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ABSTRACT

This article describes the basic principles of the Monte-Carlo
method. The use of the method is shown on examples taken from
the field of experimental particle physics.
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1 Introduction

Although the Monte-Carlo method was known long time before, it came into
general use only with the advent of the electronic computers because it needs a
lot of calculations. J. von Neumann and S. Ulam are considered as the-inventors
of the Monte-Carlo method. The random number plays fundamental role in the
method. Monte-Carlo is famous for its casinos and the roulett is nothing else than
a random number generator. This explanes the name of the method. The method
includes all numerical methods which simulate processes depending on random
variables. Usually these calculations are too complex to solve them analytically.
The calculation are carried out by means of pseudorandom numbers which have very
similar properties to that of the true random numbers. The Monte-Carlo method
may be used to solve problems which do not depend on random variables but may
be described with a random model like the Monte-Carlo integration.

As an example we calculate the # = 3.14159 by means of random process. We
drop a needle, whose length is [, on a plane where parallel straight lines are drawn
(Fig. la). The distance between two neighbouring lines is /. The angle between the
needle and the sraight lines is ¢ (0 < ¢ < 7). At a given angle 9, the probability
that the needle falls on a line is given by p = z/I, where z = Isin % is the projection
of the needle. The probability of all possible events is 1. The average over the whole
(0 < ¥ < 7) interval is

[ sin9dd
0

where k is the number of ‘fortunate’ events, N is the whole number of events and
k/N is the relative frequency (see Section 2.1). The probability p(+) that at angle
¥ the needle falls on a line is shown in (Fig. 1b). The value of 7 is given by
_on

=
The error of the Monte-Carlo calculation may be estimated with the error of the
binomial distribution (see Section 2.3.3):

2.37

Op ~ —F—

ik

2 Probability

2.1 Basic Concepts of Probability

A random event is an event which has more than one possible outcome. A
probability may be associated with each outcome. The outcome of a random event
is not predictable, only the probabilities of the possible outcomes are known. In
contrast, an event which has only one possible outcome is certain, the probability
of the outcome is unity.



Example of Monte-Carlo Method
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Figure 1: Calculation of m with Monte-Carlo method




2.1.1 Probability and Frequency

Here are some definitions of the probability without an attempt to giving its
exact mathematical definition.

e Probability is the numerical value of the chance of occurrence of one or more
possible results of an unpredictable event.

e The set of all possible exclusive elementary events z; is denoted by {1. The
probability of occurence of z;, P(z;), should have the followig properties:

1. P(z;)>0 for all 7,
2. P(z; or z;) = P(z;) + P(z;), z; and z; are exclusive
3. P(Q)=1.

e Consider the throwing of a die. Suppose that having thrown the die N times,
where we find that k times as a result of the throw we obtained ‘5’. The
probability of getting ‘5’ as the results of a throw can be taken to be

k
rp= N ) (1)
i.e. the number k of ‘fortunate’ events divided by the whole number N of
events. This ratio is called relative frequency.

The relative frequency may be determined by means of theoretical considerations in
many cases. For example in the case of a die due to its symmetry one expects that
each of the six sides has the same probability 1/6.

2.1.2 Law of Addition of Probabilities

The events are called exclusive when the occurrence of one of them implies that
none of the others occurs. The result of one throw of a die is one of the six possible
numbers. There are two exclusive events A and B. Consider the event C which we
suppose to happen if one of the two events A or B happens. The probability of the
event C is given by

P(C)=P(A)+ P(B). (2)
The probabilities are given approximately by the relative frequencies:

P(A) ~ % p(B)~ "2 .

n

The event C happens k¢ = k4 + kp times and the whole number of the events is n.



2.1.3 Law of Multiplication of Probabilities

Suppose that having thrown a die two times. The event A happens, if we get
odd number as the result of the first throw. The event B happens, if we get ‘1’ as
the result of the second throw. The event C happens if the result of the first throw
is A and the result of the second throw is B. The probability of the event C is given

by
P(C) = P(A)P(B) . (3)

The probabilities are given approximately by the relative frequencies:

(A)Nﬁ P(B)~%i.

The event C happens k¢ = kskp times and the whole number of the events is nn.
P(C)~—= ———= =—— ~ P(A)P(B) .

2.1.4 Conditional Probability

There are two random events A and B. The probability that A happens when
B happens is given by the conditional probability of A given B written P(A|B):

k;B _ kAB/n P(AB)

P(A|B) ~ ks  ks/n  P(B) ’

(4)

where the probabilities are approximated with the relative frequencies. This is
probability that an elementary event, known to belong to the set of B is also the
member of the set A.

The events A and B are said to be independent if

P(A|B) = P(A)

which means that the occurrence of B is irrelevant to the occurrence of A.

2.2 Random Variables

With a random event A may be associated a random variable ¢, which takes
different possible numerical values zi,z,,... corresponding to different outcomes.
The corresponding probabilities P(z;), P(x2),... form a probability distribution of
the random variable.

2.2.1 Discrete Random Variable

The random variable ¢ and its probability distribution is called discrete, when
it can take its value from a finit or infinit set of discrete values z,,zs,.... The
distribution of the random variable is given by the table:

_ {131,132’ } (5)

D15,P2y <y Pny --



where z,,23,...,Z,,... are the possible values of the random variable, while
D1y P2y ey Py --- ar€ their probabilities. The probability that ¢ takes the value z;
is given by

P(¢ = ;) = P(e:) = i .
Generally the values z;,z5,...,Z,,... may be optional. The probabilities p;, p, ...,
Pn, ... should satisfy the following conditions:

e All should be positive:
pi >0

e Their sum should be equal to 1:

ZP:'=1-

In other words it is certain that in each case £ takes one of the values zy, z,, ..., z,, ...
The mathematical expectation value E(£) of the random variable ¢ is given by

E(¢) = —%—3’% = Zmil’i . (6)

The variance D?(€) of the random variable  is given by

D*(€) = E((€ — E(8))*) = X_(=: — E(€))’p: - (7)

There are two discrete random variables { and 7. Their possible values are
k1, ks, ... and ly,ls,... The probability distribution of the random variables ¢ and 7
is h(€,m). The probability distribution of £ is given by

p(6) = L h(EL) -
The expectation value of £ is

E(¢) =D kp(k;) = 3 k; D h(k;, L) -
j j i

The probability distribution of 7 is given by

q(n) = XJ: h(kj,n) -
The expectation value of 7 is

E(n) = ZliQ(li) = Zli;h(kjali) :

