+2.2) 10°

the ete™ interactions. However, their production rates in pN interactions might
be important at large c.m. energy, /s > 1 TeV. Table 1.1 indicates some proprties
of the T(nS) resonances. One sees that the semileptonic decay widths have the
same order of magnitude (although I'.. decreases with an increasing of n, the
radial quantum number). However, the total widths of the first three resonances
are narrower than the fourth by a factor of ~ 103. In fact the widths of the bound
states (n < 3) observed in Fig. 1.3 correspond to the energy resolution of the ete~
collider. Therefore, better energy resolution of the et e~ collider will give a smaller
background in the study of the decay of the bound QQ state.

It should be remenbered that the partial width of the semileptonic decay of the
381 resonances can be expressed by the Van Royen-Weisskopf formulal4, corrected
here by QCD effects,

3 7= — 5 2[¥a(0)? 16
F(nS’l—ill)—l67reQa———-M—2V——- 1—3—7r . (1.1)
This expression gives the leptonic width of the 35 states as a function of |1, (0)]?,
the square of the wave function at the origin. Here My is the mass of the neutral

vector meson, while « is the fine structure function. The QCD running coupling
constant is given by

_ 127

(33 —2Ny) In(s/A?) ’
where NV is the number of open flavor channels at the corresponding c.m. energy
/s, and A the QCD scale parameter (A ~ 500 MeV). As the increase of My with

Qg

(1.2)



n is not enough to describe the variation of the observed leptonic width (see Table
1.1), |#n(0)|? has to decrease when n is increasing according to formula (1.1). The
comparison of the experimental and calculated widths could allow a verification of
the validity of the chosen potentials to describe the Q@ system.

In the QCD framework, the hadron production of the bound states is essentially
mediated by gluons. This should occur through the minimum number of gluons
allowed by the conservation rules. One gluon is not possible as the produced
hadrons are color singlets. The two-gluon case is also excluded as a spin 1 object
cannot decay into two massless gluons of spin 1. Therefore, three is the minimum
number of gluons allowed by conservation rules. Based on this assumption the
calculated three-gluon width of the T(nS) resonance is given by!®

60 H(0)
D3y(nS) = %1— (r® — 9) & "b]é‘z/)' | (1.3)

The width will decrease as n increases, a consequence of the behaviour of |1, (0)|?

(see formula (1.1) and Table 1.1) and My. Note that for n > 2 one has also the
decays

T(25) - Y(1S)ntn~
T(35) — Y(2S)rTr~, T(1S)ntn~

which may lead to only hadrons in the final state with the additional T(25), T(15) —
3 gluons channels.

The width of the three-gluon decay together with the Van Royen-Weisskopf
expression (neglecting here the QCD correction) allows an estimate of s through
the ratio

r 2/3)?
f3—9 ~ 1410 ¢ é‘:’) al (1.4)
ee b

By using the data from the T(1.5) decay one obtains the value of as ~ 0.16 at the
considered e*e™ c.m. energy”®.

Above thf_ bb threshold, the B meson decay can be studied from the ete™ —
Y(4S) — BB process. The various B decay channels could then be observed
with the detector used for the experiments. This field is the dominant part of

the study which was analyzed with great effort using e*te™ colliders (Cornell and
DESY laboratories).



The T(4S) mass is not large enough to produce an additionnal 7 in the final

state. Then the relative orbital momentum between the B) and Fg mesons is
[ = 1 for reaching the JP¢ = 1=~ condition. The Bose-Einstein statistics will then

influence the BY « Fg mixing (Chapter 3) as B}BJ and Pgﬁg final states are not
allowed when [ is odd. In that case the wave function describing the final state
cannot be even under the permutation of the two outgoing mesons. Therefore, one
meson has to decay before the second one can mix. As discussed in Chapter 4 this

will also influence the search for CP violation effects in the Bg,Pg decays.

1.4 - Beauty hadrons, past and future

As already mentioned above, the experimental necessities of having ¢ and b
quarks are based on the discovery of the ¥ and T families. Although the Y family
was discovered using pN interactions, the detailed study of the bb spectroscopy
(Fig. 1.4) was essentially carried out with the ete™ interactions. Moreover, the
ete~™ — Y(4S) — BB process also allowed the study of many aspects of the B

meson decays as well as the B} « _Eg mixing (see Chapter 3).

The important question now is to define what kind of new experiments should
be prepared in order to improve our knowledge of (rare) B decay and to search for
CP violation effects in the B decay. Two different ways can certainly be envisaged:

— the increase of the statistics of the Y(4S) — BB using an asymmetric ete™
collider for the search of CP violation effects

— the study of beauty hadron produced in pp interactions where the production
rate at large c.m. energy (/s > 1 TeV) is expected to be large.

Table 1.2 compares the production rates between an e*e™ collider at a c.m. energy
Vs =~ 10 GeV and pp interaction at /s = 14 TeV. The latter value corresponds
to the c.m. energy of the Large Hadron Collider (LHC) project at CERN. For
the above /s values, we use the luminosities of £ = 3 x 10%,10%® cm—2s~1,
respectively. The e*e™ luminosity corresponds to the value proposed for the B-

factory!® whereas the second one is a value expected for the the study of B-physics
at the LHC (Ref. 16 to 18)

The total pp cross-section at /s = 14 TeV is estimated to be o ~ 110 mb
(Ref. 19, 20). However, in an experiment with a pp collider, the elastic and diffrac-
tive part of the interactions can often be neglected as the outgoing particles emitted
in the forward/backward direction (defined with respect to the beam direction) will
not usually be detected by the detector considered. By neglecting the diffractive
and elastic cross-sections, one estimates the so-called non-diffractive cross-section



Table 1.2 - The comparison of luminosity (L), average charged multiplicity ((n})),
total (o) and bb [o(bb)] cross-sections. For the LHC example we used the non-
diffractive cross-section instead of or (i.e. oin ~ 60 mb). The number of bb events
per year (107 s) of running as well as the number of interactions per second are

also indicated. For pp interactions (n) does not take into account the contribution
of elastic and diffractive processes.

LHC |ete™ — Y(45)
14 TeV | 0.011 TeV'
c 103 3 10%3
em 2571

< neg > ~ 80 ~ 12
oT ~ 60 mb 4 nb

o (bb) ~ 300 ub 1.2 nd
o(bb)/or | ~1/200 ~1/4
N(bb)/107s| 3 102 3.6 107
Nint/ s 6 107 1.4 102

oin = 60 mb (Ref. 20) yielding the number of interactions per second (Nint/s)
given in Table 1.2. At /3 ~ 14 TeV, we use a pp — bbX of o(bb) ~ 300 ub (X
meaning anything) which is the order of magnitude utilized at this energy?!?2.
One also sees from this table that the B (B) production rate is expected to be
much larger in pp collisions than in the example of the ete™ — Y(45) —» BB
process. However, the utilization of a pp collider is not simple, as the number
of interactions per second, the average charged multiplicity (n) and the expected
background (related to the o(bb)/o7 ratio) are important?! (Table 1.2). Moreover,
one of the important difficulties of studying B-physics with a pp collider is defining
efficient triggering processes!”18,

One should also remember that difficulties can arise with a pp collider where
several interactions per bunch crossing occur. The LHC project, £ = 103 cm~%s~!
(103 cm~2571) would lead to an average of 1.1 (0.11) interaction per bunch cross-
ing using the cross-section of 0, ~ 60 mb and the example of Appendix 1.A.
Assuming that the probability of n’ interactions per bunch crossing follows a Pois-
son distribution, one obtains the average number of interactions for minimum bias
events (Mmin) and for events with a specific trigger signature (Misir) corresponding



ton' >1,
L=102cm %™ Tgin ~1.06, e ~ 1.11

L=10% cm %1 Mimin ~1.65 , Mgy o~ 2.11

(Appendix 1.A). Therefore, an experimental pp run with M, > 2 could complicate
the detection of the beauty hadron because of the large charged multiplicity given
then by ~ Mt X (n).

At the end of these lectures one will have a better understanding of the use-
fulness of investigating B-physics in the pp collider (1/s ~ 14 TeV) and in the
ete~™ — T(45) — BB (/s ~ 10 GeV) which are, in fact, complementary. Both
methods will give access to different fields and lead to a better knowledge of the
decay properties of beauty hadrons. The advantages and inconveniences of both
methods can be crudely summarized in the following manner:

pp collider

— Advantages: large o(bb) cross-section, search for CP violation in the BY and
B? decays, study of rare B decay, study of B, and beauty-baryon (production
and decay);

— Inconveniences: triggering difficulties, no real particle identification, large
number of produced tracks and background.

ete” — T(4S) —» BB

— Advantages: trigger facility, particle identification, small background.

— Inconveniences: small BB production rates (~ 4 107 events in one year of
running), the utilization of an asymmetric e*e™ collider to search for CP
violation in the BY decays, no possibilities to search for CP violation in the
B? decays, no analyzis of beauty-baryon decays.

Let us now study in some detail the properties of the beauty hadron decays.
After some general discussions about B® mixing and CP violation effects we will
investigate the difficulties of using pp interactions for studying beauty hadron de-
cays. Some comparison between the study of beauty-meson decays produced in
pN and in ete™ — Y(45) — BB will also be mentioned.



Appendix 1.A

Minimum bias and specific events

We assume that the number of n' interactions per bunch crossing follows a
Poisson distribution given by the probability

o0

! —-m M : N o_

Pn'y=e™™ el with ZP(n)—l
n'=0

and where @' = m is the average number of interactions per bunch crossing while

the standard deviation is given by ¢ = /m. :

The minimum bias event corresponds to interaction where n’ > 1. In this case
the probability distribution will be given by

I
n 1
. N _ ,—m
Prin(n) = e n'l Yo em™ mn/nl

Since one has

one obtains the average number of interactions for minimum bias events (Mmn),
and sty denoting the average number of events with a specific trigger signature.
They are given by:

m

l—em (1.A1)
mstr = 1 + m

Mman =

In order to estimate 7' = m let us take a pp collider with a luminosity of
£ =102 cm~2%~! and where o =~ 60 mb. The number of interactions per second
1s then

Nint/s = Lot ~ 6 x 10° .

Taking an example of a p beam with 4810 bunches and a turning frequency of 11.2
KHz, the average number of interactions per bunch crossing will be given by

6 x 10°

™ = 17300 x 4810 = M (1.42)

yielding Mm,n and igsr. For a ten times larger luminosity, one simply has m = 1.1.



Fig. 1.1 - Diagrams leading to the p*u~ production due to background and

to the T(nS) decays. Here the virtual photon is assumed to be produced in pN
collisions.



a) e+ e” production

et pt et T et Tha

Fig. 1.2 - The pu*x~ [a)] and hadron [b)] production for the decay of bound
bb states produced in ete~ collisions. The first diagram in a) and b) indicate
the background contribution. In c¢) the hadron production is shown for b and bg
production above their threshold.
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Fig. 1.3 - The hadronic cross-section in the T(nS) region (1 < n < 4) as
measured in e*e” interactions by the CLEO collaboration. Here the c.m. energy
is represented by W. The W threshold for producing BB ia also indicated.
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Fig. 1.4 - The energy-level scheme of the bb states taken from Phys. Rev D45,
No 11 (1992). The singlet states are called n or hy while triplets are denoted by
T and Pb].






2 - The CKM matrix elements

2.1 - Generalities

The SU(1) x U(1) standard model® classifies the quarks and leptons into left-
handed weak isodoublets, while right-handed quarks are considered to be isosin-
glets. In the six-quark model one has:

d left s left v left

where the up quarks have a charge 2/3 and the down ones the charge of -1/3.
Charged current reactions relate transitions between quarks of charge 2/3 with
those having -1/3 by emitting a W boson. Here the weak decay processes relate
only, the quark fields within one isodoublet. The number of isodoublets is not
determined by the standard model (SM). However, this model predicts that the
number of quark isodoublets should be equal to the number of lepton doublets?.
The actual experiments are in favor of three lepton doublets, namely

() ) ()

We will, therefore, consider first the three quark isodoublets. In fact, the d', s'
and &' can be expressed in terms of the quark mass eigenstates by means of a
mixing unitary matrix (V), the so-called mixing or Cabibbo-Kobayashi-Maskawa

(CKM) matrix®

d d
s1=W)]s]. (2.2)
v b
The V — A weak current responsible for these processes is given by
d
Ju=(u ¢ )it (V)| s (2.3)
b

where the CKM matrix elements of (V') describe the coupling of the intermediate
W+ bosons to quarks. Thus each element in the 3 x 3 matrix V relates a transition

10



between a quark of charge 2/3 with one of charge -1/3. Such an element is denoted
by Vgq where g and ¢’ are the quarks between which the transition takes place. The
transition itself is (usually) proportional to the |V;qf|2 participating in the decay
processes. By considering the six-quark model the V' matrix is represented by:

Vud Vus Vub
(V) = Ved Vs Veb . (2'4)
th Vts th

Sometimes one presents the weak isodoublets in the form of generations (or
families). In the six- quark model for instance we have three quark generations,

namely:
U c 3 05
@) 0 0) 9

In this picture the charged current reactions will relate elements within one gener-
ation (with the largest transition rate) or elements from different generations.

The values of the CKM matrix elements (real and imaginary parts) should be
obtained from measurements of decay processes (see below). One could, however,
evaluate the number of independant real and imaginary parameters in a unitary
N x N matrix?. For conveniance one introduces the imaginary parameters in the
matrix through e®*, while it is customary to use the angles 6y (through cos 6y or
sin 0 ) for the real parameters. The unitarity condition VV*+ = V¥V =1 and the
fact that the physics will not be changed if the quark fields transform as

| g >— e¥®) | g; > (2.6)

(gauge transformation of the first kind), allowing one to determine the number of
independant parameters in a N x N matrix*® (see Appendix 2.A). For simplicity
we will also represent equation (2.6) by ¢; — €*(%2)g;. Note that the phase #(q;5)
related to the g; quark could have any value.

Let us only comment here how the transformation (2.6) allows the removal of
2N — 1 phases from the matrix elements (hence 2N — 1 imaginary parts from the
Vi; elements). This can be seen by writing formula (2.2) for three generations in
the following way:

11



|$'>=Vyld>+Vs|s>+Vy | b> (2.7b)
|0/ >=Vig|d>+Vis | s> +Vp | b> . (2.7¢)

One can then use formula (2.6) in order to transform the | d >, | s > and | b >
fields in such a way that all the Vj; elements in the first row will be real. A phase
on | s' > could then be added for introducing an additional V;; real element in
equation (2.7b). A similar transformation on | ' > will also render a CKM matrix
element real in the last row. In the present example we have reduced the number
of imaginary parts in the elements of the considered matrix by 5, corresponding
precisely to 2V — 1.

The number of real (6;) and imaginary (6;) parameters of an N x N unitar

matrix are derived in Appendix 2.A. One finds that the N x N matrix depends
4
on

(N? —3N +2)/2 phases, (2.8)
(N? — N)/2 angles .

The number of parameters for the following N (generation) values are then given
by:

N=2{N=3|N=4
3
1

(N? — N)/2 angles

1 S
(N2 —3N +2)/2 phases| 0 3

For N = 2, only one angle is needed (the Cabibbo type of mixing) whereas for
N > 2, at least one phase is present. The presence of phases that render some
CKM matrix elements complex is of great importance. As seen below this will be
a possible source of CP violation for the B decays in the framework of the usual
standard model.

2.2 - The three-generation case

In the three-generation case a representation for the mixing matrix can be
obtained in the following way. Since the 3 x 3 matrix depends on three angles one
can consider (V) as a rotation matrix with the Euler type of angles in which one
has to incorporate the required phase. A possible choice would be®

1 0 0 cg 81 0 1 0 0 1 0 0
(V=10 ¢ —s2 -s1 ¢ O 01 0 0 ¢33 s3
0 sy ¢ 0 0 1 0 0 —etf 0 —s3 c3

12



(¢, = cosb;, s; = sinb;) where rotations are performed around three axes. With
this choice one obtains precisely the mixing matrix proposed by Kobayashi and
Maskawa (Ref.3), which we write in the following way:

Vud =q Vus = s1¢3 Vub = 8153
(V)= | Vg =—s1ca Vs = crc0e3 — s83e% Vip = crcass + sacze®® | . (2.9)
Via = —s182 Vis = c1sacs + ca83€® Vi = c15253 — cpcae®d

Even here there are cases where the phase can be removed and therefore cannot
generate GP violation effects. The conditions for which this can happen have been
studied in detail® and correspond in fact to (at least) one matrix element that
vanish (V;'j = 0) and/or to one of the following conditions:

1) one isospin doublet decouples from the others

2) the quark masses within one isodoublet are equal (yieldig V;; = 0 elements)
3) two masses of the top (or bottom) quarks are equal.

4) one angle in the (V) matrix is such that cosé, or sinf, = 0

Depending on the way we present the items, some of them are inter-dependant.
Nevertheless, they give a rather clear description of the present discussion. Some
examples of theses cases are discussed in Appendix 2.B while a more complete
description can be found in reference (6).

It is also very conveniant to use the parametrization of Wolfenstein for the
mixing matrix’ (V). By expanding the CKM matrix to the order A3 where )\ =
sin §; ~ 0.22, §. being the Cabibbo angle, one has:

1- ’\72 A MA(p—1n)
(V) = Y g AN + 00 . (2.10)
MAQL —p—in) —AN? 1

In this approach only the V,; and Vi, elements are complex. By studying the fea-
tures of the beauty hadron decay, one also uses the following crude approximation
for the mixing matrix:
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~1 X ~A
V)= -» ~1 ¥ (2.11)
~A SN2

thus depending only on the parameter A. Although approximate, this form contains
some of the essential features of the mixing matrix. Indeed the transitions within
one generation are dominant as

Vip ~ Ves ~ Vig ~ 1 (2.12a)
whereas the jumps between generations are described by:
| Vea =1 Vas [~ X5 | Vap 1= Vis I~ A% | Vg =] Ve |~ A%, (2.12b)

as visualized by Fig. 2.1. The fact that some jumps between generations are more
probable than others is in agreement with the experimental data. We will often use
this simplified form for the matrix elements whenever we discuss the tendancies of
quark decays and mixing phenomena (Chapter 3).

2.3 - Some physics properties due to the CKM matrix

As we already mentioned above, the physics will not change if the quark field
g — e’¢(4J)q]~. This means that the up (u,c¢,t) and down (d, s,b) quark fields can
be transformed as

U etd(w) 0 0 U
c | = 0 ¥ 0 ¢ (2.13a)
¢ 0 0 @ ¢
and
d e®(d 0 d
s|l=1] 0 e ¢ 5 (2.13b)
b 0 0 ew® b

In the weak current J,, responsible of the decay process [formula (2.3)], the above
transformations of the quark field would be equivalent to the change of the CKM
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matrix, (V) = (V') where

em(¥) g 0 Ve Vus Vi ed) ¢ 0
(V' = 0 e W g Ve Vis Vi 0 el g
0 0 e ¥ Via Vis Vi 0 0 e

U:;VudDd U:Vust U;VubDb
(V') = | UVaDy UtVesDs UpVaDy | . (2.14)
UtVigDg UpVisD, U;VaDy

Here Uy = () with k = u,c,t and Dj = e'¢0) with j = d,s,b represenf the
contributions of the phases on the up and down quark fields, respectively.

Based on our previous statement, the physics should be identical by using the
(V) or (V') = (UTVD) matrices. What then are the expressions containing V;;
elements which can obey this rule? In fact, there are essentially two possibilities,

— any expression containing modulus of CKM matrix elements as
U Vik Dy | = Vi |

— any expression containing four matrix elements in the following way,
(VaiV; Vi Vis) for a # band 1 # 5.
In the latter case, the expression has a combination of four elements forming a.

square or a rectangle in the matrix as shown in Fig. 2.2. This cancels the phases
due to the U and Dy functions in the expression (V,V.* Vy;Ver ), hence

a1’ ajl

! 1% ! 1% *
VaiVai Vij Vi = Vai Vi Vi Vi, -

For three generations the expression Im(V,; Vs Vs Vyr) has an additionnal prop-
erty. This can be seen by using the unitary properties of (V) yielding

3 3
S VaVi=0, D ViV =0 withi#j.
k=1 k=1

These equations represent the product of one row (column) with another complex
conjugated row (column) of the CKM matrix. Each of these six expressions can
be represented by a triangle in the complex plane where each side of the triangle
is given by Vzkvﬂ (or szVk’s-). Two examples are shown in Fig. 2.3.
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In order to define the property arising from the three-generation case, let us
take the example,

Vad Viy + Vea Vo + Vaa Vi = 0 (2.15)

corresponding to the product of the first and third column of the CKM matrix
(the lowest triangle in Fig. 2.3). By taking the imaginary part of this expression,
previously multiplied by V; V¢ [the complex conjugate of the first term of (2.15)],
one obtains

Im [VipVgVeaViyl = —Im [V Vya Vaa Vi)
=Im [VuaVi Vo Vi) -

In the same way, one can multiply expression (2.15) by the complex conjugate of
the second (or third) term, subsequently taking the imaginary part of the equa-
tion. One then finds that |[Im(Vi1V3V/1V;3| has the same value for any square or
rectangle constucted from elements of the two considered rows in the way indicated
in Fig. 2.4 [the multiplication of (2.15) by Vj,V,} gives the same result but is not
shown in the figure].

As a square or a rectangle of four elements can occur by a product of columns
or rows, one easily obtain the general relation®:

Im [VA;VXjVBjV§§] =xK (2.16)

where K simply denotes the absolute value of these products. This absolute value
represents twice the area (A) of a triangle. To clarify this point, let us continue to
consider the triangle described by (2.15) shown in Fig. 2.3. In this case one has

[Im [VasViig Vea Vil = [Vas Vgl x [VeaV3| sin ¢ (2.17)
=2A

¢3 being the angle between the |V, V| and |V 4V}%| sides of the triangle (Fig.
2.3). Therefore, [Im [V V., VeaV}| represents twice the area A of this triangle.
Because of formula (2.16), one concludes that all six triangles built because of the
unitarity of the (V) matrix will have the same area. Clearly, if the CKM matrix
elements are all real the triangles will collapse into straight lines in the complex
plane.