The random variables ¢ and 7 are called independent of each other when

h(€,n) = p(£)a(n) -
8



The expectation value of a function f(§,7) is given by
B(f(6,m) = 50X £k, L)k L)
The expectation value of f(£,7) =€ +71is
E(¢+n)= ZZ(k +L)h(k;, L) =
D2 kih(ki L)+ 32D Lik(k;, L) =
Xk Ak 1) + SEE Mk
zkﬂ’ +Zlq E(£) + E(n)

Generally for the product of two random variables

E(&n) # E(€)E(n) -

If the random variables are independent, then E({7n) = E(€)E(n):
= Z Z kilih(k;,1
S5 kilin(ks)a(ls) =
> kip(k;) > Lg(l:) = E(§)E(n)

The £ and 7 are two independent random variables. The following relations are true
for them

B(¢ +n) = B(€) + E(n) , (8)
E(én) = B(€)E(n) (9)
B(a+b€) = a + bE() , (10)
D¢ +m) = D¢)+ D¥(n)  and o)
D*(a+b¢) = B D¥(€) , (12)

where a and b are constants.

2.2.2 Continuous Random Variable

Suppose there is a radioactive source at the center of a rectangular coordinate
system. The particles are emitted isotropically by the source. The angle ¢ of the
projection of the fly direction on the zy-plane may have any value from the (0, 27)
interval (Fig. 2a).



Random Variables
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Figure 2: Continuous Random Variable




The random variable £ is called continuous if it may have any value from the
(a,b) interval. The probability that one observation is from the (c,d) subinterval of
the (a,b) interval is given by

d
Pe<é<d)= [ f(z)de (13)

where f(z) the probability density function (Fig. 2b).

The values of a and b may be optional. There are cases where a = —oo
and b = 4o0o. The probability density function f(z) should satisfy the following
conditions:

e It should be positive:
f(z) > 0.

e Its integral over the whole interval should be 1:
b
/ fla)dz=1.
The cumulative distribution function is given by

F(z) = ]f(a:')da:' .

It has the followig properties:
e F(a)=0,
e F(b)=1 and
e 0<F(z)<1, if a<z<b.
The function F(z) is a monotone increasing function:
F(z,) < F(z,), if  zyi<ez,.
The probability that the random variable ¢ is in the (c,d) interval is given by
P(c< ¢ <d)=F(d)— F(c) .

The mathematical expectation value E(€) of the random variable { is given by

The variance D?(¢) of the random variable ¢ are given by

DX(¢) = [(= = B(€) f(e)ds .

11



As in the case of the discrete random variable for two independent random variables
¢ and 7 the following relations are true:

E(¢+n) = E(§) + E(n) ,

E(£n) = E(§)E(n)
E(a+ b)) = a+bE(E) ,
D*(¢+n) = D*(€) + D*(n)  and
D*(a +b¢) = b°D*(¢) ,

where @ and b are constants.

2.3 Probability Distributions
2.3.1 Joint Distribution of Two Random Variables

There are two random variables ¢ and 7. They form a random vector variable
(€,7m), whose possible values are

£ =T1,T2,ccesTpy... and T = Y1,Y2yeees Yy oo

The values of the random vector variable are points on the zy-plane. The set of all
possible values is (2. A subset of Q is E. In the discrete case the probability that
the values of ¢ and 7 are z; and y; respectively is given by

P((¢ = ziyn =y;) = pij » 1=1,2,... and j=12,... (14)
The probability that the value of (¢,7) is in the subset E is given by

P((¢;m € E)= )  bpij

(zi.y;)EE

The probability that the values are in § is given by

P((¢m)e)= > pi=1.

(zi.w;)€Q

In the continuous case

P((¢n) € B) = [ [ f(a,y)dody, (15)
E
where f(z,y) is the probability density function. As in the discrete case

P((¢,n) € ) = [ [ flz,y)dady = 1.

12



2.3.2 Uniform Distribution

The discrete random variable ¢ is called uniform on the zy,x,,...,z, numerical
values, if these values are the possible outcomes of the random variable { and each
outcome has the same probability:

Pl¢=z)==, i=12..n (1)

The mathematical expectation value and the variance of the random variable ¢ are
given by

B = 2Rt o 0y and
D) =13 (e BO) = 23t - S (5s)

=1 =1

The continuous random variable ¢ is called uniform on the (a,b) interval, if its
probability density function 1s

f(z) = {(1)/,(b —a), ifa<z<b; (17)

otherwise.

The mathematical expectation value and the variance of the random variable ¢ are

given by
a+b
E(6) = /b—a, B and

a+by2 (b—a)?
D¥( /b—adm_( 2 ) 12

2.3.3 Binomial Distribution

Any random process with exactly two possible outcomes (alternative) is a
Bernoulli process. The formula of Bernoulli may be derived using the laws of
addition and multiplication of the probabilities. Let us consider an observation
which has only two outcomes a and b. The probability of the outcome a is p, while
the probability of the outcome bis ¢ = 1 — p. If the process is repeated n times
independently, then the probability of obtaining exactly £ = k times the outcome a
is given by

Flkin,p) = P = P(¢ = k) = (:)pk(l —p)"*, k=0,1,2,...,n. (18)
The sum of the probabilities, using the binomial theorem, is
Z() (1-p)F=(p+1-p"=1.

The binomial distribution is shown in Fig. 3. The mathematical expectation value
E(¢) and the variance D?*(€) of the random variable £ are given by

a- £

13



= n—1 r n—1-r
npy, . )P (1-p) =mnp and

r=0

D7(6) = 300k - no (7 )0 - 1 =

n

S0kt = 1)+ B} ) A1 = = () = a1 - ).

k=0

2.3.4 Poisson Distribution

The observed result of a Poisson process is a non-negative integer number n. The
parameter p is any non-negative real number. The Poisson distribution describes
the population of events in any interval of z (e.g. space or time) whenever: (a) the
number of events in any interval of z is independent of that in any non-overlapping
interval; (b) in any small Az, the probability of one event is AAz and the probability
of two or more vanishes at least as fast as (Az)?, as Az — 0; and (c) A does not
depend on z. Then u = Az (Fig. 4).