Let us now write the equations defining the six triangles in the complex planes
explicitely. Below each side we indicate its length by using the crude approximation
of the matrix elements given by formula (2.11). One has then:
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Vudv':s + Vchc’; + VQdV{Z =0 (2.180)

~ A ~ A ~ A3
VudVip + VeaVey + VaaVip = 0 (2.18b)
~ /\3 ~ )\3 ~ )\3
Vs u*b + Vs ;1(, + Vtsvtz =0 (218(;)
~ A ~ A2 ~ A2
Vid cti + VasVis + Vubvc}‘; =0 (2.18d)
~ A ~ A ~ X
VaaVig + VasVig + VaVy =0 (2.18¢)
~ )\3 " )\3 ~ )\3
VeaVig + VesVis + VaVyy =0 (2.18)
-~ )\4 ~ )\2 ~ )\2

One sees that the sides of two triangles [(2.18b) and (2.18e)] have comparable
lengths while the others have one side much shorter that the two other lengths.
The latter cases could not be used easily for proving the existence of such triangles
as the modulus of some CKM matrix elements would have to be known with
great accuracy. On the other hand the determination of CKM matrix elements
from experimental data may be model dependent. The verification of equation
(2.18e), yielding sides of comparable size requires the knowledge about the decays
of hadrons containing a ¢ quark. The triangle defined by equation (2.18b), however,
could be investigated with the actual or near-future experiments (Chapter 4). In
this case one will try to measure the angles between the sides of the triangle in
order to prove the complex part of some V;, elements.

Additional comments

Hereafter, we will very often use the Wolfenstein parametrization, where only
Vup and Vig are complex. Other choices of complex elements are possible, as only
products of the [VAIVB;'VXJ Vg,] type can enter in the description of the decay
mechanism. Note, however, that there must be more than two complex elements
(at least three appearing in different columns and rows) in the CKM matrix (even
if the imaginary part of some of them is negligible) in order to build the triangles
in the complex plane so that they have the same area.

2.4 - B meson decays

The quark decay diagrams which may contribute to the B decay are shown
in Fig. 2.5. Clearly additional ¢g pairs can be extracted from the sea in such
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a way that several hadrons will be present in the final state. The first graph
is the so called spectator or tree diagram, in which the lighter quark does not
participate in the decay process. Lepton-neutrino pairs and hadrons (semileptonic
decays) or only hadrons can be produced by this graph. It is believed to give the
largest contribution to the B decay process®~!!. The graph (b) contributes to the
production of ¢g. Graph (c) with W exchange in the ¢ channel (and the emission
of a gluon) can only operate for neutral B, whereas W exchange in the s-channel,
graph (d), applies only to charged B. Finally, the penguin type of diagram, graph
(e), can contribute to both charged and neutral B decays.

Although the spectator diagram is supposed to give the dominant contribution
for the B decay the presence of the other graphs is important in the context of
CP violation. As we will see in Chapter 4, interferences between different decay
mechanisms can genereate CP violation effects. Nevertheless, for comparing or
estimating decay widths we will use the spectator model. In this approach the
various b decay widths are given by'®11:

- G%‘mg 2
L(b— q,17v) = 2555 Ve[ Fi (2.19a)
GEm} 2 2
(b = ¢,9i%)) = Tg5.5 |Vhal " Fi X 3Vl (2.195)

where G is the Fermi coupling constant and mj is the b quark mass. Here Fjis
a phase space factor depending on the ratios of the masses involved in the decay!2.
Note that the factor 3 appearing in the second expression is due to the fact that
the qq’ color singlet appearing in the W — qq' can be formed by quarks of three
colors. The essential result which we will use in the following is that the total
width of the B meson can be approximated by the sum of (2.19a) and (2.19b) and
represented by:

Ty(b) = B,0(b — gW) (2.20)

taking into account the & — ¢W and b — uW processes. This relation (which
is proportional to m;|Vj,|?) would lead to the same lifetime for the B mesons
(B*, BY, BY). Recent experimental data indicate that the lifetime of BY and B!
are close to each other (~ 1.5 ps) thus justifying the above approximation.

For the semileptonic decay of the B mesons, the spectator diagram is considered
to be responsible for this process [formula (2.19a)]. This leads to the equality of
the semileptonic widths of the b and b quarks,

I'(b—q,"v)=T(b— 7, l+l/) . (2.21)

meaning that no CP violation effects are expected in the B semileptonic decay.
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This fact is of great importance for the tagging procedure needed to search for CP
violation in the (non-semileptonic) B decay which will be discussed in Chapters 4
and 5.

Remarks about CKM values

Before discussing some features of the B decay related to the CKM matrix ele-
ments, let us recall some of the estimated values of CKM matrix elements obtained
from the studies of decay processes. From the § decays, it was found that

2

A
Vadl ~ 1 — 5 =0.9744 £0.0010

while the hyperon and K — mev decays give!?

|Vas| = A = 0.2205 + 0.0018 .

The information about V,; and V,, was obtained from the B decays. The
study of the semileptonic decay of the B mesons can give estimates of the |Vy;/ V|
ratio, for instance, from the lepton momentum distribution due due to b — clv
and b — ulv processes. Although these estimates are model-dependent, the various
analyses give |V, /Vep| = 0.08+0.02 (Ref. 13). The parameter A in the Wolfenstein

parametrization can be obtained from |V;|?, that is related to the B lifetime
yielding!3:14

|Viy] = 0.044 £ 0.06, hence A = 0.90 4 0.12 .

The estimate of the |V,;/ V| ratio gives

Vp?+n%=10.36£0.09

[see expression (2.10)]. The values of p and n depend on several parameters (for
instance the mass of the top quark) as discussed in reference (14).

Summarizing this chapter, we can say that we have briefly discussed some
properties related to the CKM matrix elements and hence to the weal decay of the
B mesons. The features presented in Sections 2.1 to 2.3 are some of the ingredients
required for the next chapters. We are now able to discuss the B? « B mixing
and CP violations in the the decay of the B system.
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Appendix 2.A

Number of parameters in the CKM matrix
Let us consider an N x N unitarity matrix (/V generations) and determine the

number of parameter this matrix can depend on. In principle, a complex N x N
matrix depends on 2 x N? parameters. The unitary condition

1 0
VVr=VtV=
0 1

introduces constraint yielding to a decrease in the number of parameters. Above
and below the diagonal of this matrix the elements vanish whereas the diagonal
elements are equal to one. Therefore, there are (N? — N)/2 independant non

diagonal elements where the real and imaginary parts have to equal zero. One has
then

N?— N

2[2

] + N = N? constraints

from which one finds that a unitar matrix has 28?2 — N? = N? independant
parameters.

The number of imaginary parameters is simply given by the difference between
the total number of parameters of an unitary matrix and an orthogonal N x N
matrix (having only real parameters). In the same manner as above, one finds that
an orthogonal matrix will have

2 _ 24N
w N = N——;—— constraints and

yo_ (V2HN) NN
2 9

real parameters .

The number of imaginary parameters in the unitary matrix will then be given by

_N’-N _N’4N

NZ
2 2

The physics will not be changed if the quark fields transform as ¢; — ezp(i¢;)qg;.
By redefining the phases of the quark fields, one can remove 2N — 1 phases (an
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overall phase remains). One thus finally pbtain an unitary N x N matrix depending
on

2
1
N ;N -(2N-1)= 5 (N2 — 3N + 2) phases (2.A1)
2

2

angles (2.A2)

and

Appendix 2.B

Examples of the phase elimination in the CKM matrix
a) Decoupling of a quark isodoublet

Let us first give a simple example where we assume that one family decouples
from the other two (no transition between the members of one family and those of
the other two). In this case only two families communicate, we should be in the
Cabibbo mixing case (no phase).

Let us show this explicitely by assuming for instance that the (u,d) generation
decouples from the other ones. Then one has (¢; = 1):

d 1 0 0 d
s’ =10 copcz—sgs3e® cps3+ spcze’? s
b 0 spc3 + cs3et®  sp83 — cocze’d b

which can also be written in the following form:

|d >=|d>

| s' > = (cacs — s253€") | s > +(cas3 + s3c3¢®) | b >

| > = (s2¢3 + e253€®) | s > +(s283 — cac3e™) [ B> .
Let us now change the phase of | s > in the following way:
1]

ls>— |s>e”
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and define

A= cocse™® — 55385

B = cy33 + s983€%

their moduli being denoted by A and B. One then obtains

|s'>=A|s>+B|b>
|6/ >=B*|s>—-A*|b>

Defining the phases of A and B by ¢1 and (2, one can write the last two expressions
as

etz |’ > = Aeilpr—p2) | s > +—B—| b>
et | b > = Beilvr—#2) |s>—-A]|b> .

Further phase transformations

| s > efler=¥2) | 5 >
|8’ >— e | ¢ >
|8 > et |3 >
finally yield
| >=A|s>+B|b>
| >=B|s>-A|b>
which is indeed a Cabibbo type of mixing (no phase).

In a more general approach it has been shown® that the phase can be be re-
moved in the three-generation case if a pair of quarks of the same charge have
identical masses (the quarks will then be indistinguishable as far as weak interac-
tions are concerned or if a V4 matrix element vanishes). For the CKM matrix all
the conditions required for CP violation through the phase § can be put into one
equation in the following way?®:

D=S% S92 83 €1 €2 C3 SiIl(SJ;éO
with
J = (my — me)(me — me)(my — mg)(mg — ms)(ms — mp)(my — my)

(mg denoting the mass of the quark ¢). This equation covers 14 different conditions.
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b) Example of a vanishing cosine value

Let us now take the example of an angle leading to a zero value of its cosine,
for instance §; = 7 /2 yielding cosfy = ¢z = 0 and sinf2 = 1. In this case the
relations between the d',s', 4’ and the s, d, b quarks will be given by

d’ C1 81C3 8183 d
s | = 0 —s3e® 3t s
b —81 163 C133 b

or by the expressions

|d >=c1|d>+s1c3|s> +s183|b>
| s' > = —s3¢® | s> +eze®® | b>
| >=—51|d>+cies| s> +ciss | b> .

The phase § will diseappear by doing the transformation

|s' >’ > 7%,
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1-A2/2

Fig. 2.1 - Various transitions between the three quark generations with the
corresponding CKM matrix elements in the Wolfenstein parametrization. In our
simplified version, the transitions depend essentially on one parameter .



X O

Fig. 2.2 - The o and the x represent the matrix elements entering into the
VaiV;V,;Vii products. These terms are independant of the ¢; — explid(g;)lq;
transformation. The circle sign represents a matrix element while the cross indi-
cates the complex conjugate of the considered element.
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VisVip
VieVip ViaVio
—
Vchc!“)r

Fig. 2.3 - Examples of two triangles in the complex planes and having the same

areas. The top triangle represents equation (2.18c) and the bottom one equation
(2.18b).



Im [VupVugVedVep] = —Im [VubVudViaVip]

X - == -0 X --=-0
| | ! !
O -=--X A
- e O-—e - X

Im [VepVeaVuaVub] = — Im [VepVeaViaViol

O__.___x . o .
X-=2==O | = = | X--+-0
. . . O___.__x

Fig. 2.4 - CKM elements forming a square or a rectangle in the matrix and
obtained by multiplying the first and the third column as explained in the text.
The o and the x represent elements or complex ones, respectively. The expression

IIm(VaiVija*j Vii)| has the same value in all cases (Section 2.3).
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Fig. 2.5 - The quark diagrams contributing to the decay of the B mesons (B are
not shown). Additionnal ¢g can be extracted from the sea leading to final states
with several hadrons.






3 - Meson mixing

3.1 - Introduction

As in the case of Ko,fo, mixing 1s expected to manifest itself for the BO,FO

mesons. In fact, the B} « BY mixing (or oscillations) has been observed in

; =0 . .
producing the BY and B mesons in different ways,

ete™ — T(45) — Bf}ES
pN — BY(B))X
ete™ — 2% = BYBYX .

The study of the mixing in the first case is different from the other ones. In the
T(4S5) decay the c.m. energy is just enough to produce a BB pair (no additionnal
7). Therefore, to fullfil the JP¢ = 17~ conditions due to the T(4S5), the relative
orbital momentum between the two outgoing mesons has to be [ = 1. As already
mentioned in Section 1.1, such a value will not be compatible with the Bose-

. . .. . —0-50 .
Einstein statistics requirement for a BYB] or a B3 B, system (as the wave function
describing the final state cannot be even under the permutation of the two mesons).
Thus, a mixing procedure only occurs in the first case if the associated meson has

decayed first. Note that the observation of the B} — f (Eg — f) decay does not
give any information about the type of meson produced at time ¢ = 0 that was
responsible for the observed decay. The tagging of the associated beauty hadron
1s then necessary and is treated in more detail below.

In the other two cases the situation is somewhat different. The associated
beauty hadron could be a neutral or a charged meson or even a beauty baryon.
As above, the information about the type of the associated meson produced in the
same event is necessary and will be obtained by the tagging procedure.

Before discussing the methods used to measure mixing, we will give a brief
description of the formalism used to describe the mixing phenomenon in the B
system (Section 3.2 and 3.3). Next we will briefly discuss some results obtained
from theoretical investigations and their impact on the analysis of experimental
results (Section 3.4). Then we will consider the measurement possibilities of the
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mixing process, with the observation of time oscilattions (Section 3.5) and B°
semileptonic decay (Section 3.6). Furthermore, we will discuss the case of the
beauty hadrons produced in p/N interactions. For comparison we will also present

some features related to the ete™ — T(nS) — BB’ (n = 4,5). taking into
account the correlation introduced by the Bose-Einstein statistics requirement.

3.2 - Basic formalism

Let us recall that by mixing or oscillations we mean transitions of the type of
B® &+ B°. These transitions have been widely discussed'! =% and result from flavor
non-conservation in weak interactions. Fig. 3.1 presents the box diagrams which
are beloieved to be responsible for the mixing in the B® system. Whenever we use
BY (B

or B? (FS) mesons.

), we mean that the expressions and formula can be used for the B (—Bg)

Because of the BY «s B’ transitions, the | B > and | B° > states are no
longer the physical states. Thus they are not the eigenvectors of the Hamiltonian
(H) considered to be made from a strong and a weak interaction part. This phe-
nomenological Hamiltonian will be represented by a 2 x 2 matrix in the | B® >

and | B > space (the flavor space).

In order to describe the decay of particles one writes?:
7
(H) = (M) - L(D)

where (M) and (I') are the mass and the decay matrices, respectively. Note that
here (H) is not hermitian, the eigenvalues are not real and the eigenvectors do
not need to be orthogonal, in contrast to (M) and (I'), which are associated with
measurable quantities. The hermiticity of (M) and (T') leads to the following
relations between the matrix elements: Hyjo = Mis—il'12/2 and Hyy = Moy —1iT'91/2
namely

1
Hn = Mi; - 2T,

Moreover, the CPT theorem yields Hy; = Hpy. One can thus write:

) M —il/2 My —iT12/2
o\ My, -2 M -T2 )
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The matrix elements represent transition amplitudes and are given by%°:

<B°|H|B>=<B |H|B >= M —i/2 (3.1a)
< B’ | H|B®>= My —T},/2 (3.10)
<BY|H|B >= My —iT1/2 . (3.1¢)

The last two equations relate the B « B’ transitions (the mixing phenomenon)
to the elements of the mass and the decay matrices. One already sees that CP

violation can occur in the B® « B° mixing if the the non diagonal elements are
complex quantities (a necessary but not a sufficiant condition) or more precisely
if:
0 B .2 30 0|2 *
|<B"|H|B >|*—|<B |H|B>*=2Im(M;},I'12) #0 . (3.1d)

The physical states | B >=| By > and | By >=| B, > where [ (k) stands here
for light (heavy) are obtained by diagonalizing (H). Eigenvalues u4 are obtained
from

Det|H—-pul|=0

(1 is the unit 2 x 2 unit matrix) yielding:

r

(M—ig— )2—(M12—i-2—) (M7 -1 22)=0
and
T
/i:t:M—ZEiQ
Ap =t —p- =2Q
with

Q = 1/(Miz — iT12/2) (M}, — 1T}, /2)
The masses M) = M2 and widths I'yn = T2 of the physical states | By, > are
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then given by:
Mp)=Repsr =M=+ Re Q
Fh,l = —-2Im H+ = PZF 2Im Q

One obtains thus the following relations which will be used throughout:

AM = My — M; = 2ReQ

Ap=pg —p-=2Q

Al' =Ty =T} = —4ImQ

Q = +/(M, — iT4,/2) (M1 — iT12/2)
Q = (AM —iAT/2)/2
I'=(Ty+1y)/2

(3.2)

We will see later (Section 3.4) that for the B® mesons, Ay = 2Q will practically
be equal to AM = 2ReQ, as @ can be approximated by @ = |Mjs|. This will
simplify the calculations of the B® mixing processes.

Using the uy eigenvalues, one finds that the eigenvectors can be expressed in
the form (see Appendix 3.A):

|By>=p| B> +¢| B > (3.3)
|By>=p|B°> —q| B > .

From the eigenvector equations

(H — ul) (fq) =

one obtains

* Tk 1/2
2 =n= )Mlz _ZP12/2 / (34)
P M12—3P12/2 ]\/Ilz-—il_‘lz/Z
where we will use the plus sign. One has also:
Inl? = )M' (3.5)

Mg —1T12/2

where for conveniance we now use the symbol 7 = ¢/p. Let us repeat here (see‘
Section 3.4) that if M1y and TI'y2 are real, or more precisely if Im(M:5T) = 0,
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there will be no CP violation in the B® « B’ transitions [see equations (3.1b),
(3.1c) and (3.1d)]. One has then |n|> = 1. Thus the departure of [n] from 1 will

indicate CP violations in the B? « Fﬂ transition.

As already stated above, the | By > and | By > states do not need to be
orthogonal. A simple calculation gives :

1—|n)?

< By | By>="—"_

1| Be 1+ n]?
2Im(M$,T12/2)

IMi22 + [T12/21? + Q2

Thus it is only in the absence of CP violation in the B® « B° mixing that the
states | By > and | By > become orthogonal.

Even if |n| = 1, 7 can have a phase. In fact this phase is related to the

particle phase ¢ defined in the following way. The | B® > and | B’ > states are
related through CP transformation up to an arbitrary and non measurable phase®’
6 (usually called the particle phase). Thus one has

CP|B >=¢% B>
and hence necessarily
CP|B >=¢ B>

as (CP)% = 1. Before choosing a convention for defining §, let us give the relation
between the phase of n and § when there is no CP violation in the mixing process.
Then the physical states | By 2 > must be eigenstates of CP. Using (3.3) one has®:

C’PIBl>=pei6|P0>+qe"i6|BO>::t<plB0>+q|§0>)
C'PIBg>=pel6|§0>—qe"i5|30>=:}:(p|B°>—q|§0>>.

This can only occur when

+e¥ (3.6)

|
Il
=3
I

If one choose a phase § such that:
CP|B>=—|B" > (3.70)
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CP|B >=-|B"> (3.75)

one obtains that n = ¢/p will then be real if there is no CP violation in the
B B mixing.

3.3 - Time dependence and mixing

Let us now investigate the time evolution of the state | B%(t) > (or | B° (t) >)

where a pure | B® > (or | B’ >) state has been produced at the time ¢t = 0. To
simplify our discussion we will first consider the (unrealistic) cases of having B? or

=0 . . . .

B~ beams. We notice again that there are the physical states |B; 2 >, which have
definite lifetimes. This means that the time evolution of the states | By 2(t) > are
simply given by:

I Bl,z(t) >:I Bl)z > e_i(Ml,Z—'I:rl'z/Z)t

With this expression and formula (3.3), one easily obtains (see the demonstrations
in Appendix 3.A)

| BY(t) >= f+(t) | B® > +nf-(£) | B* >

_(t . (3.8)
| ﬁ(t) >= fT() | B> +f4(t) | B >
where
1 — _ Dyt —iM, _ Tyt
f=(t) = 5(6 Mi=57 f gmthat= ) (3.9a)
lfilz =i <e—1“1t 1ot L 9Tt g AMt) . (3.90)

Remember that |B%(t) > (]PO(t) >) means that a B° (—EO) has been produced at
time ¢t = 0. Thus, clearly f4(0) =1 and f-(0) = 0, as one produces pure states at
t=0.

Let us point out that we will often approximate these last expressions using
[ >~ Ty (iie. '~ T19 or AT ~ 0, see the discussion in Section 3.4). Indeed,
because of the large phase space available for the B decays one expects that the
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heavy and light Bj; mesons will have nearly the same lifetimes (hence I'; ~ I'p).
Then, expressions (3.9) give the relations:

fi(t) = e Mi/2e=Tt/2 cos<¥) (3.10a)
Fo(t) =i e MU2-Te/2 sin(%) (3.100)
|fe(t)]? = %r—t(l + cos AMt) (3.10¢)
M0 = % e Ttsin AMt (3.10d)

using the notation M = (M + Ma)/2.

With the help of formula (3.8) one can calculate the B and the B’ content in
| BY(t) >, or in a beam decribed by | —Eo(t) >. They are given by

|< BY| BY(t) >|* = | f+(t)]?
1<B° | BY(t) >[> = |7-()* In)?
f-(8)?
n|?
I<B|B(t) > = £+ -

< BY | B°() 5P = |

~=0 .
Using the approximations given by formulae (3.10), the B® and B contents in the
considered beams can be expressed by:

-It
|< BY | BY(t) >|* -‘3—5— (1 + cos AM?) (3.11a)
50| Ro 2 e 2
|< B | B°(t) >] ~ —— (1 — cos AMt) |n] (3.110)
—=0 =0 2 E_Pt
< B | B (t) >] ~ —— (1 4 cos AMt) (3.11¢)
- , e T
< B | B'(t) >| :’W (1 — cos AM?) . (3.11d)

These formulae show the oscillation character of the B® and B° content in a given
B® or B® beam. The oscillations depend crucially on the AM or £ = AM/T
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values, as can be seen from Fig. 3.2. This figure presents expressions (3.11a) and
(3.11b) as a function of 7 = ¢/7 for different z values (7 is the lifetime of the B
meson considered) assuming |7|2 = 1. Thus, according to the value of z = AM/T,
there might be several oscillations before the B meson will decay.

One has to emphasize that the oscillation can only be observed if information
about the type of the meson responsible for the decay is known at the production
time t = 0. In a real experiment B and B’ can be produced. If, for instance,
one wants to observe a | BY > state the lack of information about the parent type
produced at ¢ = 0 will lead to a time dependence given by the sum of equations
(3.11a) and (3.11d). This leads to a purely time exponential behavior (assuming
still [n]? = 1). We will later discuss the manner applied for observing the oscillation
character in the decay time distribution.

Because of the difficulties in measuring the oscillations, one often consider the
time-integrated rates

P 1,1 1 oT
0 0 290 — 2 2 4 = P

/|<B[B(t)>|dt—2<PITF2+P2+AM2>
0

S 2,1 1 oT

B Oy PR U SR

/‘< | B() > [t 2(P1+P2 1‘2+AM2>
0

. . . -0
where similar expressions can be obtained for a B ”beam”. In order to measure
quantitatively the amount of mixing one can use the so-called Pais and Treiman
parameters’, r and 7 defined by

T_f|<FOIB°(t)>|2dt_B°——>§0 .-

" [T<BY[B%t)> 2dt  BO — BO (312)

F_fl<B°|§0(t)>lzdt_§0—>B° (3.125)
[1<B1B)>pat B =B '

Thus 7 (7) defines the ratio of EO/BO (BO/FO) that one has at ¢ — co when at
t = 0 one has produced pure B° (FO) states. This is symbolized by the expressions
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in the right-hand side of formula (3.12). An elementary calculation then gives:

o 22 4 32
1 2+ 32 — 42
05 (3.13)
_— 1 z° 4y
Inf? 2422 — 2

using z = AM/T" and y = AT'/(2I'). The mixing probabilities can be defined by

0 =0
X = A (3.14a)
B BBV B Ll+r
—=0 0 _
X = 5 B = r . (3.14b)

BB +B B0 1+7
Note that the non-mixing probabilities will simply be expressed by 1 —x and 1 ~¥.

. . _ -0
The maximum mixing occurs when r ~ 1 (or 7 o~ 1 when B are produced at

t = 0) which corresponds to a nearly equal amount of | B > and | B’ > in the
beam at t — co. Let us note that this can occur in two different situations®®:

1 - Jy| = JAT/(2T)| ~ 1

Here one has r ~ |n|? and 7 =~ 1/|5|? [formula (3.13)] which in the limit of non
CP violation in the mixing process (|7|> = 1) leads to full mixing. The condition

ly] = [Ty — Tg|/(T; + T2) = 1 will be fullfilled when 't >Thor Ty > Iy, a
situation similar to the K° case (see next Section).

2-z=AM/T>1

In this case one also has r = 7 ~ 1 (with |9|?> = 1). Let us now write z in the
following form:

AM B /T T
I 1/AM a Tmixing

>1

where Tmixing s the average time between the B? « —50 oscillations. The last
equation means that the system will oscillate rapidly before decaying and will thus

appear as a nearly equal mixing of B and B . This is a situation believed to occur
for the BY « —ES mixing.
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3.4 - Implications of the box diagram

As yet we have not used any estimation for I, AM and AT. The total width
I' ~ 1/7 can be obtained from the lifetime (7) measurements, determined as ~ 1.5
ps for the B mesons!® (small differences between the lifetimes of the B? and BY have
been observed). Theoretically the main contribution to I' is due to the spectator
diagram [graph (a) in Fig. 2.5]. The total width for the process b — ¢W is then
given by formula (2.20). In contrast, AM and AT can be estimated from the box
diagram shown in Fig. 3.1. In fact this diagram allows one to calculate Myy and
T2, from which one obtains AM and AT (formulae 3.2). The Mz value depends
on the masses of the quark exchanged in the box and on the CKM matrix elements
entering in each corner of the box diagram. In the leading order where we consider
only the exchanges of the quark giving the largest contribution, corresponding to
exchange of the heaviest quark, one obtains for the B systeml?:

Gz
Mg = —1—2— Bpfamp(VsViy)*m? 1gcp (3.15a)
G2 .
Pz = 5 Bafsma(VaVy) mi ngep (3.150)

where ngcp ~ 0.85 (Ref. 2) and anD (Ref. 11 and 12) represent the QCD
correction factors. Here my is the ¢t quark mass, mp is the B meson mass The
symbol p d, s is used in order to allow the description of the Bd - Bd and the
BY « B mixing. As already mentioned above, we use the convention that the
CKM matrix element is V.; (Vij) if the outgoing quark at the g,¢;W vertex is a

down (up) like quark® (see Fig. 3.1). In non relativistic models the B meson decay
constant fg is given by!3

7%= ;—211/)(0)!2

which is estimated to be fp = 0.1 — 0.5 GeV for the B system!3. Here ¥(0) is the
B meson wave function at the origin. The Bg (bag) parameter in formulae (3.15)
1s usually considered to be in the range of 0.5-1.5 unit?.

Despite the uncertainties for certain of these parameters, some conclusions can
nevertheless be drawn from formula (3.15). We first note that My, and I'j5 have
the same phases within the present approximation and that

~ 1072 (3.16)

with m¢ ~ 150 GeV [as recent experimental results indicate that m; > 150 GeV/c?,
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Ref. 14]. The fact that |[I'12/Mi2| < 1 means that formula (3.5) leads to

M7, —1I7,/2
My —iI'12/2

o M ViV (3.17)
My ViV

. . . =0 .
Remember that 7 is used for discussing the BY, B cases. Later on, we will

7‘]::2:
p

Remarks

consider the Bg — FS and BY & —ES mixing with the parameters ng and 7s,
respectively. In the framework of the present approximation, there will be no CP
violation in the Bg — FS and B? « FS mixing as l’?d,slz ~ 1. The phases of 74,
however, will be of great importance for the discussion of CP violation effects in
the B decays (Chapter 4). With the example of the CKM matrix (2.10), one has
from formula (3.17) that ns = 1 and ng = ezp(2¢1) (see the notation discussed in
Section 4.6).

Another important consequence due to |I'13/Mjz| < 1 is that one can obtain
simple expressions for AM and AT and hence for the Pais and Treiman parameters
7 and 7. From the relation (3.2), one has

AM =2ReQ = 2Re\/(M12 —i['12/2)(M7, — 07, /2)

leading to
GZ
AM =~ 2|Ma| =~ 6—;;; Bpfimp | VaVy 1> mi ngep - (3.18)

For deriving an approximation for AL let us use one of the expressions (3.2) yielding

Mz —i=22)

1 AT T
1AM~ 13—)2 = (My; - 1712

By equating the imaginary parts one gets:

AMAT
4

= Re(M12I'],) ~ |Mi2| T'12]

as M1z and I'y have the same phase in the framework of the approximations given
by formulae (3.15a) and (3.15b). Finally, by using AM = 2|Mi2] and formula
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(3.18) one obtains

G2 .
AT 2 2|Typ| = =L Bp fpmp|Va Vi "mingop - (3.19)

Using the (3.18) and (3.19) approximations and formula (3.16) one sees that

aM AL
I 2r

which according to our previous definitions means that z 3> y. Therefore the Pais
and Treiman parameter for the B system can be approximated by the following
forms:

72

2+ z2
1 72
In|? 2 4 z2

r=|n|?
(3.20)

T =

whereas the probability forms with ||? = 1 [formula (3.14)] become

X—X_2(l+:z:2)

) 2
1_X:1_y:";b%7' (3.215)

(3.21a)

Thus the mixing phenomenon for the B mesons is governed by only one parameter
which we recall is z = AM/T.

The larger z becomes, the larger the mixing measured by the r or 7 parameter
will be, with the asymptotic values of 7,7 — 1. It is now easy to understand why
the mixing is expected to be larger for the B system than for Bg. This is simply
a consequence of the fact that z; < z;, the indices indicating values associated to
the BY or BY mesons respectively, as!®

VisVial < [Vas Vigl
[see also the CKM matix approximation given by (2.11)]. Strictly speaking, fg, Bp

(and of course mpg) can be different for the BY and B? mesons, although it is usu-
ally assumed that they are nearly equal. With this approximation, and assuming
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that I'; ~ Ty, one would expect that z5/z4 > 15 by utilizing the |V;;| estimates
of Ref. 10. This means that the oscillations given by AMj st will have a larger
frequency for the B? than for the BY system.

By using formulae (3.15) one can also relate quantities entering in the mixing
of the B} with those of the BY. In particular one observes that:

AMS AFS ~ I WS |2

~ > 1
AMg ATq " | Vg |?

assuming that Vj, ~ 1. Moreover, one also notices that because of AT’y > AT’y it
might be easier in principle to detect the two different lifetimes of the heavy and
light B in B than in BY case.

In a very qualitative way we are now able to understand why mixing is expected
to be more important for the BY system than for the D°. The argument we will
use 1s not an exact one as we will only compare those quantities giving the largest
contribution to z o« |V;; ,-}2|2m2QmM/P for various cases [using formula (3.18)].
Here, mg is the quark mass that can be exchanged in the box diagram, whereas
m s 1s the mass of the considered (B or D) meson. We thus ignore the fjr and By
dependence of the various cases and we assume that y = AT'/(2T') ~ 0 is valid for
all cases, a fact not necessarily true for the D meson®®. In addition, let us use the
simplified form for the CKM matrix inspired from the Wolfenstein parametrization
and discussed in Chapter 1. In this approach one has

Vib ~ Ves ~ Vg ~ 1
V;:d:Vus:)\; Vcb:Vts:)‘z; th:Vbu:)‘s-

Fig. 3.3 presents the different box diagrams for the D% and Bg)s cases. In the
figure are also given indications for the z o« |V}, Vz",;|m2QmM/I‘ quantities, where for
I' we use the dominant spectator model prediction I' m2|V;1q:|2. Thus I'(B) «
|Vhe|? ~ A%, which appears in the denominator of the studied ratio, will cancel part
of the A dependance appearing in the numerator. For the BY this cancellation is
complete within this rough approximation, as AM; /T ~ m?/mg‘ does not depend
in the leading order on A.

3.5 - Mixing measurements with the time oscillations

We will discuss now the measurement possibilities of the B® mixing through the
observation of the decay time-oscillation. We consider this approach for simplicity,
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although the first observation of the B} mixing were made through their semilep-
tonic decays (see below) and not with the time oscillation process. At the begining
we consider the general case where the B? are produced in hadron-hadron inter-
actions at c.m. energies where all types of beauty-hadron pairs can be produced.
Note that the same method can also be used for ete™ interactions at large c.m.
energies (for instance, ete™ — Z — X) although some differences might appear
between pN and ete™ interactions (see Section 5). We will also comment on the

relatively simple case for the B% mesons produced by the ete™ — Y(nS) — BB’
channels (with n = 4,5).

a) hadron-hadron collisions

Let us consider a BS — f decay where the experimental reconstruction of
the daughter f state signs the type of the parent meson at the decay time. For
instance, one could consider the B} — D7~ that could not come from the Fg
decay. As already discussed above (Section 3.3), information about the type of the
B meson produced at ¢ = 0 and responsible for the decay into the f state could be
partly obtained by tagging the associated beauty hadron through its semileptonic
decay. This is because the charge of the lepton indicates the quark responsible of
the decay (b — "X, b — [T X, X meaning anything). In the present example we
consider the final [~ fX state that can be produced by the following beauty-hadron
combination: '

(1) B~BY

(2) NyBj

(3) FSBS and B?Fg (coherent mixture)
=0

(4) ByBj

where the particles are those appearing at the production time (¢ = 0). Let us now

consider these casesg .

Cases (1) and (2)

These cases are trivial, as the beauty hadrons decay in an event independently
from each other. For case 1, the initial vector state is given by

|¢ >=|B~(t-) > |BI(tq) > (3.22)

where t_ (t4) corresponds to the proper time of the B~ (BY) state in its rest frame.
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The amplitude of the considered processes is then given by:
AT =< UTf | ¢>=<I"X|B~(t-) > < f|B3(ts) > .

Using
| < I"X|B~(t_)>?=|<I"X|B™ > [Tt

and formula (3.11a) one obtains successively

T2
AP = 20 ST e (14 s anyy)  (3.230)

T dt_dt; 2
2
% - |2TTI ¢~ Tata (1 4+ cos AMyty) (3.23b)
d -

where T =< I"X|B~ >< f|BY >, while T; represents the decay width of the
beauty hadron considered (the indice being self-explanatory). For point 2, one
has the same formula with the transformation of ' — I'yy and ' — T" as the
< I7X|B~ > part of the amplitude might be different from the < (= X|N, > part
(see the discussion below).
Case (3)

This case is more complicated, as each neutral meson can be subject to mixing.
Because of these procedures, the [~ f state can arise from systems that at timet = 0

were either BSES or FSBg. The initial state vector is now given by
|¢ >=|Bs(ts) > |Ba(ts) > +|Bs(ts > |Ba(ty) > (3.24a)

where i, , represent the proper times in the BS and BY, respectively. If we now

consider the final state in which the strange meson decays into [~ X at time ¢s and
the non-strange one into f at time ¢4, one can write the amplitude for this process
as

A(l"f) =<7 X|Bs(ts) >< f|Bg(ta) > + < I"X|Bs(ts) >< f|Ba(ta) > .
By using formula (3.8) giving the time evolution of |B%(¢) > and [FO (t) > one has

AW f) = T[22 F-(ts)f~(a) + Folt5)f(8)] (3.200)

where, as usual, T =< Z‘X|§0 >< f|BY >. With this amplitude, one obtains the
following time dependence expressions (Appendix 3.B using 7, = 1):
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dos _ |TI2 —(T'sts—+Tata)
YRR e [1 + cos(AMts + AMgty)+

+ sin AMt,sin AMty x (1 — Reng)) (3.25a)

E = o e tate ] & m (cos AMgty — zsReng sin AMdtd) ,(3.25b)

the last expression being the t; time dependence for case 3. Because of the large
expected z, value (Section 3.4), the dos/dty distribution will essentially have an
exponential behaviour (a situation which would be different for dos/dts).

Case (4)

=0 . . .
For the BgBd case, we must take into account the charge conjugation of the

two meson system defined by 7, = 1. The state vector of such a system is then
given by

| ¢ >=| B(t),p1 >| B(t),p2 > +nc | B(t),p1 >| B(t),p2 > (3.26)

where p; 2 are the meson momenta defined, for instance, in the production c.m.
system and where C|¢ >= n.|¢ >. Let us now consider the final state in which

one meson decays into [~X at time t; while the other one is decaying into f at
time tp (¢t1 and t2, as usual, are defined in the corresponding meson rest frame).
The amplitude for this process will then be given by:

AT f) =< I"X | B%(t1) >< f | Fo(tz) > 4. < 17X |F0(t1) >< f| BYt2) >

where we label yet the B mesons by their disintegration time ¢; and t5. Still using
formula (3.8) one gets

AITf)=T [f—(tl)f—(tZ) + 77cf+(t1)f+(t2)}

with T =< l‘X|FS >< f|BY >. One thus easily gets the double differential cross
section

daa(I™ f) Ilee—r(tlm)

dtydty 2

1+ cosAM(t; + nctz)] . (3:27a)

Integrating over tj, the time related to the semileptonic decay, one obtains the
following ¢, dependance (2 being replaced by t4):

dog(I”f) _ |T? _Tts 1 ‘
dtg oT_° + 1+2) (cos AMgty — nezqsin AMgtg (3.27b)

For c.m. energies above the BB threshold, the two charge-conjugated states of the
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BSES system (7. = +1) have equal probability. Then the third term in the right
part of the last equation vanishes.

Finally, the four cases can be summarized as follow: -

dagj;f) _ Zl"jilIz‘d T (1 + coszgTy)
- 2

(3.28)

using 74 = t3/7y = tq4lq (T4 being the Bg lifetime). The do(I™f)/dry cross-
section will then by obtained by adding incoherently the different do;(I~f)/d7y
distributions, each of them being weighted by the production values of the BY (pg)
and of the associated beauty hadron (p+,ps,p4 or py), i.e

Zp 4 Pj Tl 1) (3.29)

d'rd

The amplitudes | < I7X|B >< led >|=|T|and | < I7X|Ny >< f|B} > | =
|T"| will be taken as being the same in all cases, as we assume that the semileptonic
decays of beauty hadrons are dominated by the spectator model (Section 2.4). This
simply means that the widths of the semileptonic decays of the beauty hadrons
are nearly equal. For estimates of the distributions due to formula (3.28), we will
also assume that the beauty meson decays are essentialy due to the b — ¢W or
b — GW processes (the spectator model) yielding equal lifetimes for the various B
mesons, and hence that

I, =T;=T,.

The binding energy of the light quarks in the beauty baryon are expected to be
smaller than in the B meson. Therefore, the beauty-baryon lifetimes should be
shorter than those of the B mesons, yielding I'y > I';. From the actual observation
of the beauty-hadron lifetimes, one has I'y =~ ¢ T'; with e ~ 1.3 (Ref. 16).
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The p; probabilities depend on the c.m. energy where the beauty-hadron pairs

are produced. At large c.m. energy (v/s > 1 TeV), one generally uses the values
of:

Pt :ipg i Ps:pN ~0.38:0.38:0.14:0.10 . (3.30)

obtained from Monte Carlo calculations!”. Note that the sum of the equations in
(3.28) leads to a distribution of

do.
drg o

T [1 4+ Acoszgry — BsinzgTy) (3.31)
where the A and B parameters depend essentially on z; 4, the probabilities p;
and the values of the I'y, T'y, I's and 'y widths. The coefficient A is sometimes

considered as the dilution factor as A < 1, despite the small sine term appearing
in (3.31).

The expressions given by formulae (3.28) can be utilized for the BY oscillations
by transforming the subscripts d « s. As an example, we present in Fig. 3.4 a
decay time distribution for a BY — f decay with z; = 15, Reng = 1, I'y/T- =1
[formula (3.31) with s & d] assuming that the amplitudes (|7']) in the four cases
are nearly equal. The calculated distribution is not very sensitive to the 'y /I'- =
¢ value, in the 1 — 2 range. One also sees from this figure that the calculated
distribution is not too far from the | < B® | BO(t) > |> ~ e 7Tt (1 + cos AM1)/2
distribution [formula (3.11a)] when the backround has an exponantial form.

b) The ete™ — YT(nS) reactions

The situation is simpler for the eTe™ — T(45) — Bg§2 process where the
relative orbital momentum between the two mesons has to be [ = 1 [in order to
have the J¢ = 17~ quantum numbers of the Y(4S5)]. Then the oscillation forms
will be given by formulae (3.27) with n, = —1, namely:

4(l f) | |2 —-I‘(t: tz) a
dO 2 + 1 —t 3.32
tl tz [ + CoSs AM(tl 2) ( )
d04 Itz |2 —Pdtd ]' A ] 3 32
_ = — —————p + . .32b
; e 1 + D) ( Cos Mdtd g Ssin AMdtd) ( )

The same relation could be used for the Y(55) — BEF? decay replacing d — s.
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One has to notice that formulae (3.27) can also be applied for the process
e*e” — BUB, ,ByB;° — BYByy

where no additionnal = being produced. This time one has n =1 (and d — $) in
formula (3.27b).

The formula (3.32b) has not really been used as yet for measuring the B°
mixing. This analysis would have some problems for the ete™ — T — BB case
because of the difficulty of reconstructing the interaction point, thus complicating
the proper time measurement. In this respect, the oscillation observation could be
more powerful for measuring the zs parameter related to the B? mixingin the case
of pp interactions.