In the case of detection of particles, the mean value of the particles detected
during the time T is n. For each particle the probability that it is detected in the
subinterval (to,to + t) is given by p = t/T . The probability that in this interval
(to, to + t) exactly k particles are detected is given by the binomial distribution

f(k;m,p) = (:) (-;:)k(l - -;:)n_k ,

where p = t/T, np = nt/T, n/T is the intensity if the particles and nt/T = p is the
mean value of the detected particles in the interval (¢, + t).
The Poisson distribution may be derived from the binomial distribution:

n n a
f(ksn,p) =) (k)p"(l —p)"F k=1,2,..,n.
k=0
Let us increase n (n — o) and decrease p (p — 0) so that
np=np>0.

In the case of a fix k value f(k;n,p) has a limit value which is derived below:

)= 0= (1) 5" )" -

nn—1)(n—-2)...(n—k+1 n —k
_n(n—1)( k') ( + )(g)k(l__:_) (1_#)
_ /L_k(l B _;f)nn(n — 1)(n— 22...(7).— k 4 1) (1 B E)—k.

k!

If k is fix even number and n — oo, then:

hm n(n— 1)(n—2)(n—k+ 1) _ (1__];) (1 . g)(l _ k — 1) R 1,

n-—oo nk

14
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1—E—)n=e—“ and lim (l—ﬁ)_kal .

n—oco n

lim (
n—oco n

Accordig to these result the Poisson distribution with parameter p is given by

k
. . n ll‘ -
f(k;p) = lim f(k,n;p) = lim PM(¢ =k) = e k=12 (19)

00 k [s <] k
B —n_ _-u K —up _
k'e =e E k'—e et =1
k=0 """ k=0 "°

The mathematical expectation value E(¢) and the variance D?*(¢) of the random
variable £ are given by

B I -
E(¢)=) k—e*=p et =p and
L P
2 i 2#k 2 2 — 2 2
D) =) k' qet —p =p et tp—p =
k=0 k! k=0 (k 2)'
[=%) /l‘k
(b + (k= DR e 4 = =
= k!

2.3.5 Exponential Distribution

The time which passes until a radioactive decay, the number of radioactive atoms,
the life time of the parts of an equipment, the propagation of neutrons in a substance,
the attenuation of radiation etc. are described by exponential distribution (Fig. 5).
The probability of the decay of a radioactive atom in a time interval depends only on
the properties of the atom and the length of the time interval and does not depend
on the past of the atom. The probability that a particle has not decayed until time
t, and it will be alive until time ¢, (¢; < ¢,) is denoted by P(t1;t;). According to
the conditional probability:

P(tl;tg) = P(O,tl) .

The probability depends only on the length of the interval:
P(tg,tl) = P(tg — tl)

and so

The solution of this equation is the exponential function:
P(t)=e ™.

The probability that the particle decays during the time interval ¢ is given by the
cumulative distribution function:

F(t)=1—¢e.
17
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The probability density function f(t) of the decay time may be derived from the
cumulative distribution function:

f(t) = e ™. (20)

The mathematical expectation value E(¢) and the variance D?(¢) of the random
variable £, which is distributed according to the exponential distribution are given

by
E(¢) = AO/:ce—’\rd:v = —/1{ and

D(e) = E(€) — (B()) = 5.

2.3.6 Gamma Distribution

There are n independent random variables §;, s, ..., &,. Each random variable ¢;
is distributed according to an exponential distribution, whose parameter is A. The
random variable

77=€1 +€2++€n

is distributed according to the gamma distribution with n degrees of freedom (Fig.
6):

A" n—1
flz;A,n) = B i 1)!e_’\’, 0<z<oo. (21)

The mathematical expectation value E(n) and the variance D?*(7) of the random
variable 7 are given by

E(n) = —t\f and

D*(q) = Vi

The continuous form of the gamma distribution with p degrees of freedom is given
by
) A 0<z<oo (22)
f(=;2,p) = O ,
where I'(p) is the gamma function (see Appendix A). The mathematical expectation
value E(n) and the variance D?(q) of the random variable 7 are given by

E(n) = —i— and

19
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2.3.7 Gaussian Distribution

The probability density function of the Gaussian or normal distribution is given

by ,

f@imo) = e T, (23)

where p and o are real and positive constants respectively (Fig. 7). The integral of
the probability density function should be equal to 1:

o0

I= / f(z;p,0)dz =1 .

-~ 00

The proof of this is presented below. One has to use the

equation. I? can be written in the following form:

I* = /e“’zdz/e_”zdy = //6_($2+”2)d:vdy )
0 0 00

Using the z = r cosp, y = rsin p transformation whose Jacobi determinant is:

8z Oz .

or 8o | _ |CcOsp —Tsing ’ .
9y 9y i -
o e sinp Tcosgp

7/2 0o

//'re drdyp = / "r2d'r=%.

Using this result and introducing the new variable u = %Z—l, du = \—‘/1-5"; the result is

given by
1 T _ew?
/e 202 dr =

2ro
— 00

e Vdu=1.

Ik

The shape of the distribution is independent of the parameter y and depends on the
parameter o.

max f(z) = f(1) = —7>=.

The maximum increases decreasing the o, but the area below the curve f(z) is unity
(Fig. 7). The mathematical expectation value E(¢) and the variance D*(¢) of the
random variable ¢ are given by

o0

1 !:—!1!2
E(¢) = / zexp 2?2 dz=p and

1 T _e=w?
D*(¢) = o /(:z: —pu)exp” 2t dz = a?.



The probability that one outcome is in the interval (g — 3o, p + 30) is given by

pt30
Plp—3c<z<p+30)= / f(z)dz = 0.997 .

n—-3c

The normal distribution whose expectation value is £ = 0 and variance ¢ = 1 is

denoted by N(0,1).

2.3.8 x? Distribution

The ¢1,&, ..., & are independent Gaussian distributed random variables, the sum
of them

X = 3(6 — wi)/o!

is distributed as a x? with n degrees of freedom (Fig. 8). The probability density
distribution is given by '
2):}—1 b

f(XZ,n): (X e ?

e (24)

b

where:
(o o)

I'(p) = /m”_le"zd:v

0

is the Gamma function (see Appendix A). The mathematical expectation value
E(x?) and the variance D?(x?) of the random variable x* are given by

E(x’) = nE()=n  and

D*(x*) = nD*(¢}) = n(E(&) — (E(&))") =n(83 -1) =2n..