3.6 - Mixing measurements with semileptonic decays

The method that we now comment on was in fact used for observing and mea-

suring the Bg o FS mixing. In this approach, one measure in a given experiment
the number of events (denoted by N) having BB (or NyB), BB (or NyB) and
BB (NyB or N,B) in the observed final states. Note that N(BB), for example,
does not mean that one has necessarily two B (or B) at the same time defined,
for instance, in the production c.m. system (which is not be allowed in some cases
as in the ete™ — Y(45) — BB process). Here N(BB) simply means that the
observed final states are due to two B decays. As the identification of a beauty

hadron through its reconstruction is difficult, one usually uses the semileptonic

decay B — [*vX (Ny — I"vX) and B — ["vX (Ny — I7vX). Mixing could

then be observed by measuring the following ratios'®:

NIy + N(717)
N(I+1-)
NI+ N(I7I7)
N+ + N(I-1-) + N(IFI)

R =

(3.33)

R =

Here N(I*1*) denotes the number of events having two leptons of the same charge
in the final state arising from the mixing process and the subsequent semileptonic
decays of the beauty-hadron pair. The number of events with two leptons of
different charge and resulting from beauty-hadron decays is denoted by N({*1™).
Non-zero values of the above ratios indicate the occurence of mixing in the B°
system.
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a) hadron-hadron collisions

Although the BY « Eﬁ mixing was discovered in the ete™ — T(4S) — BB
process let us begin to consider the general case in ppinteractions. At large c.m.
energy (for instance, /s > 1 TeV), several types of beauty-hadron pairs can lead
to the production of {¥I* due to the semileptonic decays of the b quarks. Let us,
for example, consider the {7/~ case. The pairs of beauty hadrons at the production
time (¢ = 0) that may be responsible of [~/ are:

B"Bj, B™B{, BBy + B,B], B,B}, B, B
N,BY, N,B? .
The amplitudes and the cross-sections o(I717) o N(I71~) expressions are derived

in the Appendix 3.C for the BB cases. Let us give here only the obtained expres-
sions:

B™B = | o (I717) = TP =g p+p (3.34a)
g ’ oF Ty 1+28 ¢ |

2 2
BB)=  op(il) = ALl % (3.34b)

~ 20_Ty 1+ z? Pps
TP 22 + 22 + 2223 + z,z4Reny

BB = o (i710) pepa (3.34c)

20Ty (1 +zs) (14 32)
—o oy TP [23(2+20)]
B,BY I717) = .34d
dBd = Ud( ) 2Pdrd |: (1 + mﬁ)z Pq (3 3 )
=0 10 - IT]> [z2(2+22)] ,
_ .34
B.B; = o.(I717) oN.T, | 1122y DS (3.34e)

where, as usual, T'; ; are the total widths of the various beauty hadrons and 7 is
the amplitude part taken equal for these cases (see Appendix 3.C). The Nng or
Ny BY cases can simply obtained by replacing ' — I'y and p+ — py in equations
(3.342) and (3.34b) using the same (or a different) 7' amplitude. Here o(I=17) # 0
will indicate mixing although an estimate of z; (z4 is known) is not evident.

b) The ete™ — T(nS) reactions

The study of the eTe™ — T(45) — Bg??l about mixing has been done without

difficulty as one can produce only one pair of neutral mesons BB’ in the final
state, which will be responsible on two outgoing leptons having the same charge.
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In the general case, odd or even orbital momentum [ between the outgoing mesons,
one has®

[ 1 — nea?
+1+y _ 72| 2
NI = K21 (1+x2)2}| |
o [ 1—n2%] 1
] R N 3.35
NI"IT)=K 1 (1+x2)2]ln|2 (3.35)
—_ [ ]."'77ch
+ = 2 —_— 2
NITI™) =K _1++(1+$2)2] X

where K? = | < I"X|B% > 2/(2T'2 ,) and 7 = 1. Here N(I*1™) represents only
the number of events with [*1~ due to the BB pair. For the ete — T(45) —

Bg?g process one has 7. = —1. Using in addition ||? = 1, one obtains
N(lili) a=K*1- ! > = K? xczl (3.36a)
¢ 14+ :c(zi 1+ xﬁ
1 2 + z2
NI )oaq = 2K%( 1 =2K?- "4 3.36b
( )odd < +l+$§> 1_’_1:5 ( )

the symbol odd denoting that we are dealing with an odd [ value. This leads to:

N )eaa F N )oaa | 2

pdd = N(IF17 )odd T 2422

(3.37)

The same expression will be obtained for the ete™ — T(55) — B?FS but where
d— s.

Remarks
If the events have outgoing mesons produced with relative odd and even orbital
momentum in equal amounts, one would then obtain

z%(2 + z?) 2r

!
odd+even — 24222 4 z4 - 1472

using now z,r instead of z4 s, Td,s- Lhe influence of the relative orbital momentum
on R’ is shown in Fig. 3.5. where B!, , Rl . and R 4q+even aI€ expressed as
a function of z. As expected, the Bose-Einstein statistics requirement leads to a

smaller mixing than in the uncorrelated case for z < 5.
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Appendix 3.A

Mixing formulae

As seen in Section 3.2 the eigenvalues p4 are obtained from
Det | H—ul |=0

yielding
pa=M—is £Q

with

%

Q= \/(MIZ - ZP—ZI%)(Mfz - 2712)

The eigenvectors | By > and | B, > will be expressed as a linear combination of

| B > and | B° >, namely

|By>=p|B°>+4¢! B>
|B2>:p’[BO>+q'[§0>

where we associate | By > to the light state (M1 = Re u— = M — Re Q) and
| By > to the heavy one (M2 = Re uy = M + Re Q). The p, q and p', ¢ values
will be obtained from the equations:

(M —p-I) (;;) =0; (M ~pgl) <p,> =
q q

These matrix equations give

9. =@ L [MH -T2
p My —1iT12/2 Mi, —1T'12

i o __ [
P Mg —1l'12/2 My —I'12
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and therefore

One can thus write the eigenstates in the following form

|By>=p|B"> +¢| B >
|By>=p|B°> —¢|B >

which are the formula (3.3) given in the text.

Let us now give the time dependance of the B% and B’ states, namely

| B%(t) > and | _Eo(t) >. As the the physical states | B; > and | By > have definite
lifetimes one merely has

| B >:| By, > e_i(Mlﬂ—‘LI‘l,z/Z)t

Now using equations (3.3) one obtains

1
|B°>:g<iB1>+|BZ>>

0>=i<|B1>—|Bz>>
2q

| B

which expresses at time ¢t = 0, | B® > and | B’ > as a function of the physical
states | B12 >. As we know how the physical states behave as a function of time,

. . -0 . .
the time evolution of the B® and B states are simply given by:

| Bo(t) > = %0 By > e~ Mit-Tit/2 | By > o—1M2t-T2t/2

= 1 4 _
1 B(t) > = %O B> e Mt-T2_ | gy e—-zMgt—I‘;t/Z)

Let us now replace | By,2 > (the physical states at ¢ = 0) in these last equations
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with the help of formula (3.3). One obtains thus

| B°(t) > = f(t) | B® > +n/-(1) | B >
1B°) > = £(1) | B > +f—T<t> B0 (3.8)

with
1

f:t(t) _ §<e—iM1t—I‘1t/2 + e—iMzt—Pzt/2.> (39a)

which are the wanted expressions, namely formula (3.8) and (3.9a) from the text.
Sometime this last formula is also written in the following forms:

F-(t) =1 o1 (Ma+M2)t/2 ,~Tt/2 sin(%—t-)

where
Ap = pp — ppe = 2Q
=AM —iAT/2

1s a complex number but with a very small imaginary part as AT/AM < 1. As

already mentioned in Sections 3.2 and 3.3, the widths (or the lifetimes) of the
heavy and light B® mesons are nearly equal, yielding Ay ~ AM and

f+(t) = e HMitMz)t/2 —Tt/2 cos(——Ag/ﬁ)

f—(t) =3 e"(Ml‘f'Mz)t/Ze—I‘t/z Sin(AéWt>

where this time, the arguments of the cosine and sine terms are real. These ex-
pressions are given in Section 3.3 [formula (3.10a) and (3.10b)].
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Appendix 3.B

Time dependence for case (3) in Section 3.5

Using the amplitude (3.24b),

AW F) =T [ F-(0)f-(ta) + fult) fote)
and ns = 1, one obtains

dos

T AP = |T|2[|f+(ts)|2|f+(td)|2 ()P F— (ta) )P+

2Re (f_<ts>f::<ts>f_(td>f1<td>nd)]

By using now formulae (3.8) and (3.10), the last expression becomes

dos _ [T

g~ (Tsts—+Tata) (1 + cos(AMts + AMyty))
+ sin(AM;ts) sin(AMtg) x (1 — Reng) . (3.25a)

To integrate this expression over t; we use the following integrals:

o0
/ e " cos(zT + ¢)dr = 1T 22 [cosq — zsing] (3.B1)
0
o0
/ e "sin(z7 + ¢)dT = T 22 [zcosg —sing] , (3.B2)
0
yielding

d0'3 |T|2 —Tata 1 .

- = = - 13 . 254

di, = or, e 1+ T2 (cos AMyty — zsRengsin AM, d) (3.25b)



Appendix 3.C

Formulae for pN interactions

As a simple exercice, let us derive equations (3.34a) to (3.34e). These expres-
sions give the o;({717) cross-sections (j = a...e) obtained from the following pairs
of beauty meson produced at ¢ = 0:

B~BY, B~B, BYB, + B'BY, BLBY, BIBY .

The first two cases are simple. Let us, for example, consider the B "Bg production
at t = 0 described by the state vector [B~(¢) > |BJ(t) > yielding the amplitude

A(I717) =< I7|B~(t) >< I"|BY(¢t) >
=T e T-1-/2 nf_(t,)

with T =< I7|B~ >< l‘@g >. The last term was obtained by using essentially
formula 3.8. By integrating the square of the above expression over t_ and t, one
obtains

2 2
ca(l17) = JL1 24

= . 3.34

where p; represents the probability of producing a B; (or B,) meson. The B~ B
case 1s simply obtained by replacing the d symbol by the s one yielding,

(") = T7 =g (3.34b)
o T LT, 1+ 42 PEPs ‘
Let us now consider the third case where the state vector is given by

|¢ >=|Bs(ts) > [By(tg) > +|Bs(ts > |Ba(ta) > (3.24)

leading to the amplitude

AT =T I:T]sf—(ts)f-i-(td) + 77df+(ts)f—(td)]

using still equations 3.8. The integrations of |A(I717)|? over ts and t4 give now
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with ng = 1:

PsPd (3.34c)

oo(I17) = IT|? z2+ :cfl + z?zﬁ + zsz4Reng
2TsTy (14 22) (14 22)

which, of course, should be symmetric in the z; and z; parameters.

By using the state vector
| 6 >=| B(t),p1 >| B(t),p2 > +n¢ | B(t),p1 >| B(t),p2 > (3.26)
(seethe definitions in Section 3.5) one obtains]the amplitude for the Bg?g system
AQTIT) = T ng [ £ () Falta) + F () F-(t2) 7]

By integrating this expression over t1 and t,, one has the total cross-section:

2 o 2
sy = JZ 1 1)

)= 23Ty (1+23)? Pa -

As already explained above the term containing 7, can be cancelled as the number
of events with odd and even orbital momentum between the outgoing mesons are
equal. One obtains then

— = |2 [2 [223(2 1123)} 2
og(I717) = . 3.34d

By changing in this last expression d — s, one has the cross-section oe related to
050
the By B, system.
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Fig. 3.1 - The box diagrams assumed to be responsible for the 'Bﬂ — BY mixing.
The left-handed graph indicates also the manner in which the CKM matrix ele-
ments are defined. If the outgoing quark at a g3gaW vertex is a down (up) quark,
the matrix element is V¥ (Vi;). Note that  (¢) denotes a heavy (light) quark.
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Fig. 8.2 - The time dependence of the B? and B° mesons when pure B° have

been produced at time ¢t = 0. The curves (full lines) are calculated with = values
of 0.75 and 5.
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Fig. 3.3 - The various box diagrams which may contribute to the D% and Bgs
mixing. In each case the dependance of z and I' on the quark masses and on X are
indicated.
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Fig. 3.4 - Comparison between the time-dependant decay distribution of the B?
obtained with the B~ for the tagging process (full line) or with any beauty hadron
(dash in the figure). The value of z; = 15 and T'y/T— = 1 have been taken for

this example.
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Fig. 3.5 - The R' = [N(I*I*) + N(I"17)]/N(I*1-) ratio as a function of z. The
curves are obtained when the relative orbital momentum between the B and B is

even (Reyeq), 0odd (R.4,), or when the number of odd and even parial waves are
equa‘l (R, = :)dd+even)'



4 - Generalities on CP violation in
the B decays

4.1 - Introduction

In the following we will discuss the comparison of B — f with B — f decay
in order to search for CP violation effects in the weak B meson decay. Here f
representing a given final state while P and C denote the parity and the charge
conjugate operators. We know from experiments that the parity is not conserved
in the weak decay. This means that, if CP is violated, the charge conjugate can
be conserved or violated. Our question now is how to learn from B decays the
validity or not of CP conservation in these processes.

The search for CP violation in the B decay, can be advantageous by using decay
channels which do not depend on the parity operation. Then the CP violation can
simply by tested by comparing the B — f with its charged conjugated channel
B — f. In fact the B — f and B — [ transition rates will not be influenced by
the parity violation of the weak decays if the final state is a parity eigenstate.

As an example, let us consider the B decaying into two particles. Only one
relative orbital momentum will then appear in the final state if the outgoing par-
ticles are spinless or if only one of them has a spin value different from zero. This
. leads to a parity eigenvalue of the final state. For instance, the Bt — f* (or
B% — f) could be compared with its charge conjugated states if, for instance,
one uses f1 = DOK"',D“LEO,... (or f = J/YKEY ntn~, —ﬁowo,...). In contrast,
such an operation will not be applicable to the decay of Bg — J/YK*® Dt D*~
where the spin of the outgoing particle will allow even and odd orbital momentum
between the outgoing particle (and hence even and odd parity contribution in the
final state).

The detection of, or the possibility of setting limits on, CP violation is certainly
one of the key reasons for collecting large BB data samples. In the framework of
the standard model, the CP violation in the B and B decay will arise because of
the complex CKM matrix elements. Therefore, any process where only |V;;| terms
enter in the decay mechanism cannot be sensitive to these effects, in contrast to
processes containing products of CKM elements with at least one complex element.
As discussed in Chapter 2, the product will be of the form VoV, Vi, Vi, which
could lead to a difference between B — f and B — f as V;; « V.'; when the
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B — f amplitudeis transformed to describe the charged conjugated B — f process
(hereafter we always assume that the final state is a parity eigenstate apart from
some specified exceptions). This means that the search for CP violation can only
be applied when interference phenomena contribute to the decay process. We will
see below that essentially either of the following methods or both can contribute
to interferences:

— difference in the mo_dulis of the decay amplitudes, namely
| <FIB>1#|<f|B>]|

— mixing influence in the Bg ; decay.

Thus, by choosing specific B decays having a definite parity eigenvalue in the
final state, the CP violation effects can be searched for by detecting differences in
the partial decay rates of B — f and B — f. One defines the time-dependent
A(t) and the time-integrated A asymmetry parameters by

A(t) F(B(t) — f) B F(F(t) = f) (4 1)
N(B() — /)1 (B = 7) |
_NB—f)-T(E-T)

B COEGERCES: 2

For example, T'(B(t) — f) = | < f|B(t) > |? denotes the time-dependent rate
(argument t), while

mBﬁﬁ=/mmnqﬁﬂ

1s the integrated decay rate (partial decay width). Non-vanishing values for A(t)
or A will, in principle, demonstrate the existence of CP violation in the B decay.

The interference arising from the amplitudes will be considered in some detail
in Sections 4.2. In Section 4.3 we will examine the influence of the mixing, while
the formalism will be described in Section 4.4. Expressions of the asymmetry
parameters will then be given (Section 4.5) as well as some approaches about the
measurement of CP violation parameters (Section 4.6). In Section 4.7 another
possibilitiy for measuring one of the CP violation parameters will be discussed.
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4.2 - CP violation due to decay amplitudes

Let us consider the simplest CP violation effect occurring through the decay
amplitudes, namely when

|<fIB>| #|<flB>]. (4.3)

Let us recall that the above amplitudes represent those appearing at the production
time ¢t = 0. In the most general case one can always write!

< f| B >=%gjM;e (4.4)

where each term in the sum represents a mechanism (shown by a graph in the
example given by Fig. 4.1) contributing to the B — f decay. Here g; are the weak
decay parameters containing products of CKM matrices involved in the considered
graph, M; are real quantities depending on each graph, and §; are phases due to
final state interactions (strong or electromagnetic interactions). Under the trans-
formation < f | B > — < f | B > the g; becomes complex conjugate?, while the
phases due to final state interactions remain the same. Indeed, final state inter-
actions among outgoing particles are not changed when all the outgoing particles
are transformed into their antiparticles. One has then:

<f|B>= E]‘g;M]'eiéJ . (4.5)

If the same combination of CKM matrice elements enters into each term of the
sum given by formula (4.4) [or (4.5)], they can be factorized out and

I<fIB>|=|<f|B>|.

The same equality could, of course, also occur if only real CKM elements enter in
formula (4.4) and (4.5). If this were not the case, CP violation could occur, as the
transition rates might be different.

To simplify our discussion, let us consider an example where only two graphs
contribute essentially to the B — f and B — f amplitudes. One has then

< f|B>=gMe® + gy Mye'®
<f|B>= nglew‘ + g%‘Mge”s2 .
A simple calculation with formula (4.2) then gives the asymmetry parameter:

4o 4m(g7g2) sin(6y — &) My M,
2] g1 M12 + 2] g9 |2 M% +4Re(g1g§) cos(61 — &2) M1 M, .

(4.6)
We notice again that we obtain our previous result, namely that for the same
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set of CKM matrix elements for each graph (g1 = g¢2) or with only real CKM
elements, one has A = 0. Clearly, A # 0 when in addition to the fact that g} g has
a non-vanishing imaginary part one also has §; # 62. This last point is a crucial
condition for searching CP violation effects in the case discussed here. The choice of
investigating specific decay channels is difficult, as any estimate of the importance
of final state interactions suffers from large uncertainties (model dependance).

a) CP violation in the B*decays

A CP violation effect in the B¥ — f* decay can only occur through the decay
amplitudes, as mixing does not influence the B+ decays. Examples are shown in
Fig. 4.2 as well as in Table 4.1. Let us now take the examples B~ — D**D~ and

Bt - E*OD"', yielding

< D¥D™ | BT > = Vg VAL + Vip Vg Az
< DD | B~ > = ViVigA;y + V2 Vaads

where we used now A, = M,;e'. Formula (4.6) becomes now

4o Am(Va ViV Vo) MiMosin(sy — 6)
|< DD~ | B~ >[2 + |< D'D+ | B¥ >2

(4.7)

The CP violation parameter is given by Im(V;; V3V, VY;). As seen in Chapter 2,
the absolute value of this quantity is independant of the CKM matrix elements in
the framework of the standard model with three generations. This means that the
CP violation effect due to the inequality of the amplitude modulus is identical for
all the B* channels (as well as for B%). The measurement of the asymmetry pa-
rameters, however, will not be identical, as they will depend on the M, parameters
and on the final state interactions. One has also to note that in the case of two
different decay mechanisms, one of them very often gives a small contribution to
the decay process (in, for instance, the examples indicated in Fig. 4.2) leading thus
to interference effects wich will be small with respect to the background. There-
fore, it would be rather worthwile to use decay channels where the two graphs
contributing to the decay mechanism have a similar order of magnitude.

Note that the time dependance I'(B*(¢t) — f*) and I'(B~(t) — f~) will
not be very useful as they have nearly the same exponential behavior, a situation
different for CP violation in the B° decay where mixing contributes to the decay
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Table 4.1 - Example of B, B decays where no tagging is necessary and where CP
violation effects could only arise from the decay amplitudes. BR(tot) represents
the measurements or rough estimates of the branching ratio leading to the final
state indicated. Here we consider only charged particles in the final state.

Decay channel | Final state | BR(tot)

Bt - D'xt Ktnptr- ~ 104
D
Bt — J/pKT KEtutu= |~4107°
I — ptu”

Bt — pK* Ktnta— ~ 107
BY — J/z,bf*o K-ntuty= |~2107%
Jp — ptp~
7?*0 — K7t
B! - Dynt | Kt*K-ntn—|~310-8

D —» K+*K-r-
B 5 D'R" |KtK-ntr| ~ 10~
EO — Ktn~
5 K7+t

processes (see Section 4.3). In the case discussed here the time behavior is de-
termined by the B lifetime that is identical to its charged conjugated particle B.
Therefore, CP violation will be searched by measuring the A parameter [rather

than A(¢)].

b) CP violation in the B® decays

The CP violation due to the decay amplitudes can also occur for B decays.
The observation of such effects is more delicate because of the mixing processes
(see Section 4.3). There are, however, B decays where the observation of the final
state identifies the type of the parent B meson. This happens when f # f can only

be produced by the B° (FO) decay and not from the B’

difference between the B® and the B decays could only be due to the influence
of the decay amplitudes. Table 4.1 gives some examples where specific B? decays
allow one to identify the parent meson. However, in the standard model with three
generations, no CP violation effects (or only negligible ones) are expected for the
B examples given in Table 4.1 (see also the discussion in Section 5.1 about the

(B°) one. In such cases,
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contribution of penguin diagrams when a J/v appear in the final state).

c) Measurement informations

Let us now assume that a difference between the B¥ — f* and B~ — f~
decay widths (I't and I'~, respectively) has been observed. Information about the
complex part of some CKM matrix elements could then be attempted. Let us now
represent the amplitudes by

< fT|B™ > = Arer e 4 Ajeitret® (4.8)
< fT | BT > = Aje et 4 Age™ 2102
for a two-graph contribution to the decay mechanism. The A, now contain the M;

term and the modulus of the V;; elements. The complex part of the CKM matrix
elements is represented by the ¢; phases. One then obtains

T~ = A2 4+ A2+ 24, A2 cos(ow + ¢F) (4.9)
It = A2 4+ A2 4+ 24,45 cos(—¢w + éF)

using ¢w = ¢1 — ¢2 and ¢p = 61 — 2. Models allow one to have estimates of Ay
and A using the known estimates of the modulus of the CKM matrix elements
entering in the decay channels considered®. This leads to estimates of

¢ = cos(dw + 6r)
¢ = cos(—¢w + ¢F)
yielding
ct + ¢ = 2cosgw cosPr
¢y —c_ = 2singw sindr .

One then has a twofold ambiguity for sin? ¢w given by

1—cre- /(1= cf) (1= <)
. .

sin? pw = (4.10)
When only one complex CKM matrix element contributes to the considered decay
process, one can obtain from the last equation some information about its weak
phase®. The discussed method is, however, very uncertain as the estimate will
depend on the models used to evaluate A;2. Furthermore, the precision of the
sin? yy estimate will strongly depend on the phases due to final state interactions.
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4.3 - Mixing and CP violation

It was recognized some years ago®® that if the B and the B’ mesons are able
to decay into the same final state f (and hence necessarily into f), CP violation
could be observed as a result of the interplay between mixing and decay amplitudes.
Thus the final state f (or f) can be reached directly from the B® or B’ decay or

through a B? « B’ mixing with a subsequent decay (see the sketch presented
in Fig. 4.3 and the example shown in Fig. 4.4). It is the interference between
the different routes which can lead to CP violation effects in the framework of the
standard model.

Two cases can be considered: namely where f is self-conjugate, f = f (as for
instance ¥ K, DD, D*D*) and where f # f (see the example shown in Figs. 4.4).
Let us first consider the simple case f = f, which is usually expected to be the
most important for CP violation effects.

a) Case where f=f

The routes leading to the production of the f state are shown in Fig. 4.3a,
which also indicate the meson produced at time ¢t = 0 and responsible for the
tagging procedure. Clearly, the observation of the final state does not give any
information about the production at ¢ = 0. The knowledge about the type of
beauty quark (b or b) contained in the associated beauty hadron produced at ¢t =0
could indicate if the production of a B? or B was responsible of the observed f
state. This could, in principle, be obtained by observing the lepton charge ({%) in
semileptonic decay of the associated beauty hadron (tagging procedure) produced
in the event (b — (=X and b — I*X). In practice, however, the semileptonic decay
occurs at a time ¢ # 0. Therefore, in a similar fashon to the discussion we had in
the measurement of the mixing process (Chapter 3), mixing has also to be taken

into account for the BO,—EO — [ X decays.

To simplify the present discussion, let us consider only B* or the beauty
baryons (where no mixing is present) for tagging. Then, the decay of B~, Ny —
I=X or B¥, Ny — [t X allows one the identification of the neutral B at birth (B°
or FO). Let us remember that no CP violation is expected in the semileptonic
decays, which should essentially occur through the tree diagram where the lighter
quark will not participate in the decay mechanism (only |V,3| and |V,| will then
contribute to the decay).

A measured assymmetry parameter (A,) can then be obtained by comparing
the number of events [N({* f] having [T fX in their final state with the number of
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[7fX events [N(I7f)]. A CP violation effect will then be observed if

0. (4.11)

In Chapter 5 we will describe the formalism needed to take into account the pro-
duction of the various type of beauty-hadron pairs in pN interactions.

b) Case where f # f

As discussed above, the search for CP violation can be made by comparing the
decays of

BY = f with FO——>7 or
BO—>7With F0—>f

The tagging procedure with the B*, will correspond to the comparison of the
following number of events (see Fig, 4.3b):

) with N(ITf) or (4.12a)
) with N(I*f). (4.12b)

( ~f
=f

The two methods are similar but not really equal (see next section). Also here,
the search for the CP violation effect will be efficient if the two decay ways to the
f or f state (Fig. 4.3b) have comparable magnitude.

4.4 - Formalism for the neutral B decays

Let us now express the transition rates of the B® — f and B - f decays
assuming a tagging that allows one to compare the [~ fX and the It fX number of
events in a given experiment. Here we also implicitely assume that the tagging is
only applied with B* mesons (or beauty baryons), the more complicated situation
being discussed in Chapter 5. The expressions for A(t) and A will be obtained by
evaluating

M(BY(t) = f) = |< f | BY(t) >]? (4.13)
LB'(t)— ) =I|<TIB®t) > .
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In the present notation, A, represents the measured asymmetry parameter while
A [and A(t)] denotes the expected value. Using expressions (3.8), namely

| BYt) >= fa(t) | B® > +0-(1) |
| B°(t) >= —f——ft—) B> 4£4(1) |

B >
(3.8)
B>

from which we obtain
. =0
<FIBYt)>=falt) < [ 1 B> +nf-(t) < £ | B >
— - — —( —
<f|130(t)>=f+(t)<f|30>+£n—(l<f|B°> -
We write these expressions as

<FIBYH)> =< fIB® > (falt) + Af=(2)

<FIB'(t)> =<T|B" > (f+(t) + Xf=(1))
using
<f|B"> - 1<F|B°>
)\: —_— /\:— . 4"14
AT T R s e

The time-dependent rates are then obtained from formula (4.13) giving

D(B(t) = 1) = T (1f+ (O + MPIS-(2) P +2Re\ - (8) /(1)) (4.15a)
D(B(t) = 7) = [T (1f+0)F + X PI-(0) + 2Re(Xf_ () f3(2)]) (4.150)

where T'=< f| B> and T =< f | B >. The approximations of I'; ~ I'y (see
formulae 3.10) leading to
, e-—rt
| fe]” ~ —2——(1 + cos AMt)
-I't

HOTEORE S

sin AMt

then give the transition rates:
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-Tt

T(B'(t) — f) = ITPC (1+ cos AMt+ (4.16)
+A2(1 = cos AMt) — 2Im) sin AMt)
—TIt
B - 7) = |T|267(1 + cos AMt+ (4.16b)

+ | A[%(1 — cos AMt) — 2ImX sin AMt) .

From the above formulae one sees that A(t) # 0 can arise from the CP violation
due to the decay amplitudes, [T'| # [T, or from the fact that A # X. Note that in
the latter case an eventual CP violation effect in the B® « B" mixing could also
influence CP violation in the B® decay. This is because 5 enters in the definition
of A and X [equations (4.14)]. The time integration of (4.16) yields

B - f) = |T|2 (1+a+ [A2(1 — a) — 2zalm)) (4.17a)

NEB - F) =T |-11:(1+a+|x| (1 - a) - 2zalm}) (4.170)

from which we obtain A. Here a = 1/(1 4 #%) where £ = AM/T is the mixing
parameter of the considered B% meson (z4 or z, for the BY or BY, respectively).
Once T, T, A and X are estimate one can evaluate A(t) and A. The expresions
given above for estimating N({~ f) and N(l+7) can also be used for the N(I7f)
and N(I*f) cases simply by replacing f (f) by f (f). By using formula (4.14), one
sees that this would correspond to the transformation of A — 1/X and X — 1/A.
Let us now express the asymmetry parameters for some specific decay processes.

Further comments
In the formulae (4.15) and (4.16), the parts due to the semileptonic decay were
not included in the T and T expressions. This is because the decay of the BE

and the B (or B ) m an event are independent of each other in the considered
examples. The constants introduced by the time integration of the B* decays
have, therefore, no importance in the expressions of A(t) and A.

4.5 - The asymmetry parameters in some simple cases

In the following we express the CP asymmetry parameters in some simple
cases®. As above, we assume that the event tagging is made with the semileptonic
decay of charged B mesons or beauty baryons.
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1) No CP violation in the amplitudes
This assumption means that one has

< fIB >|=|<F|B >
I<FIB">|=|<f|B >

as both B® and B® are decaying into f and f. Formulae (4.16) and (4.17) then
lead to

Alt) = (1A =A%) (1 = cos AM¢t) — 2sin AMt Im() — X)
ST 24 PR + (2 - [A2) = [X]?) cos AMt — 2sin AMt Im(A £ N)

and
_ (1 =a) (J]A? =A%) - 2za Im(\ = X)
20+ a)+ (I —a) (J A2+ | X[?) - 2za Im(A + X)

(4.18)

still using « = 1/(1 + 2?).

2) And no CP violation in the mixing process
In addition to the absence of CP violation in the amplitude we also assume that
there is no CP violation in the mixing process (|n|? = 1). Then one has

A= (4.19)

yielding

B —sin AMt Im(\ — X)
14 cosAMt+ [A[2(1 — cos AMt) — sin AMt Tm() + X)

A(t)

A= —elm@B =) (4.20)
24221+ |A2) — zIm() + X) '

3) And weak phases due only to the CKM matrix elements
If we now use the conditions of the former cases and assume in addition that the
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phases in the amplitudes are entirely given by the CKM matrix elements, one has
the relations

<fIB >=<TF|B° >

<FIB'>=<f|B >*

from which one obtains A = X". The conditions

A= [\l
N (4.21)

now lead to
Alt) = —2sin AMt Im)
14 cosAMt+ A2 (1 - cos AMt)

e —2z Im\
241+ A

(4.22)

4) Case where in addition f = [

The fact that f is selfconjugate means that the state vectors obey the relation
| f >= £ | f >. Let us show that in this case one has [A] = [A] =1 and also
X = X* by still assuming that there is no CP violation in the amplitudes and
that [p|® = 1. Defining ¢ as being the phase of  and 1 (2), the phase of the

<flB> (<TF] B >) amplitude, one has

n =
<fIB'> =|<f|BY>|e¥

<TIB > =|<f|B">|e¥ .

One then obtains

=0 =150
Zeiga<f|B > - eiga<le > :ieigaei(tpg—gol)
<f|B"> <f|B">
X:e—itp<f|B > :ie—i¢<f|BO> :ie—iwe—i(tpz—%)
<FIB > <f|B >
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yielding

A= (4.23)
[ Al =1Xx]=1
The time-dependent rates take now a very simple form, i.e.
T(B(t)— f) = |< f | B® >|? e—“(l ~Im) sin AMt) (4.24)
T(B'(t) = f)=|< f | B > e-“(l +Tm) sinAMt)
The asymmetry parameters are again given by:
A(t) = —sin AMt ImA (4.25a)
A=— ﬁ*m—z T\ (4.25b)

5) Case where f = f, [p|?=1,and | < f|[B> | #| < f|B >

To calculate the A(t) asymmetry parameter, we will use again the |B°(t) >

and |§0(t) > expressions given by formula (3.8) and using for simplicity:

f+(t) = em Mt o=TU/2 (o (%) (3.10a)
f-(t)=1i e~ Mt o=Tt/24ip <¥> . (3.100)

Let us remember that M = (M; 4+ M3)/2 is the average mass of the heavy and
light B® mass. With these formulae one obtains the transition rates

I'(B%t) — f) =| < fIB® > [2e7 1! [cos2 (_A2ﬂ>+
+]A]? sin? (ééﬂ—l—) — ImA sinAMt]
L(B(t)— f)=|< fIB® > [P [cos2 (¥)+

+|A[? sin? (&TM) — Im\ sin AMt] .

Here the same term | < f | B® > |* was taken out from the right part of the above
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expressions. The asymmetry parameter now becomes

(1 —|A|?) cos Amt — 2Im Asin AMt
14 [A2

A(t) = (4.26)

with a cos AMt term appearing in the numerator of the A(¢) expression. Clearly,
(4.26) becomes equivalent to (4.25a) if |A|> = 1.

Additional comments

The case 4 (where f = 7) corresponding to the asymmetry parameters given by
formula (4.25) is usually used for the discussion about the search for CP violation
effects (as the CP violation parameter is expected to be important in that case).
Equation (4.25b) cannot be used easily for the BY decay as the mixing parameter
is expected to be large (z,/z4 > 15, Section 3.4). This will reduce the asymmetry
parameter |A;| for the B decays as

Ig ImA
A= — Im) ~ —
k T2 m

5

Tg

The measurement of
As(ts) = —sin AMts ImA = —sinzy7s ImA

could then be more powerful, although strong oscillations require the measurement
of the time 7, (given here in B? lifetime units) with good precision.

4.6 - Measurement of the CP violation parameter

Let us again consider the case 4 of the previous section, namely when f = 7,
In|*=1,] < fIB>|=|< f[B > | and when the imaginary part of the amplitudes
are assumed to come only from the CKM matrix elements. As seen in Section 4.5,
the asymmetry parameters will then depend only on one parameter Im) obtained
from the relation

=0
<f|B >
A=p—r"—, 4.27
T2 f| B> (4.27)
For the present discussion, we utilize the standard model with three generations
and the Wolfenstein approximation of the CKM matrix. In this approach only the
Vid and Vi elements will be complex (Chapter 2), and hence responsible for the
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possible CP violation effect. In order to represent the complexity of these elements
we show in Fig. 4.5 one of the unitar triangles discussed in Chapter 2 [equation
(2.18b)], where both V,; and V4 appear namely,

Vu(l u*b + Vcdvcz + VithT)ZO-

The ¢; angles appearing in this figure are then related to the CKM matrix elements
by

Arg [VeaVaVaaViy) = ¢

Arg VudVapViaVip) = 42

Arg [VuaViyVeaVa] = 43 .

To verify the validity of this approach, one could, for instance, measure the sides
of this triangle or the relative angles ¢12,3 shown in Fig. 4.5. The first method
would be complicated from the experimental point of view, as one would have
difficulties of determining with accuracy (today) the modulus of the Vi3 and Vi
elements. The measurements of ¢; 23 will be simpler as they are related directly
to ImX obtained from the measurements of the asymmetry parameters A(t) and

A.

Let us now show the relation between A and the ¢; angles shown in Fig. 4.5
using formula (4.27). The coefficient 7 is due to the B® mixing (ng for B} « FS
and n; for B? « _BS) and is given by (see Chapter 3)

Vip Via |, Via _ aig, (4.280)

R ~ s =e
Vo Vig Vi
Vg Vis ~ Vis

o~ o~ L= 4.28b
TV VTV (4.285)

S

From equation (4.28a), one sees that for any BY decay where no other complex V, ;
element contributes to this process, one obtain ¢; by measuring the CP violation
parameter ImA = sin2¢; [see equation (4.27) and Fig. 4.5]. At the quark level,
the following decays

b — ctecd (4.29)
c+cs
ct+us

c+ud

with their c.c., lead to the measurement of ¢; assuming that the spectator (tree)
model is predominant” (no penguin contributions).
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One has to emphasize that processes of this kind at the quark level and ap-
pearing in the BY decay will give real values of ) as g, =~ 1 (for instance, the
BS,FS — DF D7, J/#1p reactions). No CP violation effects should then be ob-
served in the framework of the standard model assuming, in addition, that no
difference appears in the decay amplitudes. Other cases of B? decay may lead to

CP violation effects (for instance when b — uW). Clearly, the B, B, decay have
to be investigated in order to see if our present approach concerning CP violation
effects in B decay is really the right one.

There are some typical decay channels proposed for measuring the ¢;. They

ared 7

— BY— J/pK? = Im)=sin2
— Bg — png = Iml = sin2¢3
— Bf} —rtr~ = Im) =sin2(¢1 + ¢3)

as shown in I'ig. 4.5. In the last case, one does not measure directly ¢3. However,
with the unitar triangle assumption one has ¢ = 7 — ¢; — ¢3. Discussions about
other decay channels allowing one to measure ¢;_3 can be found in reference 7.
Before presenting in the next section another method for measuring ¢, let us add
some comments about decay of B® channels where the final states are not CP
eigenstates.

Let us consider the cases where the states are charge conjugate (f = f) but
not parity eigenstates. As already noted above, this can occur when a mixture of
partial waves with different orbital momentum might be present in the final state
due to the spins of outgoing particles. For example, this could happen for the
BY — J/pK*0 o KO D*t D*= decays (where K*® — K0 + pions in such a way
that f = f). To clarify our present discussion, let us first consider a final state
having a CP eigenstate with an even or odd CP eigenvalue (+1 or -1). In this case,

one could also write the BO,FO — f decay widths in the following forms
T(B° = f)=Tepll—¢, TB —f)=Tcpl+e. (4.30)

The CP violation parameter A can then be written with the help of formulae (4.2)
and (4.25b),

T
1+ 22

The form of equation (4.30) is evident. Without tagging the final f state obtained

A=—c=—-

ImA . (4.31)

. -0 . . .
from B® — f and B — [ processes will have a decay width of 2I'cp, which, as
expected, cannot depend of CP violation effects.
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If the final f state will have an even (odd) CP eigenvalue, we will denote this

decay by B?,_,_Bi - f (BE,_BO_ — f). Then the decay widths can be expressed in
the following ways:

N(BY - f)=T4(l+e), T(By—-f)=Ti(1-¢
I'BY - fl=T_-(1-¢), TI(B r

Here again I'(BY — f) + I‘(Fi — f) will not depend on a CP violation influence,
as no tagging is present. Moreover, the asymmetry parameter is now reduced, as
by calculating the asymmetry parameter A one obtains that

ImdA — Im) I--Ty

—_—. 4.32
I'_ + s ( )
Cuts on the angular distributions of the outgoing particles could allow one to
separate the events having even and odd CP eigenvalues. Then both samples could
be fitted simultanously to obtain Im using, however, opposite signs for ImA in
the two samples.

4.7 - Further measurement possibilities for ¢,

The measurement of ¢3 with the B — pOK? channel will be difficult as its
branching ratio with charged particles in the final states is expected to be small
(~1075). Moreover, the detection efficiency of this reaction is further decreaed by
detecting the semileptonic decay of the associated beauty hadron for the tagging
procedure, as the branching ratio of the semileptonic decay is BR(B — pX,eX) ~
0.12.

A new method for measuring ¢3 was proposed® with self-tagging channels. It

was suggested that the BT — DOK:E,EOKjE decay be measured as well as the
B* — D?,zKi. Here D? (DY) is the CP even (odd) state of the charmed neutral

mesons. For example, the decay of charmed mesons into #*7~, K+ K, etc., will
identify DY, whereas the K9p% K4 etc., will indicate the DY . The flavor of the

B* is tagged by K* (B* — K*X), while the D® or D° are identified by the
D' - K-X or D' — K+X processes (one implicitely assumes that there is no
CP violation in the DO/E0 decay).

As an example we present in Fig. 4.6 the spectator diagrams contributing to the
Bt — EO(DO)I(+ decay. One spectator diagram contributes to the Bt — DK,
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in contrast to the B* — DK+ channel. The two diagrams in the last case have,
however, the same set of CKM matrix elements (no interferences will then appear
between these two graphs). Therefore, the independent decay widths for describing

the B* — D" (ﬁo)Ki, Dy 2K® are then:

I(B* — D°Kk*)=T(B~ —» D°K") (4.33a)
I(B* — D°K+)=T(B~ — D°K~) (4.33b)
I(Bt - DIK*), T(B~ — DYK™). (4.33¢)

Let us now use the above relations in order to express the amplitudes corresponding
to B* — D?’zKi, ie.

A(BT — D ,Kt) = %[A(B+ ~D°K*)+ A(BY — D°K™)] (4.34a)
A(B~ — D3 ,K~) = %[A(B“ L D°K-)+ A(B~ — D°K™)] (4.34b)

in a simple form (the notation being self-explanatory). Remember, that because of
equations (4.33a) and (4.33.b), one has the following relations between the modulus
of the amplitudes:

|A(B* - D'K*)| = |A(B- - D'K™)| = |A4]
|A(B* — D°K*)| = |A(B- - D' K~)| = |Ag]

For simplicity, let us consider now the DY production. Relations (4.34) then become

A(B* = DYK+) = %[IAllew‘ 1 |Agleieci®] (4.35a)
A(B™ — DIK™) = \/Li[lAlle“l 4 [Agle=i%sita] (4.350)

taking the Wolfenstein parametrization where only V,; is complex in the diagrams
shown in Fig. 4.6. Here also 61 2 represents the phases introduced by the final state
interactions. The formula (4.34) with D is represented in Fig. 4.7 showing the
two-fold ambiguity of 2¢3, the angle between the A(BT — D°K™) and A(B™ —

DK ~) amplitudes. One of the two solutions shown in the figure coressponds to
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2¢3, whereas the second one is due to the difference A = 62 — §; between the
phases of the final state interactions. Mathematically, this ambiguity can be seen
by taking the modulus of expressions (4.35). One then has

|A(BY — DIE)P| = {141 + | Aal® + 2] A1] 1A2] cos(¢3 — A)]

— DD

|A(B™ — DYKT)* = = [|A1]® + | 42| + 2| A1] |A2| cos(¢s + A)] .

1

2

By measuring the various decay widths one obtains estimates of
c— =cos(¢3 —A) and cq = cos(d3 + A)

indicating the two-fold ambiguity of ¢3 and A, as ¢3 < A do not change c=.
The ambiguity can be resolved by choosing several reactions B — D° (EO)Xi

where X* = K* K*70 K*7+r~ etc,. One could then find a solution where the

weak phase is common to all the processes, while the phase due to the final state

interactions will be different in each channel.

In this chapter, we have mainly discussed the possibilities for searching CP
violation effects in the B* and BO,FO decays. For the last cases we consider
the tagging procedure with semileptonic decays of B (or beauty baryons). In
practice, the tagging is somewhat more complicated, as no attempt is usually made
to reconstruct the associated beauty hadrons. Only the charge of the lepton due to
the semileptonic decay of the beauty hadrons is identified. One has, therefore, to
also take into account the tagging due to the Bg S,Fg,s decays. These important
features for the case of p/N interactions will be discussed in the next chapter.
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Fig. 4.1 - Graphs contributing to the Bg ~ D* D~ decay. Under each diagram
the corresponding set of CKM matrix elements entering in the decay is indicated.
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Fig. 4.2 - Examples of charged B decays which may proceed via two decay decay
mechanisms involving different sets of CKM matrix elements.
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Fig. 4.3 - The B® or B’ produced at time ¢ = 0 and responsible for the final
state considered. In Section 4.3 the tagging will be considered to occur with the
B* — I*X processes. a) Case when f = f leading to the comparison of events

with [~ f and [T f in the final states, b) f # f yielding the comparison of [~ f with
ITf or It f with [TF.
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Fig. 4.4 - Graphs contributing to the Bg — [ and E’} — f by means of b — ¢
are displayed in (a). The decays involving b — u transitions are shown in (b). The
set of CKM matrix elements entering in each graph is also indicated.
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Fig. 4.5 - A unitary triangle in the complex plane (top) due to equation (2.18b),
Vaud Vi, + VeaVy, + VgV, = 0. In the Wolfenstein parametrization, the angles ¢1,2,3
are due to the complex V,; and V;; elements. Also shown are diagrams describing
Bg,s decays where ¢;12,3 could be estimated from the CP violation parameters

ImX = sin 2¢;.
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Fig. 4.6 - The spectator diagrams contributing to the Bt — D’ K+ DK+
decays. The CKM matrix elements entering in these diagrams are also lndlcated
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Fig. 4.7 - Relations in the complex plane between the decay amplitudes of the
Bt — EOK“L, Bt — D°K+* and the Bt — E?K*’ processes as well as those
obtained from the B~ decay. The two-fold ambiguity of ¢3 is shown due to the
unknown relative positions of the two triangles.



5 - B production in pN interactions

5.1 - Introduction

At large c.m. energies (v/s > 1 TeV), the pp interactions are expected to
have large o(bb) cross-sections and hence large production rates of beauty hadrons
(see the comments given in Chapter 1). We will therefore discuss in more detail
the B-physics that can be studied with the help of pp interactions. In particular,
we will examine the problems related to the search for CP violation in the B°
decay. Before doing this, let us note some difficulties addtional to those due to
the production of different type of beauty-hadron pairs produced in pp (or pN)
collisions (see Chapter 3).