2.3.9 Student’s ¢t Distribution

The ¢é1,¢2,...,&, and ¢ are independent Gaussian distributed random variables
with expectation value g = 0 and variance 0> = 1. We then define

z=) & and
=1

The variable z belongs to a x*(n) distribution. Then t is distributed according to
the Student’s ¢ distribution with n degrees of freedom (Fig. 9):

var  T(n/2)

The mathematical expectation value E(t) and the variance D?(t) of the random

f(t;n) = , —co < <00. (25)

n
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variable t are qiven by

E(t) =0, for n>1 and

n

-2

Student’s ¢ distribution resembles a Gaussian distribution with wide tails. As
n — oo the distribution approches a Gaussian, and if n = 1, the distribution is
Cauchy or Breit-Wigner. The mean value is finit for n > 1 and the variance is finit
for n > 2, So for n = 1 or n = 2 the random variable ¢ does not obey the central
limit theorem (see Section 2.4).

D2(t) = for n>2.

2.4 Center Limit Theorem

The random variables ¢;, £, ..., En are independent and have the same probability
distribution. The mathematical expectation values and the variances are given by

E(él) = E(é‘g) = e = E(EN) =m and
D*(¢)) = D*(€&;) = ... = D*(én) = b* .
The random variable py is the sum of these random variables:
pn=& +&+ ... +&nN.

The mathematical expectation value E(py) and the variance D*(py) of the random
variable py are given by

E(pn)=E(&i+ & +...+&n) = Nm and
D*(pn) = D*(&1 + & + ... + En) = NB” .

Let us take the Gaussian distribution with parameters p = Nm and ¢ = Nb* and
introduce the new random variable:
’ PN — [

PN = pu

The center limit theorem states, that for any (c, d) interval:

lim P(c < ply <d)

N—oo

(26)

27r

This is the reason that the Gaussian distribution plays an important role in many
fields. According to the Gaussian distribution the probability that py is in the
interval (Nm — 3bv/N, Nm + 3b+v/N) is given by

P(Nm — 3bV/N < py < Nm + 3bv/N) ~ 0.997 ,

PN 3b
P(m—“/——<w< +ﬁ)~0.997 or



3 Random Numbers

In the Monte-Carlo method the random numbers play fundamental role. There
are three different types of random numbers:

1. True random numbers. These random numbers are random in the sense
of statistics. Any part of the series of the random numbers is independent
of the previous ones. These series are unrepeatable.

2. Pseudorandom numbers. These random numbers are generated with
some kind of algorithm, so each number depends on the previous numbers
but in such a way that any short part of the series resembles the true
random numbers in many respects.

3. Quasi random numbers. These series are absolutly not random numbers,
but taking a long part of the series for some problems they are better
than the true random numbers.

3.1 True Random Numbers

These random number are not predictable. The series of true random numbers
are unrepeatable. These random numbers can be generated only by random physical
processes. Such physical processes are, for example: the radioactive decay, the
thermic noise of electronic equipments, the occurrence of cosmic particles, etc. If
one uses true random numbers in the Monte-Carlo method, then the results are
exact.

Generation of true random numbers with radioactive source. We count the
radioactive decays in a fix interval At. The bits of the binary random number is
constructed in the followin way.

e Odd number of decays — bit 1.

e Even number of decays — bit 0.

There is a series of random bits, but P(0) # P(1) # 1/2, P(0) = p and P(1) = 1—p.
The systematic error of the random number generator can be eliminated with the
method as follows. We take consecutive bits by; and by;4; which form a bit pair.
The bits of the binary numbers are selected as follows: '

1. If by; = by;yy, then take the next bit pair and go to 1.

2. If by; # by;11, then take by; as the next bit of the corrected random number
and go to 1.

Using this method we lose about 75% of the bits, but the probability of 0 and 1 is
the same:

p(0) = P(0)P(1) =p(1—p) and  p(1)= P(1)P(0) = (1 —plp -

Problems concerning the true random numbers:
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e They need special hardware.
e It takes a long time to generate them.

e The generators may have systematic errors.

3.2 Pseudorandom Numbers

In the Monte-Carlo method the pseudorandom numbers are used generally. They
should have similar properties as the true random numbers. They are generated with
numerical algorithms, so the series of the pseudorandom numbers are predictable.
Most of the algorithms have the form:

Znt1 = f(2n) - (27)

One has to select the function very carefully. The function shown in Fig. 10a is
obviously wrong. The points whose coordinates are consecutive numbers of the
series

(2:1,2:2), (mSam4)a (-735,3’6)7
are all on the curve of the function and so are not distributed uniformly on the unit
square (0 < z < 1, 0 < y < 1). The curve of the function should cover the unit
square as uniformly as possible (Fig. 10b). The function

y = {gz}, (28)
where g is a big number and the fractional part of z is denoted by {z}. In Fig. 10b
g is equal to 28.

Note: It is better to use simply, but well understood function

3.2.1 J. von Neumann’s Mid-Square Method
The short description of the mid-square method is the following:
1. Take a four-digit fraction, for example: v, = 0.1234.
2. Calculate the square of this number: 42 = 0.01522756.

3. Take the four consecutive digits from the center as a new four-digit
fraction (y; = 0.5227). Go to 1 to continue.

The beginning of the series is shown in Table 1. The series may be wrong if we do
not select the first number carefully (see Table 2).
3.2.2 Multiplicative Congruent Random Number Generator

This random number generator, which is widely spread in Monte-Carlo
calculations is based on the procedure:

Uns1 = (au, + b) mod ¢, (29)

where a, b and c are parameters which one has to select very carefully. The properties
of these random number generators are:
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vo = 0.1234

72 = 0.01522756 7 = 0.5227
42 = 0.27321529 ~, = 0.3215
~2 = 0.10336225 ~s = 0.3362
~2 = 0.11303044 ~4 = 0.3030
~2 = 0.09180900 ~s = 0.1809
2 = 0.03272481 6 = 0.2724
42 = 0.07420176 ~7 = 0.4201
42 = 0.17648401 s = 0.6484
42 = 0.42042256 o = 0.0422

Table 1: J. von Neumann’s Mid-Square Method.