In pp interactions the B and B are not obliged to be produced in equal amounts,
in contrast to the pp (or e*e™) interactions. Therefore, the comparison of the B —
f with B — f decay searching for CP violation through a measured asymmetry
parameter, as for instance,

_ Nt - N
N(* )+ N(=7)

(5.1)

m

(see Chapter 4) may have some complications. Indeed, A # 0 would not neces-
sarily prove the existence of CP violation effects. Let us now discuss this difficulty.

a) Beauty hadrons and their c.c. production

In the case where B and B are produced in equal amounts in hadron-hadron
interactions, the relative production rates of the various types of beauty hadrons
are assumed to be given by the relative production rates of the extracted sea quarks
able to form with b (or ) the beauty hadrons. As already discussed in Chapter 3,
this is usually represented at large c.m. energies (/s > 1 TeV) by?

Y% : bd ;b5 :bgq = py : pq : Ps : Pr (5.2)
~{(.38:0.38:0.14:0.10 .

Let us recall that the p; values, obtained from Monte Carlo calculations, are the

probabilities of producing given beauty hadrons (py + pg + ps + pn = 1). The same

probabilities will be given for the charge conjugate (c.c.) beauty hadrons as the
pair production ¢ = uT, dd, s3 leads to the same number of ¢; and g;.
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For real pN interactions, however, the combinations of produced & or b with
valence quarks contained in the beam particles change the equality of B and B
production®. This can happen when a b quark combines with a u or d quark to
form a BT or a Bd meson, thus increasing these meson productions, or when the
b forms a beauty baryon with a di-quark system contained in a beam particle (see
Fig. 5.1). The additional bqg production decreases the number of B = bg events.
One then has the following tendencies due to the b and b combinations with the
valence quarks®:

U
d) decreases

bg combination = N(bu) increases (5.3)
(bd) increases
(bs) decreases
(bu) decreases (5.4)
(
(

b3) decreases

(N denoting the number of beauty-hadrons produced in a given experlment) One
notes that both effects increase the difference between the B, 4 and Bu 4 produc-
tion. For pp interactions one expects that

N(bu) _ N(bd)
Nt = N@Ed) (5-52)
N(bgq) > N(b3q) . (5.5b)

In pn interactions, the total number of u and d quarks entering in beam-particle
interactions are equal, leading to N(bu)/N(bu) = N(bd)/N(bd) in addition to
(5.5b). One should also have:

[ 60
.

N(B~) N(B-)
~ian,, <[, s

while an equal difference between B? and FS should appear in pp and pn inter-
actions. The above expressions are only indications, as no phase space was taken
into account and only combinations of b and b with valence quarks have been
considered.
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Table 5.1 - Examples of some B decays having a J/¥ — ptu~ and charged
partigles only in the final state. The total branching ratio BR(tot) is calculated
with the branching ratios of the B mesons (BR) and BR(J/% — utu~) = 0.06.

Channel BR | BR(tot)| Final state
Bt — J/pKT 771074461075 Ktutu~
BY — J/$pK*(892) | 1.3 1073 | 7.8 1075 | Kt~ ptpu~

K* — Kt~ 0.67
BY — J/vé 51073 |1.5107¢ | KtK—putu~
¢— KTK~ 0.49

From the above remarks, it follows that the N(B)/N(B) ratios that may have
an influence on the search for CP violation in the B decay have to be measured.
This can be done by using decay channels where CP violation effects are not
expected. Channels with J/1 in the final state will be particularly convenient as
J/1 — 171~ is planned to be used for the triggering process in several experiments
studying pN interactions?. Table 5.1 indicates some reactions that can be used
to measure the N(B)/N(B) ratios. In the first two cases, each reaction can be
compared with its charge conjugate one by identifying the outgoing K*. For these
channels the tree diagrams are expected to contribute mainly to the decay processes
(Fig. 5.2). Infact, penguin diagrams contribute also to the decay mechanism (small
contribution) as one has in the b — cts process two charge conjugate quarks (see
Fig. 5.2). By using one of the unitar properties of the CKM matrix (3 VisViy = 0),
one sees easily that the essential contribution du to the penguin diagrams has the
same CKM matrix elements (V;;V}) appearing in the tree diagram®. This fact
avoids CP violation effects as no difference between the modulus of the two B and
B decay amplitudes can occur. One obtains from the measurement of these decay

rates the N(B1)/N(B~) and N(Bg)/N(Fg) ratios at the c.m. energy considered.

For the same reasons no CP violation effect should appear in the BS,FS —
J/}¢ decay. As the final state f = J/1¢ is self-conjugate, the comparison of B?

and FS production can only be made between the tagged N(I*f) and N(I~f)
events, or with the A,, parameter.

b) Advantages of unequal B and B production?

The unequal B/B in the pN production could also lead to some advantages?.
Let us consider the Bg — f and FS — f decay with f = f. The time-dependent
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rates can be written by formula (4.24) if the tagging is made with the B* namely

dN(By — f)

0 —T4 _ .
drg o« N(BJ) e ™ [1 —n sinzgry] (5.7a)
—0
————-—dN(idT_) /) x N(_Bg) e Td [1 +n sin:z:de] (5.7b)
d

with n = ImA. As usual, 74 is the meson decay time in lifetime units and expressed
in the meson rest frame while z4 is the mixing parameter of the BY or Fﬁ meson.
Without any tagging procedure, the time-dependence of the decay producing the
f state is given by:

dN(B® — dN(BY — T
(did f) + (d;i_d f) « e~ [1 —An sm:chd] (5.8a)
—0
- N(BY) — N(fg) (5.8)
N(BY) + N(By)

Thus, the unequal amount of Bg and Ff, production can introduce an oscillation
despite the fact that no tagging is applied and if |n| > 0.

As the tagging procedure is not needed for the present case, one could even-
tually consider pp interactions with large luminosities (at the LHC, the maximal
predicted luminosity is L ~ 103 cm™%~!, although the luminosity for the study of
beauty physics is usually considered to be L ~ 103 cm~2%1). Clearly, a detailed
investigation has to be carried out in order to estimate the detection efficiency for
events which may have a charged multiplicity larger than in the usual pp collisions.
In addition, the luminosity L = 103cm™2s1, for instance, would correspond to
~ 10° interactions per second, leading to experimental difficulties. Note also that

it would be very useful to study the possibility of increasing A by eventual cuts on

the emission angle and/or the momentum of the outgoing BY, B; mesons®.

5.2 - Time dependence of the B° decay

In order to avoid the problems related to unequal amounts of B and B pro-
duction, one could also study the time-dependence of the Bg — f or/and Fﬂ — f
decay taking into account the tagging procedure. A time oscillation dependence
will prove the existence of CP violation effects and is, in fact, not sensitive to the
unequal amounts of B and B production (see below). Let us now estimate the

oscillation dependence of the BY (B;) decay when these mesons are produced in
pN interactions.
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Similarly as for the studying of mixing (Section 3.5), we consider the Bg — f
decay and the tagging with the semileptonic decay of the associated beauty baryon
produced in the same event. Here, however, the situation will be different. The
experimental reconstruction of the daughter f state will not sign the type of the

parent meson as, both Bg,Fg mesons are able to decay into the f (or f) state.
This leads to a more tedious though straightforward calculation.

For an example of the calculation let us again consider the {~fX final state.
The beauty-hadron pairs produced at time t = 0 and responsible for the final state
considered are:

(1) B~Bj
(2) Nng

0 o o0 .
(3) B,B,; and BBy (coherent mixture)
(4) ByBY.
For the general cases, the double-differential time expressions have been derived
in Appendix 5.A. Let us here consider case 4 of Section 4.6. The final state is
self-conjugate (f = f), there is no CP violation in the mixing procedure (|n|* = 1)
and in the decay amplitudes (| < f|B? > | =] < fIF0 > |), assuming, in addition,
that the complex part of the decay amplitudes is only due to the CKM matrix
elements. Remember that this is equivalent to (4.23), i.e.

X=2*
X =)=
leading to the following expressions®” (see Appendix 5.A)

dal(l—f) . 2 —(I'_t—+Tata) i

dy " VERE [1 —n sin AMgt,) (5.9a)

doa (1™ f) — 172 ,—(Tntn+Tata) i

dtN—dtd = |T'|°e [1 n sin AMdtd] (5.90)

dc(fii(fi;f) _ ITIze—(r,t,+rdtd) [l —n (sin(AMsts + AMyty)+ (5.9¢)
sttgd

+n sin AMts cos AMgty x (1 — Reny) + gsin AMsts)]
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day (" f)

T — |T|2e“l“d(t1+t2) {1 —n (sin AMy(t; % tg)] (5.94)

using again T =< "X | B>< f | BY > and T' =< "X | Ny >< [ | B} >. The
CP violation parameter is represented again by n = Im) = sin 2¢ and where ¢ can
be one of the three values predicted by the standard model with three generations.
The derivation of these formulae are given in Appendix 5.A which also gives an
estimate for 6.

The integration of these distributions over the decay time of the beauty hadron
used for tagging purposes® gives the required distributions (Appendix 5.A).

doy(I"f) _ 1T

dry  TLTy e [1 —n sin deT(l] (5.10a)

da-2d(7{d— L 1I1TN/1L2de_T“ [1 = n sinzqry] (5.10b)

dagd(Tl;f) _ II‘TII‘Z w1 - 1-}1-11113,? (zs coszqry Rena+ (5.10¢)
+sinem) + 5t 4

dcrii(i;f) _ IZ:; ~raf) . _fm?l (zq coszgry £sinzgry)] . (5.10d)

With the same notation of Chapter 3, I'_, I'qs and I'y are the the decay widths of
the B_,Bg’s and IV, respectively. The mixing of the Bg’s meson is given by x4 ,
whereas 7, = t4/74. For estimates of the distributions due to formula (5.10), one
can consider, as above, that the amplitudes are nearly equal and that

Py =Ty =T, o N

€

In Chapter 3, we already mentioned that the term with the + sign in the time dis-
tribution, corresponding to the charge-conjugation value +1 of the Bgﬁg system,
vanishes for c.m. energies well above the BB threshold production. The observed
do(l~ f)/dry distribution will then be obtained by adding, incoherently, the equa-
tions (5.10a) to (5.10d), each of them being weighted by the production values
of the quarks considered, for instance, from the probabilities given by expression
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(5.2). With these values, one obtains that

do (1™, da (=

Cdrg Td cl T4

is not very sensitive to the variation of p; to within a few percent. As an example?,
we consider the distribution obtained for the It f case with n = 0.25, 24 = 0.72
and s = 8 (Ref. 2). Assuming that the various ['; widths are nearly equal (e = 1),
one obtains the distribution of Fig. 5.3 taken from Ref. 2, the |T|*> =" /I';I'y being
factorized out using |7'| = |T"|. This distribution was calculated with Reny o~
1. This approximation is not very important as the oscillation introduced by
formula (5.10¢) is here nrgligible. For comparison we also present in Fig. 5.3 the
distribution obtained by tagging only BT. One sees that this distribution has a
larger oscillation amplitude than in the general case.

In the absence of CP violation in the decay amplitude (|T'| = |T'|), the formulae
(5.10) can also be used for the [T f case by simply changing n — —n. Both time
distributions obtained from the [~ f and [T f could be fitted simultanously taking
into account the opposite n signs. Unequal amounts of B and B production will
not really affect the oscillation behavior of do({% f)/d7y but only introduce a small
difference in the number of events contributing to the do({~ f)/dry and do (It f)/dry
distributions. Note also that formula (5.10c) is not very sensitive to the BY mixing
parameter, as one expects a large z, value. The situation will be different for

the BY decay, as s « d [(5.10c) will then become sensitive to the mixing but not
(5.10d)].

One has to emphasize that the time-dependence measurement will not be sim-
ple. Small oscillations (small frequencies) will certainly require important statistics
of events (the BS case where z4 ~ 0.7) while large oscillations (B with 25 > 10)
will also need time measurements with acceptable accuracies. Nevertheless, CP
violation parameters for B? could, practically, only be measured with the time-
dependence distribution (see the comments in Section 4.5).

5.3 - The integrated cross-sections

If the relative amount of B and B production in pp (or pN) is known or if these
differences are negligible, a comparison between the, eventual corrected, o({~ fX)
and o(I* fX) cross-section could also be used to search for CP violation effects. By
integrating the distributions? given by (6.11), one obtains the following expressions
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for the cross-sections® containing the weighting py p; factors:

— PN 2 Td
Aaallf) = (o2 + 22 g (1 1= 2 5] (5.11a)
(24 + 25 Reny) g 6

a3(I”f) = ps pa |T|? [l —-n } (5.110)

(1+z2) (1+ 'L?i) 2(1 + z2)

-y — 211 _ Tq
maﬁ—mnﬂﬂb na:gﬂ (5.11c)

[remember that e = Ty /Iy, |T'| = |T"], while the T; are here included into |T'|?].

The total o(I™f) cross-section will then be obtained by adding incoherently
the above expressions. Assuming still that there is no CP violation in the decay
amplitudes (|7] = [T']), formulae (5.11a) to (5.11c) can be applied to the [*f
case by transforming n — —n. Then, with the Z[o;(I7f) & o;(IT f)] expressions
obtained from (5.11), the asymmetry parameter (5.1) becomes

nTy PN n(zs + z4) nTy
A= | 18 il | : 5.12
T o S R v e ] o
ng pN | (s 4 za) 1
A=— i —_— . 5.12b
1+_,§[pi+ pl Pt 7 P (5.12b)

taking Reny ~ 1. The term in front of the bracket in (5.12b) represents the
asymmetry obtained by using only BE (or/and N,, N}) for the tagging procedure
[equation (4.25b)] which we will denote here by Ay. The expression inside the
bracket of (5.12b) that we symbolize by D' has a value of D' < 1. This D' factor is
often called a dilution factor of the asymmetry parameter (as [4]| < |A4|) due fo
the mixing phenomenon. This definition is perhaps not the best one as it is difficult
to condemn the mixing process. Without mixing (z4s = 0), one will necessarily
have in the standard model A = 0, with or without CP violation effects.

Remarks about asymmetry measurements

The fact that [A+| > |A| does not necessarily mean that it would be more
efficient to search for CP violation in the B® decay by tagging only BE decays
(for simplicity we do not consider here the N} and N, case). This can be seen as
follows.
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Using the probabilities p; given by (5.2), =4 = 0.7 and =5 = 15, one obtains
from formulae (4.25b) and (5.12) that

At ~ 046 sin2¢ and A ~0.36 sin2¢ (5.13)

now replacing n by sin 2¢. The number of events, N = N(I= f) + N(ITf), needed
to measure an asymmetry parameter A = [N(I™f) — N(I* f)]/N with ns standard
deviations is given by

N = n?

8

[1—,42]

= (5.14)

For measuring the asymmetry parameters A+ and A with the same number of
standard deviations for a given sin 2¢ value one would, therefore, need the following
ratio of pp — bbX events

Ny(bb) 1 1-AF A% s 1 —[0.46 sin 2¢)?
T 1 - [0.365in 24)?

N(bb) ps 1— A% AZ

with the chosen p; values given by formula (5.2) and the expression (5.12a). Here
N (bb) and N(bb) are the number of b events tagged with semileptonic decay of
B or by any beauty hadron decay, respectively. This means that in the present
example, one would have

Ny (bb) > N(bb) . (5.15)

even if one assumes that the B¥ reconstruction efficiency in an experiment will be
~ 100 %. Therefore, the decrease of the oscillation (example of Fig. 5.3) does no
decrease the quality of the A measurement with respect to that of Ay for a given
experiment.

5.4 - Mistagging effects

Let us now discuss some dilution effects which decrease the experimental value
of the asymmetry parameter and render more difficult the observation of CP vio-
lation phenomena. Let us consider the effects due to the mistagging of the leptons
used for the tagging procedure. Error in the identification of the leptons will de-
crease the measured asymmmetry parameter A, given by equation (5.1). This can
occur in the following cases:



A) the cascade process, b — ¢ — [T (b — € — [7) where the [ has the opposite
charge to that of the b — I7 (b — (1) decay (Fig. 5.4),

B) the I’s coming from other decaying particles (K, w, for example),

C) the punchthrough in the detector (charge and leptons wrongly identified).

Mistagging of e* and p* will certainly be different for cases B and C, as they
depend essentially on the detector used in a given experiment. Note also that all
cases usually contribute equally to the misidentification of [T and [~ in the final
state (apart from some specific experiments that we will not discuss here).

Assuming that the correct (wrong) number of events is represented by N§
(NY), the measured asymmetry will be given by

N& + NP — N¢ — NV
Am = b
Ny

(5.16)

Ny representing the total number of true and wrong tagged events. The real A

value, described by formula (5.12a), and the fraction of wrong tagging (w) are here
defined by

Ng = N¢ NY— Ny

" N$+NE T NY AN

o NEFNE NG+ N
Ny Ny .

(5.17a)

(5.17b)

One then obtains that the measured asymmetry parameter is given by A, =
A(l = 2w). The D" = 1 — 2w is a real dilution effect, as the misstagging of
the leptons decrease the A parameter. Moreover, detected [ f samples contain
always a fraction of background events (Nyact), together with the events due to
the considered decays (Nsig). Therefore a further decrease in the A parameter by
D" = Ngig/(Nsig + Npaer) will occur. Finally, the measured asymmetry can be
expressed by

Nsig

An=AxD"xD"=A(1 - 2w) —9____
" ( )Nsig+Nback

(5.18)

where one can also represent the A parameter by separating some of the mixing
influence namely, A = A+ x D'. In any case the D" could be obtained easily from
the data of a given experiment. Further corrections can also be included in order
to describe the real values of the observed A,,. Let us now discuss the possibilities
of measuring w.
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5.5 - Measurement of w

. . —=0
In order to estimate w, one can compare BT — f* or Bg — f with B; —

f when CP violation should not occur in the decay. For the Bg,_Bg decay one
considers cases where f # f and where the final state signs the parent type (B
or B). Then the measurement in an experiment of the number of events having
these kinds of decays [Nm(f%), Nm(f) and Nn(f)] allows one to estimate the
expected number of events having the final states f%,f or f in addition to the
tagging lepton [N(ITfF), N(I~f) and N(I*f)]. A difference between the N(If)
estimates and the observed number of events [Nn,(If)] allows an estimate of the
dilution parameter w for the cases A to C. Let us discuss this in more details.

a) The B* — f* decay

Let us first consider the Bt — f* decays. The events having [~ f*X in the
final state will be produced by the following beauty hadron pairs appearing at the
production time (¢ = 0):

(1) B-B*
(2) NyB*
(3) ByB+
4) BB+ .

Then the relations between the expected number of [~ f+ X events [N(I~ f¥)] and
the observed ones [Ny, (f1)] will be given by!?

- f* -
BUL) = BRE — 17 X) xlps +pa fu v B+ 2], (319)

where BR(B — [~X) represents the B semileptonic branching ratio taking into
account that BR(B — [~X) ~ BR(N, — I X)/e. Note that 84, [see formula
(3.14)] is defined by

0 0
Bcl,s - Bd,s

Bas=1—xqs= (5.20)

=0
Bg,s - Bt(i),s + Bg,s - Bd,s
1s introduced as Fd,s — Bg,s does not contribute to the [~ fX final state. The
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measured number of events Ny, (17 f¥) thus allows us to obtain

L NP = N4

w NG (5.21)

The same type of evaluation could also be obtained with the [T f~X final state.
In fact, larger statistics could be obtained by taking the B¥ — f+ and B~ — f~
decays, yielding

oo NUH) + NOHS7) = Nn(I7f4) = Nun(17£7) (5.22)
- N=f+)+ N+ f~) ' |

The B* — J/¢K?* channels, already proposed for studying the N(B*)/N(B™)
ratio in p/NV interactions (Section 5.1), can also be used for measuring w. If Bt
and B~ are not produced in equal amounts corrections have to be applied.

b) The B} — f process

At high c.m. energy (y/s > 1 Tev), the identification of K* is usually not
simple from the experimental point of view. However, the second channel given in
Table 5.1, Bg — J/YK* K* — K+r~ with its c.c., can also be used to estimate
w. The additional constraint that the effective mass of the K system has to be

equal to the K* mass will facilitate the identification of the BY and FS mesons.
But we have to take into account the coherence of the mixing processes when a
pair of neutral beauty mesons is produced. The [~ fX final state could now be
produced by the following pairs of beauty hadrons (produced at ¢ = 0):

(1) B~B;
(2) NoB -
(3) Fng and BYB5 (coherent mixture)
(4) B35S
For these cases the production rates (P;) can be calculated with the wave functions
describing the decay processes’ without CP violation effects, and leading to®
Py «< BR(B — IX) papqy (5.23a)
P, o« BR(B — IX) Z—)E]!pd (5.23b)

1 —zgzsReny PsPd
(1+zfl) (1+22) 2

Py« BR(B — IX) |1+ (5.23¢)
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1 p2
P; x BR(B — 1X) [1 + (1_+5§)—2] 5‘1 (5.23d)

(Appendix 5.B). The factor 1/2 in formulae (5.23c) and (5.23d) allows one to
have P34 o« BR(B — IX)p,qpa if 4,25 — 0. One also notices here that the
contribution of (5.23c) will be negligible with respect to the other cases. Similarly
to the previous case, we obtain

=131rw‘c(b—+1’X)K1+ L Za%sRend )p—i

(14+22)(1+22)/ 2

1 Pd PN
14+ —— )= —_ 5.24
+( +(1+m3)2>2 +p+ + GJ ) ( )

+

assuming again that the decay amplitudes are identical in the foP_r cases. By
measuring the Np(f) and Ny, (f) as well as Nm(I™f) and Np(I*f) one gets a
formula similar to (5.22) but where f* — f and f~ — f.

5.6 - Some comparison with Y(nS) - BB

The production of Bg,s mesons through the ete™ — T(nS) — BB’ processes
(n = 4,5) lead to different complications for searching CP violation effects. This is
due to the fact that only a pair of BB’ can be produced. The do (I~ f)/(dtidt,)

and the do(I™ f)/dt; distributions are given by formulae (5.9d) and (5.10d) ex-
pressed here in the forms:

do(l™f)

T = ITl2e“Fd(t1+t2) [1 —-n (Sin A]Vfd(tl + 770t2)] (5.25&)
14t
do(I=f) _ TP .. n |

dra = e (e cos@ara) 4 nesin(aara)] - (5.250)

The total integrated cros-section becomes now

|T? n g

U(l-f) = Fczl [1 - (1 + x?l)2

(1+n0)] - (5.26)

For the T(45) — Bg?g decay the charge conjugate parameter has the value of
ne = —1 (as the relative orbital momentum between the two mesons is [ = 1).
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Therefore, o(I~ f) as well as o({*f), obtained by transforming n — —n, cannot
depend on the CP violation parameter n. One then always has an asymmetry
parameter A = 0, whether or not CP violation effects are present. Expressions
(5.25a) and (5.25b) show, however, that the decay-time distributions are sensitive
to the CP violation parameter.

Therefore, the search for CP violation in the Bg, Fg decays requires the mea-
surement of the decay-time distributions. In the case of eTe™ colliders where the
incident e* momentum are identical, the momentum of the produced B mesons in
tth laboratory system is small (~ 600 MeV/c). The decay times of the mesons are
then not measurable. Asymmetry colliders were then considered in order to have
large B momentum in the laboratory system and enable measurement of the decay

timell.
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Appendix 5.A

Formulas for the BY decay

As an exercise, let us derive the time dependences of the I~ f state when f = f

appears from the Bg or B*; decays. As considered in Chapters 3 and 4, this can

occur from the following pairs of beauty hadrons produced at time ¢t = 0 in pp
interactions,

(1) B™By
(2) NyBg
(3 B.B0 and Boﬁg coherent mixture
s~d 8
-0
(4) BLBY

Let us now consider the time dependence of the Bg in the various cases.

Cases (1) and (2)

These cases have already been studied in Chapter 3. The initial vector state
describing case (1) is

|6 >=B~(t-) > |By(ta) > (3.22)

where t_ (t4) correspond to the proper time of the B~ (BY) state in its rest frame.
The amplitude then becomes

AN f)=<I"f | ¢ >=< I"X|B~(t-) > < f|BS(tg) > .

Using formula (3.8), one obtains the expressions

A f) =<I"X|B™(t-) > [ < f | B > fy(ta)+ < f | By > naf-(t-)]
=< I"X|B™(t-) >< f | B® > [f*(ta) + Af-(ta)]

where A = ng < f | Fg > / < f| BY > [formula (4.13)]. From this amplitude one
obtains the time-differential cross-sections

ddl . [TIZ

= e~(T=t-+Tata) |1 1A 4 cos AMytq [1 — |A|?] — 2ImAsin AMyt,
dt_dty 2

Using the usual conditions for the final state f = f (see case 4 in Section 4.6) one
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has |A| = 1. The time dependence can then be expressed by

do 2 _—(T-t_Tata) :
= - 1 —ImA t
Jdi; VA ( mA sin AMtg]
da'] ITIZ ~Tata .
hahet N bl U — ImAsin AMyt
iy = 9T e [1 — ImAsin AMgt4]

where T =< ["X|B~ >< f|BY > corresponds to formulae (5.9a). As stated in
the text, point 2 has the same formula but with the transformation of ' — I'y
and T' — T' as the < [~ X|B~ > part of the amplitude might be different from the
< 17 X|Np > one (see the discussion in Chapters 3 and 4).

Case 3

The initial state vector is now given by
|¢ >= |Bs(ts) > [Fd(td) > +l§3(ts > le(td) > . (3.24)

Still using the equations of (3.8), one gets successively

<I7fl¢ > =< I7|BY > nyf—(ts) < f|Bg(ta) > + < I7[By > fu(ts) < fIB° >

e N T TRSICEL LS ATRTATS)

with T' =< l“X]P—O >< f|B® > and 7, = 1. One thus obtains the double differen-
tial cross-section

LD e[| D g g, e+

dtgdty
R g p ]+ ore \(rasz e s+

+fj;(ts)ff_(td)) x (nﬁf—(ts)f+(td) +f+(ts)f+(td))] ] '

Denoting the three terms in the brackets of the above equation by T}—3 and using
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the approximations (3.10), one obtains

8—(Fsts+rdtd)
Ty = 1 (1 — cos AM;ts)(1 — cos AMgty) + (1 + cos AMt,)
X (1 + cos AMytg) — sin AMts sin AMgty) 2Re77dJ
yielding
e_(rsts+rdtd)
T = 5 [ 1 + cos(AMsts + AMytq)+

+ sin(AM;ts) sin(AMgtq) (1 — Rend)} .

By a similar calculation one obtains for the second term:

_(Fsts+rdtd
T =

_g )|,\|2 [ 1 — cos(AM,ts + AMyty)

— sin(AM,ts) sin(AMgty) (1 — Re"?d)] .

A straightforward calculation gives for the third term

e_(rsts+rdtd) .
Ty = — 5 2Im /\[sm(AMdtd + AM,ts)+

+ sin(AMgtq) sin(AM,ts) (1 — Rend)] — Re) Imngsin A]\([stsJ ;

Adding the three terms one gets the final expression for the double differential
cross-section

- 2
il = e L 4 (1= ) (con(AMats + ANt

dtsdty 2
+sin AMts sin Agty x (1 — Rend)) ~ ZIm/\<sin(AM3ts + AMgty)+

—sin AM,ts cos AMyty (1 — Rend)) + Re Imny sin AM,t, ] .
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The integration of the last expression over ¢, gives

doy |T|® _. Im) .
EZ; = F—se [1 1 i :1:3 (:1:5 cos £474 X Reng + sin xd'rd)
Ts
———— Rel I
sy e

which is equattion (5.10c) where § == Re) Imyg.

Case 4

Let us now consider the BgP—g system which can be described by a state vector
depending on the charge conjugate of the system 7, = +1,

| 6 >=| B(t1) >| B(t2) > +1¢ | B(t1) >| B(ts > (3.26)

labelled by their desintegration time ¢1 2 in their proper rest frame. In the same
way as in case 3, one gets an amplitude for the [~ f final state

Let us now consider the BB’ case. To this end we use the amplitudes given
in Section 3.5, i.e.

A1) = T J-(0) f=(t2) + nefe (1) Fa(t2) + M F=(02) 1 (82) + ey (1) (12))]
A(IFS) = T[f+(t1)f+(t2) + e f-(t1) f=(t2) + A(f (81) = (t2) + Ucf—-(tl)f+(t2))]

and we will still assume that |T| = |T|. It is easy to see that the time-dependence
of [A(IT f)[? and |A(I~F)|?| will be identical except that ) is replaced in the second

case by A. For the (T f final state, for instance, one obtains the following double
differential cross-section

%_) = lTl2 [‘f—(tl)f—-(tz) + 7]cf+(t1)f+(t2)lz

+ l/\IZ‘f—(tl)f+(t2) + 77cf+(t1)f+(t2)‘2 + 2Re [)\(f—(tl)f+(t2)
b)) () () +nefi 0 )|

If, as above, we define the three terms by Ti_3 and use formula (3.10) we find
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easily that

e~T(ti+12)

2
~T(t1+1t2
=§ ( )[1+cosAM(t1:l:t2)

1 = [l + cos AMt; cos AMty — n.sin AMt; sin AMtz]

where the 4 sign coresponds to 7, = £1. The same kind of calculation gives for
the second and third term

—T (141
Ty = ]/\]22 (h+42) [1 —cos AMt; cos AMty + n.sin AMt; sin AMt,
—T(ti+t2
= |,\|25 ( )[1 —cos AM(t; + tz)]
2
and
e~T(t1+t2)
T = 5 2Re [i/\(sin Amty cos AMt; + n.sin AMt; cos AMtz)]
~T(t;+1
=2 -;- . Y sin AM(t; +15) Im) .

One thus obtains the differential cross-section

dU(l—f) — ITI2 =Lt +12)
dt;dt, 2 € [1+cos AM(ty £ t5)

+ |AP[1 = cos AM (] % t5)] — 2ImA X sin AM(t £ t2)

The |A| = 1 condition and the integration over the #; variable gives the t; = ¢,
distribution, i.e., formula (5.10d)

dd4(l_f) . ITIZ e~

i ST, [1 -t (xd cos(AMdtd):tsin(AMdthd))] .

l+:c‘2i
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Appendix 5.B

Formulas for the B} — J/$K* decay

As an additional exercise, let us show how the formulae (5.23) have been esti-
mated. The expression of (5.23a) is evident, the production rate P; is proportionnal
to the semileptonic branching ratio and to the p;p; weigthing factor. The only dif-
ference appearing in (5,23b) is the e factor as the total width of beauty baryons

and B meson are different. Let us now consider the two other cases where mixing
has to be taken into account.

Formula (5.23c) for the BSFS + —Eng case

For the considered Bg — J/YpK*0 with K*0 — Kt 4 ... the final state can

only come from the Bg, hence A = 0. The double-differential time distribution
found in the previous Appendix becomes with A = 0 to:

+ 2
dO'(l f) — ITI 6-—(1“,t_.+I‘dtd) 1 + COS(AMSts + A«Aldtd)_*'

+ sin AM,ts sin AMgyty) x (1 — Reny)

This leads to the single differential expression of

dos(i™f) _ TP 1.,
dtgq 2T,

[1+

T+ 22 (COS(AMd‘td) — x5 Reny Sin(AMdtd’rd))] .

A further integration over t; gives the expression for the cross-section,

2 —
(1= f) = |T| 4 1 —zsz4Reny

~2T,Ty (14 22) (14 23)

This is the expression used for the production rate but normalized in such a way
that if 23 = z4 = 0, one has a formula similar to (5.23a).
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Fig. 5.1 - The possible bgg and bg combinations of the produced b and b with
the valence quarks in pp interactions. The tendencies of the production of beauty
mesons are also indicated, NV denoting a number of events. The numbers shown in
the figure give the color values of the produced quarks.



Formula (5.23d) for B(‘}B*; case

The double-differential cross-section is given by (Appendix 5.A)

da(l_f) — llee—Fd(h-f-ig)
dtidts 2

+ [A[1 — cos AM(t1 + 7ct2)] — 2ImA x sin AM (¢ + 770)] .

{1 + cos AM(t; + net2)

With A = 0, the integration over #; gives

do IIE A [1 4 oo AMgty  sin AMyt,

dt; 2T, 1+ 22 1 +43 ””“’dJ '

The integration over t2 gives the cross-section,

- _ |T|? (1 - nezl)
U(l f)——é-ﬁ [1+(1—+;3‘)%'j|

Taking into account that the number of events with relative even or odd orbital
momentum between the outgoing mesons are equal, one finally obtains

TR 1
=5 [”(ng)ZJ'

With the same normalization as before, one obtains expression (5.23c).
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Fig. 5.2 - Diagrams contributing to the B+ — J/WK*T . BY — J/wK*® and
BY — J/1 ¢ decays.
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Fig. 5.3 - The time-dependent decay distribution obtained from the decays into

I*f (Bg, By — f) for the general case (dashed line) or by tagging only with B+
mesons (full line), the exponential part has been factorized out (taken from Ref. 2).



Fig. 5.4 - In the production of a b pair, the charge of the leptons appearing in
the semileptonic decay of the b or ¢ quarks (or their c.c. ones) are indicated. One
also show the charge of the K mesons resulting from the b — ¢ — s (or it c.c.)
process.






6 - The beauty baryon

6.1 - Production and decays

a) Production rates

In this chapter we consider the beauty baryons, including their decay prop-
erties as well as their production in pN interactions. The decay can be studied
efficiently in reactions where the beauty baryon production is significant. For in-
stance, B-factories at c.m. energies around /s ~ 10 GeV cannot be used for
studyding these features, as their /s are below the threshold corresponding to
beauty baryon production, or just above if 4/s can be somewhat increased. In
contrast, pp interactions at the LHC project (/s ~ 14 TeV) are expected to have
a large beauty baryon cross-section (see below).

Table 6.1 presents various beauty baryons that could be produced in pN in-
teractions, the charge conjugate (c.c.) ones not being indicated. Excited states
are also not shown. Therefore, all the baryons have a spin of S=1/2, apart from
the bbb state having S=3/2. The masses of these particles are those used in the
PYTHIA Monte Carlo program® except for the measured A, mass?. We use the
following notation: the baryon with isospin I = 1 will be denoted by ¥, whereas =
will be taken for baryons having I = 1/2. For I = 0, we use A unless each quark
forming a baryon has I = 0, in which case the notation will be §2. The subscripts
of &, =, A, and  indicate the number and the type of the heavy quarks (Q = b, ¢)
contained in the considered baryon (as above, the light quarks will be denoted
by ¢ = u,d,s). Note that the baryons containing only one heavy quark will be
represented by Ny = bq1gz2 or N; = cq1g2 (and by Ny, N for their c.c. states).

The production rates of beauty baryons in p/V interactions at /s > 2 TeV
are not really known today. Estimates of the cross-section o(bgiqa) for a given N,
state can be made from the ratio o(bg1g2)/o(bb) calculated, from various models.
As used previously, o(bb) represents the pp — bbX cross-section at the c.m. energy
considered. For example, the PYTHIA Monte Carlo program allows the obtaining
of the above ratios for baryons having only one heavy quark ) = b,c. Then using a
model dependent value of o(bb), one gets estimates of beauty baryon cross-sections.
With o(bb) =~ 300 ub, which is the order of magnitude considered for /s ~ 14 TeV,
one obtains the following estimates for the Ny and N production cross-sections in
pp interactions with the help of the Monte Carlo calculation®:
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Table 6.1 - Various beauty baryons (/V3) using the notation explained above. The
charge and the quarks forming the baryons are also given. The mass values are
those of the model used in the PYTHIA Monte Carlo program!, apart from the

mass of the Ay, which has been measured?.

Quarks | Charge | Mass
(GeV)
Ap bud 0 5.64
buu +1 5.80
b bdu 0 ”
bdd -1 ”
= bsu 0 5.84
bsd -1 7
Zbe beu +1 7.01
bed 0 K
Zop | bbu 0 10.42
bbd -1 7
Q bss -1 6.12
Qie bes 0 7.19
Qpac | bec +1 8.31
Qop |  bbs -1 10.60
Qape bbe 0 11.71
Qg | bbb -1 15.11

Ap) ~24.0 ub , o(Ap) ~23.2 ub (6.1)

(

( 4.0 b, o(Xp) ~3.8 ub
o(Zp) ~ 3.3 ub O'(Eb) ~ 3.2 ub

( 0

The difference between the NV, and N} production rates appears as the combination
of the b (b) quark with the valence quarks contained in the beam particles has
been taken into account! and yielding o(N;) > o(N3). The difference values given
above can only be considered as indications. The various cross-sections have to
be measured. This could be done easily when pN interactions at large /s will be
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available, as no mixing and tagging have to be considered in the beauty-baryon
decays.

Estimates of the o(bcg) cross-sections are based on the fact that the velocites
of the bound b, ¢ and ¢ quarks have to be (nearly) equal in a choosen frame. This
means that the momentum of the light quark will be negligible with respect to the
momenta of the b or ¢ quark. The kinematics as well as the QCD interactions in
the final state will thus depend essentially on the bc system. Therefore a rough
estimate of a(beq) could be written as®

o(beg) ~ o(Be) G x ng (6.2)

B. = b¢) where G = 1/2 is a color factor comparing the beq color singlet with the
paring q g

be one®. The estimate of n¢ is obtained from the probability of producing a given

g quark. To this end one can, for instance, consider

bu :bd: bs:bgg=10.38:0.38:0.14:0.10, (3.30)

already used for /s >~ 14 TeV (Chapter 4). Within the present approximation,
this gives

bew : bed 1 bes =1y imq i ns =0.42:0.42:0.16 .

An estimate of the pp — B.X cross-section at /s =~ 14 TeV is o(B.) ~ 39 nb
(Ref. 6). By taking into account both B, and F: production according to refer-
ence 6, one has the estimate of o(B, or B,) =~ 60 nb. Using this last value and
formula (6.2), one obtains the following estimates at /s ~ 14 TeV:

(Zpe) ~ 1.3 1072 b (6.30)
o(Ue) ~ 51073 ub (6.3b)

For beauty baryons having two b quarks or three heavy quarks one can use the
following limits*:

o(bbg) < o (bD) @ "
o (bQ1Q2) < o(bb) U(Qlalv)f@i@z) ’

Tin

where i, > 60 mb (Ref. 7) is the expected inelastic pp cross-section at /s = 14
TeV (let us recall that o, is the total cross-section minus the elastic and the
diffractive ones). The upper limit in the above formula is due to the fact that one
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Table 6.2 - Examples for the 1/2 — 1/2 + 0 spin configuration. The branching
ratios BR(A — pr~) = 0.64 and BR(K? — 7#%77) = 0.69 are not indicated.

Channel BR BR(tot) | Final state

Ay — ADO ~107% |~21075| pK-ntx~
DY — K=zt |~ 3.71072
Ay — A—D—O ~2107% |~5107%| pKtr—n-
D = Ktr |~ 3.71072
Ay — AFfr= | ~21071
A = pK*ta=|{~321072|~61073| pKtrta-
Af - pK% |~16107%| ~107° prtrte~

Z > ADY | ~2107% |~5107*| pK-wtr~
DY — K—nt |~ 3.7 1072
Z, DY | ~107% |~2107° pK~rta T~

=T = AnT ~1

DY = K—nt |~ 3.7102

2y = E0r | ~21070 |~ 7107 prtrTr T
= sz rt |~58107°

= = Ar~ ~1

Table 6.3 - Examples for the 1/2 — 1/2 4 1 spin configuration with
BR(J/Y — p*tp~) = 0.06.

Channel BR BR(tot) | Final state

Ay = AJ]T |~21072 |~ 81074 | prptu~
Z o AJ/P | ~1072 |~ 41075 | prptus

=, 2 ETJ/U ~ 21072 |~ 8107 | prrpt e

=" - An~ ~1

Qy = QJ/U|~2107% |~ 5107 [pK~mptp~
07 = AK™ 0.68

Q —=7J/¥ |~2 1072 |~ 81074 | pr—m—ptu~
== = An™ ~ 1
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does not take into account the probability that the produced 0Q;1Q)2 quarks will
form a baryon.

b) Decay processes

In the following we consider beauty hadrons containing only one heavy quark
(b or ¢) and decaying into two particles, namely

Ny—-Y+M
- N.+M

(and their charge conjugate reactions) where ¥ = A, =, Q) represents the hyperons.
Here the meson M could have a spin of 0 or 1 corresponding to the following spin
configurations:

1/2—1/24+0, 1/2—>1/2+1. (6.4)

The spin value S=1 for the meson M = J/1 is of particular interest as the lep-
tons coming from the J/¢ — [T{~ can be used for the triggering process in pp
collisions®. Tables 6.2 and 6.3 indicate some beauty-baryon decays having the spin
configurations given by (6.4). The examples shown in these tables have final states
with only charged particles that could be detected easily.

For the decays described by Table 6.2 and 6.3, we will discuss the parameters
sensitive to CP violation effects in the beauty-baryon decay. Because of the spin
of the particles appearing in the decay processes, the final state will not be a
parity eigenstate. This is because of the various (L) waves due to different orbital
momenta ({) between the daughter particles, namely

1/251/240 = L=8p (6.5)
1/2—=1/2+1 = L =5,Pi3, P32, Dy/s

the indices in the last equation indicating the sum of the spins of the outgoing
meson and baryon. The methods of searching for CP violation effects in the beauty-
baryon decays, different from the B decay cases, will be discussed in some detail
here below.

Another aspect related to the production process consists in observing the
polarization of the beauty baryon produced. Knowledge of the polarization will
allow the measuring of decay parameters sensitive to CP violation effects (see
below). Let us remember that in the pN — N,(V}) X interactions, the polarization
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of Ny (or Np) in its rest frame can only be along 7, the normal to the production
plane (see Fig. 6.1). This plane is defined here by the momenta of the incident
proton (Pinc) and the outgoing Ny or Ny (pput) produced in the laboratory (or in
the c.m.) system, i.e. i = Binc X Pout/|Pinc X Pout|. In the following we will consider
the knowledge of the polarization measurement as an attempt to have a better
understanding of the production process, in addition to the usefulness of searching
CP violation effects.

6.2 - The N, decaying into two particles with S=1/2, 0

a) Introduction

The cases that we consider are similar to the A — pr and = — Ar studied
about 30 years ago. The decay processes have been described in detail®. In the
following we will recall some of these features in order to examine the interests of
studying beauty baryon decays.

The weak decay in the cases under consideration will be described by S and P
waves (corresponding to relative orbital momenta of [ = 0, 1, respectively, between
the outgoing particles). The partial waves for the decay of a given N or (its CP)

N state can be written as??:

Szzk:sk exp i(65 + ¢7) , ?:-?sk exp i(87 — ¢3) (6.6)

P:ZPk exp (88 + 4%) , ?:ZP’“ exp (67 — %) (6.7),
k k

where 5,“:’"]) correspond to the phases due to final-state interaction while qu’P are
the weak decay phases. Here a bar sign appearing on any quantity denotes that it is
related to the N decay. The sum is given on the various isospin transitions between
the initial (I;) and final (I ) state. The indice k indicates, however, the isospin
value of the final state. For the decay channels discussed here the sommation will
be at most over two terms. Note that in the present approach, the CP violation
effects in the weak decay could only occur from the weak phases ¢f’P. One has
also to note that the relations between the ¢‘Z’P and the CKM matrix elements are
not evident, as they are model dependent??.

The partial decay widths of the N, (T') and N (T') baryons are given by

T |SP2+|P?, T«|S?+]|P)?. (6.8)
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From formulae (6.6) and (6.7), one sees that in the case of CP violation (¢5F #
0,7) in the Nj, N} decay, the width inequality T # T’ could only occur when more
than one isospin transition leads to final states with a non unique isospin value®?.
In the beauty-baryon examples given in Table 6.2, the S and P waves in each case
have the same Iy value. Therefore, one will always have A = (I' —=T')/(I' +T) =0
whether or not CP violation is present? (a situation similar to the = — A7 decay).
Decay parameters have then to be used to search for CP violation effects in the
beauty baryon decays.