Table 2: Wrong series of the mid-square method.

e They are wide-spread and are tested very carefully.

e The constants a, b and ¢ should be selected very carefully.
e The length of the series is less or equal to c.

e ¢ = 2™, where m is the length of the computer word.

e The case b = 0 is fast and good enough.

e The long period length might be wrong.

3.2.3 Uniform Random Number Generator

The random numbers of different distributions are generated using the random
numbers distributed uniformly on (0,1). In the first step the uniform random
number generator generates random numbers which are distributed uniformly
between 0 and the biggest binary integer number which can be represented in a
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computer word. (If the length of the computer word is 32 bits, then the biggest
integer binary number is 22 — 1.) These integer binary numbers are transformed
into the (0,1) interval. (The calculations are faster if one may use integer random
numbers.)

The random numbers which are generated in the interval (0,2 —1) are repeated
at the least after 2°?2 numbers. The modern random number generators use the
function: :

f(z) = (az + b) mod ¢, (30)
where ¢ = 2!, t is the number of the bits of the computer word and z,, a and b
are integer binary numbers which may be represented in the computer word. Some
possible values are given below:

o The value of the first random number zy may be optional. It is worth trying
zg = 1 to test the algorithm.

e The value of a should satisfy the following conditions:

l.amod8=5.
2. ¢/100 < a < c—+/c.

3. The binary digits of a must not have obvious regularity.

e The constant ¢ should be an odd number which satisfy the condition:

b 1 1
-~ = —=43~0.21132 .
c 2 6\/_
It is worth to note that the least significant bits are not too “random”, so one should

use the most significant bits.

3.3 Quasi Random Numbers

There are many Monte-Carlo calculations whose results are indifferent to the
correlations between the consecutive random numbers. The quasi random numbers
play an important role in the Monte-Carlo integrations. With random numbers,
which are random in the statistical sense, the error of the results is proportional to
1/4/N. Using the quasi random numbers one may have errors which are proportional
to 1/N. There are quasi random numbers where the difference of two consecutive
numbers is constant. The correlation here is obvious, but the distribution of the
numbers is more uniform than that of the true random numbers.

Two quasi random number generators were studied profoundly. These random
number generators are used in the Monte-Carlo integration. One may reach with
them faster convergence than 1/N.

3.3.1 Richtmyer formula

The value of the i-th random number of the j-th generator is calculated with
the formula: ’

Ti; = ZSJ mod 1 y (31)

where S; is the square root of the j-th prim number. So the difference between two
consecutive numbers is S;. This means a strong correlation.
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3.3.2 Van der Corput formula

This procedure takes the integer number of a given numerical system whose
base is b. In the binary system b = 2. Then it reverse the order of the digits and
constructs a fraction puting the decimal point before the number as it is shown in
the Table 3. One may decrease the short range correlations with ‘mixing’ methods.

decimal  binary binary decimal
fraction  fraction

1 0001 0.1000 0.5000
2 0010 0.0100 0.2500
3 0011 0.1100 0.7500
4 0100 0.0010 0.1250
) 0101 0.1010 0.6250
6 0110 0.0110 0.3750
7 0111 0.1110 0.8750
8 1000 0.0001 0.0625

Table 3: Van der Corput formula.

4 'Transformations

To generate the values of random variables there were built a special equipments
at the very beginning of the use of the Monte-Carlo method. To generate the values
of the discrete random variable ¢, whose probability distribution is given by the

table S . :1:
1 2y 3 4
= 32
¢ {0.5,0.25, 0.125,0.125} ’ (32)
one has to build a roulett as it is shown in Fig. 1la. It was find out very soon
that it is enough to generate random numbers distributed uniformly on the interval
(0,1). One may generate random number of any probability distribution using these
uniform random numbers. The methods with calculates the values of a given random
variable ¢ using one or more random numbers distributed uniformly on (0,1) are
called the generation of the random number ¢£.

4.1 General Method

The probability density function f(z) of the random variable { may have any
value from the (a,b) interval. The cumulative distribution function is given by

F(m)z]f(m')d:z:'
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and its inverse function is ¢ = F~(y). The values of the random variable ¢ are
generated with the equation

o= F(u),
where v is a random number distributed uniformly on (0,1). The so generated z
values are distributed according to the f(z) probability density function. The proof
of this and a lot of examples are given in Section 6.

5 Test of Random Numbers

It is not rare that unforseen correlations introduce non-negligible errors in the
Monte-Carlo simulations. A useful test for this is to recompute the same results
with different algorithms for the pseudorandom numbers.

5.1 General Method

1. Take n consecutive random numbers & = (U, Uz, ..., Un)

2. Construct a function of these random numbers.

3. Calculate the value of the function in the case of true random numbers.
4

. Confront the results.

5.2 A Useful Test

Take pairs of random numbers. Suppose they are the rectangular coordinates
(z,y) of points on the zy-plane. Study the distribution of the points on a grid of
quadrats. \

2 = Z (mx 2:U'Ic) , (33)
quadrals Fi
where py is the mathematical expectation value and n; is the number of points in

the k-th quadrat (Fig. 11b).

6 Monte-Carlo Techniques

6.1 Discrete Random Variable
The probability distribution of the discrete random variable ¢ is given by the

table: f o {:vl,mz,...,:vn,...}

P1,P25 -9 Pny +-- .
We devide the (0,1) interval with the n + 1 points, yo = 0, y1 = p1, Y2 = p1 + P2, ..y
Yn = Yoy Pi = 1, into n subintervals. So the length of the :-th subinterval is equal
to p;. We generate a random number u which is distributed uniformly on (0,1). The
probability that the value u is in the (y;_1,¥:) subinterval is given by

Plyisi <u<yi)=pi . (34)

To generate the values of the discrete random variable £ one may follow the following
procedure.
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Generation of Discrete Random Variable

1. Initialize by storing the possible values z; in an array X and storing the
¥i, 1 =1,2,...,n values in an array Y.

70 =0, and

y,-:ij, 1=1,2,...,n.
J=1

2. Generate a random number u and find the smallest y; value which is equal
to or greater than u. Use the fast binary search (see Appendix B).

3. Use the index of the array element y;, determined in the previous step,
to return the z; value of the random variable £. On the next call go to 2.

6.2 Continuous Random Variable

The continuous random variable { may have any value from the (a,b) interval.
Its probability density function is f(z). The cumulative distribution function F(z)
is given by

F(z) = /f(:v')d:z:' .
The cumulative distribution function has the following properties:
F(a)=0, F(b)=1 and F'(z) = f(z) > 0.
So the cumulative distribution function is a monotone increasig function:
F(z1) < F(z2) , if zy<e.

Using the uniform random number generator one may generate the values of the
random variable { with the equation

£
F(©) = [ f(e)de =u, (35)

where u is the value of the random number distributed uniformly on (0,1). Each
F = uline (0 < u < 1) and the F(z) function have only one intersection point (Fig.
12a). The abscissa of this intersection point is one value of the randon variable £.
So the F(z) = u equation has only one solution. Let us take a subinterval (c,d) of
the interval (a,b) so a < ¢ < d < b (Fig. 12b). The values of the function F(z) are
in the interval F(c) < F(z) < F(d) if the values of ¢ are in the (c,d) subinterval
¢ < & < d and vice versa. And so

Ple< € <d)=P(F(c) <u< F(d)).

The random number u is uniform on (0,1), therefore
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P(F(c) < u < F(d)) = F(d) — F(c) = / f(z)dz .

c

Finally from these equations we get

P(c<£<d)=/f(m)dm.

This means that the distribution of the generated values is described by the f(z)
probability density function.

Generation of Continuous Random Variable The random variable ¢ is
continuous and may have any value from the (a,b) interval and its probability
density function f(z) may be integrated analytically. To generate a value of the
random variable one has to solve the equation

13
F(e) = [ fla)dz =,

where u is a random number distributed uniformly on (0,1). The value of £ is given
by

£ =F'(u).
When the (c,d) interval is only a subinterval of the whole (a, b) interval from which
¢ may have its values, then one has to solve the equation

Wc/f(m)d:v = ————)/f(:z:)d:z: =u.

The value of £ is given by
€ = F'(F(c) + (F(d) — F(c))u) .

Linear Interpolation The value u of the uniform random variable may be
transformed into the value of the random variable ¢ with the algorithm described
below. The vector Z has n + 1 elements: zg,z,,2,...,Z,. The value assigned to the
i-th element is given by the solution of the equation

% = jjf(a:')da:' .

Obviously zg is equal to a and z,, is equal to b. To get the next value of the random
variable £ one has to generate the next value of the of the uniform random variable
u and multiply it by n:

T=nu.
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the integer part of r is: i = [r] and the fractional part is A = 7 — [r]. One get the
next value of the random variable z by interpolating between the elements of the
vector Z:

z=uz;+ (Tiy1 — Ti)A .
The accuracy of the interpolation depends on the number of the elements of the
vector Z and on the shape of the probability density function f(z).

6.2.1 J. von Neumann’s Acceptance-Rejection Method

Very commonly an analytic form of F(z) is unknown or too complex to work
with. We suppose that in the (a,b) interval any given value of z the probability
density function f(z) can be computed and the function has an upper limit

flz)< M,

so one may enclose the whole function in a rectangle (Fig. 13a). One may generate
the values of the random variable ¢ which has the probability density function f(z)
with the following algorithm:

1. Generate two random numbers u; and u, distributed uniformly on
(0,1). Calculate the coordinates which are distributed uniformly on the
rectangle:

z=a+(b—a)uy and y= Mu, .

2. If y < f(z), then return ¢ = z, which is distributed according to the f(z)
distribution. If y > f(z), then go to 1.

The generated points Q(z,y) are distributed uniformly on the rectangle. The area
of the rectangle is M(b — a). The probability that the point is below the function
f(z) is given by the ratio of the areas (Fig. 13a):

[ f(z)dz 1

M(b—a) M(b—a)’

The probability that the point is in the subinterval (z1,z2) below the function f(z)
is given by

Ty
J f(z)dz
n
M(b—a)’
The ratio of this value and the value of the all possible values is given by

T2

J f(z)dz 1 <
M®—a) M- a) :I[f(“’)d"’ ’

&

this is the probability to have an event in the subinterval (z,, z,).
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6.2.2 Importance Sampling Method

The random variable ¢ has the probability density function f(z) and may have
any value from the interval (a,b). The function h(z) is uniform or is a normalized
sum of uniform distributions:

/bh(:z:)da: =1,

where the function h(z) may have any value from (a,b). One may generate the
values of £ with the algorithm described below:

1. Generate the abscissa = according to the probability density function h(z)
(see Section 6.2).

2. Calculate the ordinate of the point.
y = Ch(z)u, .

3. Calculate f(z) and test if f(z) < Ch(z)us. If so accept z; if no reject z
and try again (go to 1).

If we regard = and u,Ch(z) as the abscissa and ordinate of a point (Fig. 13b) in
the two-dimensional plot, then we accept the points which fall under f(z). The
efficiency is the ratio of the areas, which is equal to 1/C; therefore we must keep C
as close to 1.0 as possible.

This method is called importance sampling, because we generate more trials of
z in the region where f(z) is most important.

The random variable ¢ has the probability density function g(z). We take a
random variable 7 whose probability density function f(z) is approximated good
with the probability density function g(z). Both the cumulative density function
y = F(z) and the inverse of the cumulative distribution function z = F~'(y)
exist. To generate the values of the random variable ¢ one has to use the following
procedure:

1. Generate one value of z of the random variable 7, with the usual methods,
which has the probability density function f(z).

2. Generate a random number z which is distributed uniformly on the

(0,(g(z)/ f())maz) interval.
3. If z < g(z)/f(z), then use the value & which is distributed according to
g(z). If z > g(z)/ f(z), then reject = and try again (go to 1).

The proof of this method one may find in Section 7.

6.2.3 Two-Dimensional Acceptance-Rejection Method

The two-dimensional random vector variable (¢,7), whose probability density
function is f(z,y), may have any value from the rectangular region (a < z < b, ¢ <
y < d). The maximum value of the probability density function is M:

flz,y) < M, a<z<b and c<y<d.
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One may generate the values of the random vector variable (§,7) whose probability
density function is f(z,y) with the following procedure:

1. Generate three random numbers u;, u; and w3 which are distributed
uniformly on (0,1). Calculate the random values:

z=a+(b—a)u y=c+(d—c)u, and  z= Mus.

2. If z < f(=,y), the return (¢ = z,7 = y), which is distributed according
to the f(z,y). If z > f(z,y), then reject z and y and try again (go to 1).