In the general case, one has (Appendix 6.A)

i

T —
A=——= 6.9
T (6.9

=

o [8iSe(65 — 65)s(6 — 65) + PuBss(5P — 6P)a(gT — 7))
2i(SF+ PP+ i [SiSic(67 — 87)e(¢7 — ¢7) + PiPic(6F — 8F)c(#F — ¢7)]

(where here s = sin, ¢ = cos). The numerator in the last equation depends only
on sines terms and will, therefore, also lead to A = 0 in the absence of final-state
interactions (5;5"1) = 0). If A can be different from zero for some specific decay

channels, the relative production rates of N and N}, in the considered pN collisions
have to be measured before interpreting any observed A value.

Because of the difficulties introduced by the isospin transitions for the mea-
surements of A, let us now consider the decay (or correlation) parameters that can
be used to search for CP violation effects. They were in fact utilized for studying
the hyperon decays and could also be utilized fo the beauty baryon decay. The
correlation or decay parameters between the S and P waves are defined by®?:

2Re (5*P)
2Im (S*P)

g = SE+ PP (6.100)
IS - |P?

(a? 4+ f% 4+ 4% = 1). Similar relations are obtained for the N} parameters, &, B, 7
using the above relations with § — 5 and P — P. In the absence of CP violation
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in the Ny, N} decays, the weak phases ¢f’P vanish. Then by using formulae (6.6),
(6.7) and (6.10), one will have

a+@=0, f+B=0, v=7. (6.11)

In reality, the search for CP violation effects with the decay parameters has been
applied by testing the non-zero values of the following ratios:

a_Ta+Ta a+a@ Re($*P+5P)

= — o — = p—— (6.12a)
la—-Ta a-@ Re($*P-35 D)

p-LtP+18 B+5 _Tm(SP+5P) (6.12b)
I6—-TB B-F Im(S*P-5'P)

g _IB+TB p+B _1Im(5*P+S°P) (6.12¢)

" Ta-T@ a-a@ Re(§*P-S5P)

An eventual unequal amount of N, and N production has no importance here, as
one compares decay parameters and not N, with N} events. With the formulae
given in Appendix 6.A, one obtains for the general cases the following expressions
of the A, B and B’ parameters:

=22, SiPysin(8F — 67)sin(¢f — ¢7)

X, SiPjcos(6F — 69) cos(4F - 47) (6.13)
=204 SiPjcos(6] — 67)sin(¢F — ¢7) »
N Zi,j Si P; sin(&f — §9) cos(qbf — ¢f) (6.14)
I'6+TA B
b= rgi‘fg—:gig“—zsipjsin(ﬁ—-qbf)- (6.15)
1,3

The B parameter tests (in principle) the time reversal invariance related to the
Ny, Ny decays (see below) that should be equivalent to CP invariance (CPT rule).
For simplicity, we assumed in the B’ equation that the differences of §; — 6; and
¢; — ¢i are small, allowing an approximation of the cosine of these difference by
1. The parameter B' does not depend then on the phases due to the final-state
interactions, an important advantage in searching for CP violation effects. For
a given CP violation effect one notes® that |B| 3> |A| > |A|, indicating that the
measurements of # and § might be very useful, although difficult (next paragraph).
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Table 6.4 - For the spin configuration 1/2 — 1/2 + 0, the I', «, B relations
between the NV, and N}, decays for CP conservation or violation. In each case
final-state interactions (FSI) were assumed or neglected.

CP conservation CP violation
FSI  No FSI FSI  No FSI
=T I'=T | I'#T r=T

aF-a a=-a

p=-B BB=0{b#-B B=F8

* With only one isospin transition, one has I' = " (see text).

Note that for CP violation effects where the final state interactions (FSI) having
a small effect (67,6 — 0) one obtains that A — 0 and B — oo yielding o = —@

and B = 3, respectively.

The relations between the various parameters are given in Table 6.4 for CP
conservation or violation in the beauty baryon decay. They are obtained by using
formulae (6.13) and (6.14). For each case we consider the presence of final-state
interactions or decay processes where the final state could be neglected.

Let us repeat that non-zero values of the f or f parameters are related to
the violation of the time reversal (T) applied to the considered decay process (see
the next section), and hence to the CP violation (CPT rule). However, final-state
interactions can also lead to 8,8 # 0. Table 6.4 indicates the relations between A
and f that could indicate the violation of time reversal.

Remarks about the A — pr~ decay

Let us remember the expressions obtained for the A — pr~ decays where
I; = 3/2,1/2. Experimental evidence has shown that the decay transition with
Iy = 3/2 is much smaller than that having I; = 1/2 in the final state (the ratio
is about 1/30). Using also the fact that |S| > |P|, one can approximate formula
(6.9) by (see also Appendix 6A)

r-T Sy . .
A = m ~ _9 5_1 sm(c?f — 559) sm(¢f - ¢§g) : (6'16)

With these assumptions, one obtains the following approximations for the A ratios:

A=2E0 (6P 55) te(eF — 49) (6.17a)

o —
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+

g4 — 47)
tg(6f — 67)

B =PTE o g4l - 4). (6.17¢)

o —

B =

(6.170)

o W™

+

™| @l ™
Il

We see that here A, B, B' # 0 are due to interferences between the S and P waves
having both the same final isospin value, If = 1/2.

b) The o and § measurements

The o and f parameters indicated above for a given Ny — f (and its c.c.)
channel are related to the polarization of N, and that of the baryon (hyperon or
charmed baryon) appearing in the N, decay. Before examining these features, let
us recall that in hadron hadron interactions the N, polarization (in the Nj rest
frame) can only be along 7, the normal to the production plane (Fig. 6.1).

For the present discussion let us consider the weak decay of Ay — AD? with
A — pr~ although the estimated BR(A; — AD?) branching ratio given in Ta-
ble 6.2 1s rather small. In fact, any other decay channel given in this table could be
used for the present discussion. Nevertheless, for simplicity, we use the Ay — AD°

channel, which will be compared with the A; — AD™ one.

Similarly as with the study of the A — pr and £ — Ax decays®, let us
characterize the Ay — AD? decay by the angular distribution of A in the Aj rest
frame by [ (A) and use I(p) for that of the proton distribution in the A rest frame
(coming from A — pr~), hence

I(A)
1(p)

where a(N) denotes here a decay parameter related to a given IV decay channel into
two particles [see formula (6.10a)]. We recall that the polarization of A and A are
defined in their rest frame. The A (p) is the momentum direction (one unit) of the
A (p) in the Ay (A) rest frame. In the following we will often use © representing
the angle between the A and the polarization directions in the production c.m.
system [P(Ay)A = P(Ay) cos @), as shown in Fig. 6.1. The probability of a given
configuration of the Ay and A decay per unit of solid angles dQQ(A) /47 and dQU(p)/4m
could be given by:

1+ a(Ay) P(Ay) A (6.18a)
1+ a(A) P(A) p (6.18b)

£(A,8) = |1+ a(as) P(8) A] x [1+a(n) B(A) 5] | (6.19)
whereas the probability of observing the A polarization P(A) in its rest frame will
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bed:

+3(0) [A x (P(as) x B)] . (6:20)

Under time reversal, spin, polarization, the A and the p directions, change sign.
Therefore, the left-handed side of equation (6.20) changes sign, whereas the same
feature can only occur on the right-hand side if # = 0. Thus, time-reversal invari-
ance in the beauty baryon decay requires # = 0, although final-state interactions

can lead to § # 0, see formulae (6.10a) and (6.10b) and Table 6.4.

As 1s well known, formula (6.20) indicates that 8(A;) and y(A;) can only be
measured if P(Ay) # 0. For simplicity, let us define the proton emission angle
(61-3) from the A decay in its rest frame with respect to the coordinate system
shown in Fig. 6.1. One then has

D <A x (A x f&))
cos ) = — - (6.21)
|A x (7 x Al
cos g, = LA D) (6.22)
f X A
cosf3 =p A, (6.23)

yielding the following angular distributions!! (see Appendix 6.B):

I(63) < 1 4 a(Ap)(A) cos 03 (6.24)
I(65) o 1 — % P(A3)B(Ap)e(A) cos b (6.25)
I(67) o< 1 — g P(As)7(As)e(A) cos by . (6.26)

The experimental angular distributions corresponding to formula (6.24) allow one
to measure a(Ap) with a method independent of the value and knowledge of P(Ap)
as, &(A) = a(A — pr~) = 0.64 is well known. In contrast, A(A) and y(Ap)
could only be measured if P(Ap) # 0 is known. This polarization can be obtained
from the angular distribution of A in the A, rest frame [formula (6.18a)], once
a(Ap) is known. The measurement of 8(Ap) could then be carried out by using
the angular distribution given by formula (6.25). The validity of the time-reversal
(T) invariance of the Ay — AD? decay could then be tested by comparing B(Ap)
with B(Ay) = B. The various steps for measuring a(N), P(NV;) and B(IV,) are
summarized in Fig. 6.2.
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Comments about the o parameter

Models have been used to describe the Ay — A7~ and A7 — A7n™ decays??~14.
By using only spectator diagrams (factorizable contribution), it is predicted that
a(Ap), a(Ac) ~ £1 [and @(Ap), @(A,) ~ F1). No time reversal violation could then
be measured with § as 8(A;), B(Ac) — 0 (because of the relation o + % ++2 = 1).
The a(A} — An™) have been measured!® and found to be compatible with 1. In
any case, the decay parameters o and @ have to be measured for the Ny and N,
decay channels.

6.3 - The N, decaying into two particles with S=1/2, 1

These cases will be somewhat more complicated because of the spin configu-
ration 1/2 — 1/2 + 1. However, here also, the contribution of only one isospin
transition between the initial and final state leads to the equality of the partial
widths of the considered N, and Ny decays (I' = T), yielding A = 0. The decay
channels given as examples in Table 6.3 will then all have A = 0. Also here one
has to consider other parameters which can be used to search for CP violation in
these decay channels.

The angular distribution of the hyperon or Ny (N, — ¥ + M, N, + M) with
respect to the polarization direction of the N in its rest frame (angle @) has a
form similar to formula (6.18a), namely?3:16

I(0©) o< 1 £ o (Ny)P(IN}) cos © . (6.27)

The o' parameter depends on the various orbital momenta between J/¥ and ¥
and can be expressed by1®

o () 2 Re (575 P12 + D3y Psp0)l (6.28)
b p— . .
1S1/21* + | Pryal? + [Psj2|? + | Dsja?

The indices indicate the sum of the spins of the outgoing particles, namely 3/2 or
1/2. For the present case, the angular distribution of one of the daughter particles
of the emitted baryon (¥ or N, denoted here by N) in the baryon rest frame is
also linear in cosf3 (Ref. 13),

1(63) o< 1 & o (Ny) (V) cos 83 . (6.29)

The comparison of this distribution with experimental data allows one to obtain
o', which can be compared with the value deduced from the c.c. channel (&").
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The coefficient o is, however, different from that appearing in formula (6.27), in
contrast to the 1/2 — 1/2 + 0 case. Therefore, &/ (V) can only be measured with
distribution (6.27) if the polarization P(/V) is known. The comparison of ¢/ with
@' or o' with @ through the parameters

1 -l .
© ta (6.30)

o +3&

o — &

A = or A" =

o — &'

could be used to search for CP violation (see Fig. 6.2).

Remarks about the o/(Ap) parameter

There are several models'” predicting the o/(A) value for the Ay — AJ/ ¥
decay. With the free quark decay b — ccs constraining the c¢ effective mass to be
near the J/¥ mass, the estimate is &/ (A;) ~ 0.43. By using an exclusive model'’,
the estimate becomes o'(A;) ~ 0.19 — 0.26. With this order of magnitude one
can appreciate the measurement precision of o/ (Ap)P(Ap) expected for a proposed
experiment.

6.4 - The polarization of the beauty baryons

The polarization of the hyperons ¥ = A, X, = has been measured in several
p-target experiments!®=2° (pN — Y X, Y X) with p incident momentum around

400 — 800 GeV/c. The polarization of A has been observed, in contrast to the A

which vanishes in the same type of interaction®®. For =~ and =" the situation

is different, as both have nearly the same polarization'®2° in the pN production
with an incident momentum of around 800 GeV/c. The polarization measurement
of beauty baryons could certainly be useful for a better understanding of the pro-
duction mechanism. Furthermore, as already discussed above, the knowledge of
the polarization of Ny and N could be helpful for searching CP violation in the
decay of the beauty baryon. By considering the decay of the beauty hadron into
two particles

Ny =Y+ M
— N+ M,

as indicated in Table 6.2 (1/2 — 1/240), as well as their charge conjugate reactions,
one could measure and compare the polarization of Ny and Nj. The search for CP
violation with the # and f parameters could then be attempted if one finds that
P(Ny) and P(Ny) # 0 (Section 6.2 and Fig. 6.2).
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From the channels indicated in Table 6.2, the Ay — A7~ channel appears to
have the largest branching ratio. By using the distribution (6.18a), written here
in the form:

I(@) =1+ a(Ay — A7) P(Ap)cos O, (6.31)

one can measure the quantity a(Ay — AF77)P(A;). As mentioned above, theoret-
ical models!?~1* predict that the decay parameters |a(Ay — AF77)| = |o(AF —
Amt)| ~ 1 using only spectator diagrams (factorizable contributions) as shown in
Fig. 6.3. As already noted, the |a(A} — Ar*)| parameter has been measured
and is compatible with 1 (Ref. 15). Assuming that the same type of mecha-
nism will contribute to the Ay (A;) decay (see Fig. 6.3), one can expect that
la(Ay — Afn~)| = 1. Then the polarizations P(A;) could be measured directly
from the distributions given by (6.31). In the same way one could obtain P(A)
assuming that one has also |a(Ay)| ~ 1,

For the 1/2 — 1/2 + 1 spin configuration, one can measure the o' (Ny)P(Nj)
quantity using the angular distribution given by formula (6.27), namely

I(0) < 1 £ o/ (Ny) P(Ny) cos © .

By fitting the experimental data with the above type of equation for the N and
Ny, we could compare o (Ny)P(N;) and @ (Ny)P(N,). With the assumption that
o' ~ @, one obtains information about the relation between P(NV,) and P(Ny).

6.5 - Suggestions

In this chapter we discussed some interesting features of studying beauty
baryon (N, = bgq and its c.c.) decays. Such investigations could be made success-
fully in pN (or pN) interactions at c.m. energies 4/s > 1 TeV. In this domain the
production rate of beauty baryon is expected to be large.

We recalled here several aspects which were utilized for the analysis of hyperon
decays and which could also be used for some of the IV, decay channels. Within
the statistics actually available, no CP violation effects have been observed in the
hyperon decays. Nevertheless, the search for CP violation in the Ny, Nj decays
has to be studied. This kind of study will certainly give a better understanding
of baryon decay but could, perhaps, also lead to the discovery of new aspects
of weak decays. The construction of the LHC will provide a large production of
Ny, Ny. This should encourage us to prepare detectors which could also give us
the possibility of a detailed investigation of the beauty baryon decays.
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Appendix 6.A

The CP violation parameters (1/2 — 1/2 4 0)
a) The A decay case

As an example, let us first consider the A — pr~ decay where two isospin
transitions [y = 3/2,1/2 are present (using now the indice k = 2If). One has then

S =51 exp i(67 + ¢3) + S5 exp i(85 + ¢3) (6.A1)
P =Py exp i(§] + ¢7) + Py exp i(65 + ¢%)

§=— 81 exp i(67 — ¢7) — Sg exp i(635 — ¢3)
P =P exp (67 — ¢7) + Pg exp i(6F — ¢%) .

For the S waves, for instance, one obtains

|5'|2 = Sf + S§ + 25153 cos(z + y)
|§|2 = 512 + 5’3 + 25153 cos(z —y),

with z = 5f — 535 and y = qu — ¢§. This gives the expressions:

1512 = 5| = 45,53 sinzsiny
112 +15)% = 2(S? + 53) + 45,53 cosz cosy .

Similar expressions can be obtained for the P waves where z, y — ', y', with this
time, z' = 6§ — 6 and ¢ = ¢7 — ¢£. One then obtains

|

p=L=L (6.42)
I+

]|

25155 o(65 — &) s(65 — 65) + PP s(6F — SP)s(e] — D))
201,387+ P2) + [S155 c(67 — 65)e(¢7 — ¢5) + PLPs (67 — 60)c(¢F — ¢1)]

where s = sin, ¢ = cos. Here the interference terms (the expression appearing in
the numerator) is due to waves having the same orbital momentum but different
I¢ values. From (6A.1), one obtains formula (6.16) assuming that S3 < S; and
S1,3> P13
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b) The general case for the 1/2 — 1/2 + 0 decay

Using the formulae (6.6) and (6.7) relating the S, P with the S, P waves as well
as formula (6.8) and (6.10) defining the I', o, B parameters, it is straightforward
to obtain the following expressions®?:

A= (6.43)
T +T

~23c, [SiSis(67 — 67)s(87 — ¢7) + PiPys(6F — 8])s(4F - ¢7)]
(ST A PY) + i [Si856(87 = 65)c(4F — 87) + PiPic(6F — 6F)c(¢F - ¢P)]

(where here s = sin, ¢ = cos) and

a+a@ Re(S*P+35'P)

A~ — = —— (6.44)
@—a& Re(S5*P-S5 P)
- Zi,] S P; sin(5JP — 67) sin(qu;D — ¢7)
B 2 i SiP; cos(5JP—5f) cos(¢f——¢f)
B~ﬂ+ﬂ_1m(5’P+SP) (6.45)

" B-B Im(S*P-SP)
=2 S cos(&f — 67) sin(qéfD )
B Zi,j SiP, sin(5f—5f)cos(¢f—¢f)

Let us recall that the ¢ phases are due to final-state interactions while the @
represent the weak decay phases which may lead to CP violation effects. The
numerators in (6.A3) and (6.A4) contain only sin terms. Therefore, in the absence
of the final-state interactions one will always have A = A = 0. By comparing the
expressions of (6.A3), (6.A4) and (6.A5), one usually expects that |B| > |A| > |A|
in the case of CP violation. The expressions given above have been used in order
to indicate the relations given in Table 6.4. Here the summation is at most over
two terms.

As the angles corresponding to the differences of 6, —§6; and ¢j— ¢; are expected
to be small, one often uses the above formulae with cos(é, — &;) ~ cos(p; — ¢y) >~ 1.
In this approximation the ratio

g _M+RB_p+F

" Aa—-Aa a-a

o« — Y " SiP;sin(¢f — ¢7) (6.A46)
0.j

does not depend on the phases due to the final-state interactions. The measurement
of this ratio could then be of great interest.
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Appendix 6.B

The decay angular distributions (1/2 — 1/2 + 1)

Let us demonstrate formulae (6.24) to (6.26). To this end we use formula
(6.19),

F(A,5) = |1+ a(as) B(a) A x [1+a(n) B(a) 5] (6.19)

in which we replace P(A) by using formula (6.20), written here as:

For transforming formula (6.19) we use the unit vectors along the coordinate system
in the A rest frame (Fig. 6.1), namely

X:Ax(r'ixf&)’ f/:"‘xgi) .

sin 8

&
=]

where § is the angle between 7@ and A in the A rest frame (AR = cosf). The
emission angles 6; (j =1-3) of the proton in the A rest frame are then defined by:

pX = cosb | pY = cos b, VA= Ap = cosbs .
Formula (6.19) now becomes:

£(8,8;) = 14+ a(A)a(Ap) cos 03 + P(A)[c(Ap) cos 8 + a(A) cos 8 cos B3
+ B(Ap)a(A)sin§ cosby + y(A)a(A)sinf cosb] .

In order to have only the §; dependence, the integration of the above equation on
df) = 2wd(cos ) leads to:

£(6,) o< 2(1 + a(A)a(Ay) cos 83) + P(A) [—ﬁ(Ab)a(A)% cos fp—

—'y(Ab)a(A)g cos 1] .

To have a distribution depending only on a given §;, one has to integrate the last

equation over the solid angles corresponding to the remaining angles. One then
obtains formulae (6.24) to (6.26).
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pp — NbX
Nb — AT
A— pr

P(Np)
" Pinc *P(Np)
|B|nc X-B(Nb)l

Fig. 6.1 - The production plane of the pp — N, X reaction and the ﬁ(Nb) pola-
rization normal to this plane. The X,Y, Z represent the coordinate system used
in the A rest frame for defining the p angular (6;—3) distributions coming from the
A — pr decay. Here O is the A emission angle with respect to the P(NV) direction
in the Ny rest frame.



a) 1/2—-1/2+0, Ap—=A+7
A—-pt+n™
I(©) =1 + a(Ap)P(Ap) cos © 1
I(63) o< 1 4 a(Ap)a(A) cos b3 2
I(02) x 1 — 7 P(Ap)B(Ap)ce(A)cos by 3
I(61) < 1 — F P(Ap)y(Ap)a(A)cos by 4

A:LE ?
r+r
A2a+?-_
a—a
Bt
p—p
|B| > |A| > |A] .

b) 1/2 = 1/24+1, Ay — A+ J/Y
A—p+n~
I(©)=1+a'(Ay) P(Ap)cos® 1
I(03) oc 1+ " (Ap)a(A) cos b3 2

A:P_E?
I'+T
AT,
o —-a
" all+all
A ga”—all

Fig. 6.2 - The angular distributions for some examples of Ay decay channels.

a) 1/2 — 1/2 + 0: The distribution 2 gives a(Ay), allowing P(A3) to be obtained
with equation 1. Once P(Ay) # 0 is measured, one can obtain B(Ap) (same proce-
dure for Ay). b) 1/2 — 1/2 + 1: Equation 2 gives a'(Ay), while o/(Ay) can only
be measured if P(A;) # 0 is known. The ? signs near some of the asymmetry
parameters (A, B, A’, A") indicate that they can only be used to search for CP
violation effects under some conditions (see text).
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+
A Ap Ac
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Fig. 6.3 - Spectator diagrams responsible for the A7 — A7~ and Ay — Af7~
decays.
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