6.3 Algorithms
6.3.1 TUniform Distribution

The available random number generators sacrifice randomness in favour of speed.
It is not rare that unforseen correlations will introduce non-negligible errors in the
results. A useful test for this is to recompute the same result with different algorithm
for the pseudorandom numbers. To prove the performance of an existing generator
one may use the Bays-Durham algorithm:

1. Initialize by generating and storing N random numbers in an array v,
using the available random number generator. Generate a new random
number u and save it.

2. Use the u as an address j = 1 + [Nu] to select v; as the random number
to be returned. Also save this v; as u for the next call. Replace v; in the
array with a new random number using the available generator. On the
next call, go to 2.

6.3.2 Uniform Distribution on Interval

Generation of uniform random numbers on the (a,b) interval. The probability
density function of the random variable 7, whose distribution is uniform on the (a, b)
interval (see Section 6.3.1), is given by

f(:z:)zb_a, a<z<b.

To generate a value of the random variable one has to use the equation

n
/b_l_ad:c:u,

where u is the uniform random variable on (0,1). Finally the value of 5 is given by

n=a+(b—a)u. (36)
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6.3.3 Uniform Distribution on Square

The coordinates of the Q(z,y) points are independent, so the relation of the
probability density functions is given by

f(z,y) = h(z)g(y) -
The probality density functions are h(z) = 1 and g(y) = 1 and so f(z,y) = 1.

This means that the points Q(z,y) are distributed uniformly on the unit square
(0<z<l, 0<y<1).
6.3.4 Uniform Distribution in Circle

Using the polar coordinates r and ¢, the surface element is given by

dS = rdrdyp .

The point P(z,y) should have distributed in the circle uniformly. The probability
that a uniformly distributed point is on the surface element dS = rdrdy is given by

s __rdrdp
R - 2 ’
[ rdrde Rim
0

f(ryp)dS = f(r,p)rdrdp =

oy

the random variables 7 and ¢ are independent, f(r,¢) = f.(r)fo(¢):

rdrdp  dp 2rdr
R>r 27 R?

To get one value of the random variable ¢, one has to solve the equation

©

1

— | do =

27r/<p'u,,
0

where u is distributed uniformly on (0,1):
p =27Tu .

To generate one value of the random variable r one has to solve the equation

r

2
ﬁ/rdr:u,

0

where u is distributed uniformly on (0,1):
r=vVRu.
The rectangular coordinates of the point are given by
z=rcose and y=rsing. (37)

There are faster algorithms which do not use the square root, sine and cosine
functions
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1. Generate two random numbers u; and u, which are uniformly distributed
on (0,1). Construct the random numbers v; = 24, — 1 and vo = 2us — 1
which are uniformly distributed on (—1,1).

2. Calculate 72 = v? + v and if 72 > 1, then go to 1. If 7* < 1, then the
coordinates of the point are given by

z = Rv, and y = Rv, .

In this algorithm the generated points (u1,u;) are distributed uniformly on a unit
square, so about 21.5% is outside the circle.

6.3.5 Random Direction on Plane

The start point of the unit vector is in the origin of the rectangular coordinate
system. The end point moves on a circle. If the direction is distributed uniformly,
then the end point is distributed uniformly on the circle too. The probability that
the end point is on the arc element ds is given by ds/(27). Let us take the azimuthal
angle ¢ (0 < ¢ < 2w). The arc element is

dp =ds .
The probability density function f(p) is given by
de
dp = — .
f(e) o

One may generate the random angle ¢ uniformly distributed on (0,27) with the
random number u distributed uniformly on (0,1) with the equation:

Y = 27u ,
The components of the unit vector are given by

z=cosp and y=sinp. (38)

6.3.6 Sine and Cosine of Random Angle

On the (0, 27) interval uniformly distributed angle () is generated with a random
number which is distributed uniformly on (0,1) with the equation

a =27u .
The sine (S) and the cosine (C) of the uniformly distributed angle are given by
S =sina é C =cosa. (39)

Faster algorithms do not use the circular function because they are slow procedures:

1. Generate the random numbers u, and u,. They are uniform on (
Then v, = 2u; — 1 is uniform on (—1,1) and v, = u, is uniform on (0,

2. If ¥ = v? + vJ > 1, go to 1. Otherwise the sine (S) and the cosine (C)
of a random angle are given by

0,1).
0,1).

2009 2—5
L g it )

r? r?

S =

The random angle is uniform on (0, 27).
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6.3.7 Random Directions

The start point of the unit vector is in the origin of the rectangular coordinate
system. If the direction of the unit vector is distributed uniformly, then the end
point of the unit vector is distributed uniformly on a spherical surface (r'= 1). the
probability that the end point is in the surface element dS is dS/(47). In the polar
coordinate system the surface element is given by

dS = sinddddyp

where 0 <4 < 7 and 0 < ¢ < 2w. The probability density function of the end point
Q(¥,¢) of the unit vector is given by

dS sinddddp
flp,0)dpdd = — = — —.

Knowing the joint distribution function of ¥ and ¢

sin ¥
iz

f(9,0) =
one can determine easily the probability density function of 4 and ¢:

2% .
sin ¢

£o0) = [ Flo0dp =220 and  fulp) = [ fle, 009 = o .

The equation f(p,?) = f.(p)fs(F?) shows that ¥ and ¢ are independent. We may
see also that ¢ is distributed uniformly on (0,27). To generate ¢ we use the quation

¢ = 2ru
where u is distributed uniformly on (0,1). To generate # we use the equation

9
1
—/sinzdz:u,
2

0

where u is distributed uniformly on (0,1). From the equation ¥ is given by
cos?=1-—2u and

¥ = arccos(1 — 2u) .

The components of the unit vector are given by

z = sin ¥ cos o, y = sin?sinp and z=cosd. (40)

6.3.8 Binomial Distribution

The random variable k, which is distributed according to the binomial
distribution (see Section 2.3.3), one may generate with the following algorithm:
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1. Construct an array B whose elements are

Bii1 =Y f(k;in,p) ,
k=0
where:
n -
sthimp) = ()t
The relation of two consecutive elements is given by
f(Oin,p) =(1-p)"  and

f(k+ 13m,p) = F(k;m,p)e— k_»

E+11—p°
2. Generate a random number u which is distributed uniformly on (0,1).

3. Search for the subinterval
B; <u < By

and return the k¥ = 7 — 1 value which is distributed according to the
binomial distribution. On the next call go to 2.

One may organize the algorithm in such a way that the elements of the array B
are calculated only if they are needed.
6.3.9 Poisson Distribution

The random variable n, which is distributed according to the Poisson distribution
(see Section 2.3.4), one may generate with the following algorithm:

1. Generate a random number u which is distributed uniformly on (0,1).
2. Search for the subinterval

Pi<u< Py,
If necessary, fill the array P up to the index ¢+ 1 with the corresponding
values
PO == 0 3
Py = Z f(k;/") )
k=0
where: ,
) . #ne— 5]

The relation of two consecutive elements is given by

f(Op) =€ and
7
1;4) = f(n; :
f(n+1ip) = f(nip)——
Return the n = 7 — 1 value which is distributed according to the Poisson
distribution. On the next call go to 2.
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In this algorithm the elements of the array P are calculated only if they are
needed.

6.3.10 Exponential Distribution

To generate the value z of the random variable £, which is distributed according
to the exponential distribution (see Section 2.3.5) one may use the equation

x

//\e"\”dy =u,

0

where u is a random number distributed uniformly on (0,1). The value of £ is given

by
1

z=——Inu.

A

The distribution of © and 1 — u are the same.

Examples of Exponential Distributions

1. The decay time t of a radioactive atom is given by
t = —7ln(u),
where 7 is the expectation value of the decay time. The random numbers

u and 1 — u have the same probability density function.

2. The distance made by a decaying particle, whose momentum is p and
decay time is 7, may be generated with the equations:

l=tv= tL and
mo

l= —lln(u) .

myg

3. The decay time t of a radioactive particle in the subinterval (a,b) of the
whole (0, 00) interval one may generate with the equations

1t L
s le
_ a
u=— R
l —_
cJer
a
_tt _a _ b
—e f] =[er—er]u and so
a
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6.3.11 Gamma Distribution

The &,,§5, ..., &, independent random variables are distributed according to the
same exponential distribution whose parameter is A. The random variable

"7=i:§i

is distributed according to the gamma distribution with n degrees of freedom (see

Section 2.3.6).

e If n = 1, then the distribution is an exponential one (see Section 6.3.10).

e If n is a small integer, repeat the n = 1 case n times and add the results.

6.3.12 Gaussian Distribution

Take the two-dimensional Gaussian distribution, whose parameters are p = 0
and o = 1. The probability on the area element dS = rdrdyp is given by

&l
~fi

-1
e

e 5
ds =
27 5 27

e

f(r,p)dS = rdrdyp .

The two random variables » and ¢ are independent so

flr9) = £(Mfulp) = 5o %

The value of the random variable r is generated from a uniform random number u

as follows:

r
_2 _2qr _r2
u= | re 2dr=[—e 2]0=—e 7 +1
0

r=+v—2lnu, because u=1—u.

The value of the random variable ¢ is generated from a uniform random number u
as follows:

©
1
uz—/dcpzi from this p = 2ru .
0
The two normal random number in the rectangular coordinate system are given by
T =T7cosep and y=rsing .

There are many faster variants of this basic algorithm. One of them is described
here.

1. Generate random numbers u; and u,. They are uniform on (0,1). Then
v; = 2u; — 1 and v, = 2u, — 1 are uniform on (—1,1).
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2. If r* = v¥ + v2 > 1 go to 1. Otherwise calculate

—2inr? —2Inr?
5 and 2o = Uy

21 =0
T r?
which are independent random numbers from a normal distribution with

expectation value 0 and variance 1.

The random variable v is distributed according to the N(0,1) Gaussian
distribution. We prove that the random variable = p+ oy is distributed according
to a Gaussian distributions whose parameters are E(n) = p and D*(n) = o*. The
probability density function of v is given by

1 2
z) = e
f2) = 7=

>
The probability that v is in the (21, z,) interval is given by

1 F oz
Pz, <7 < z,) =ﬁ/6_7d$ .
T

Now we express v with 7:

[
P <7< =P < < T .
((Dl Y 122) (121 - 12‘_)
For the random variable 7:
Ut A _ L f.=
P(:c1 < > <:z:2) —P(,u+a:10<17<,u,+:cga) = e” Tdz .
T

Now we introduce the new variable y = 4 + zo and so
1 v .,
P <n< = /e—%d .
(1 <7 < ¥2) o Y

n

Gaussian Distribution with Center Limit Theorem Theindepenent random

variables ¢, {2, ..., &, are uniform on (0,1). The mathematical expectation values and
the variances are given by
1
E(&l) = E(Eg) = ... = E(&n) = 5 and
y 2 DY 1
Dz(al) = D‘(fg) = ... = D-(an) = ”]3 .

The mathematical expectation value and the variance of the sum of these random

variables 7, = &, + &2 + ... + £, are given by
n

E(n,) = 5 and
D(n,) = — .
(m) = 75
The random variable
N, —nm

1= 0'\/7_1,
has and N(0,1) distribution, if n is a big number. Even in case n = 12, in good
approximation, one has Gaussian distribution.

tQ
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6.3.13 x? Distribution

The z), 22, ..., 2, random variables are distributed according to N(0,1) Gaussian
distribution. The random variable

X'=>z
1=1
is distributed according to the x*(np), where np = n is the number of degrees of

freedom. A faster algorithm is given below:

e For np even, generate np/2 uniform numbers u;; then

np/2

Y= —2ln( 1I u,-) is  x*(np) .

1=1

¢ For odd np, generate (np—1)/2 uniform random numbers u; and one Gaussian
z (see Section 6.3.12); then

(np-1)/2
y = —21n( H u;) + 2? is x*(np) -
=1
6.3.14 Student’s ¢t Distribution

The &,¢&s,...,&, and € are independent Gaussian distributed random variables
with expectation value 4 = 0 and variance 0? = 1. We construct the random

variables

z=)Y & and
=1

The variable z belongs to a x?(n) distribution. The random variable ¢ is distributed
according to the Student’s ¢ distribution with n degrees of freedom.

For np > 0 degrees of freedom (np not necessarily integer):

1. Generate z from a Gaussian distribution with expectation value p = 0
and variance 02 = 1 according to the method described in Section 6.3.12.

2. Next generate z, obeying x*(np) as it is described in Section 6.3.11.
3. Then t = zy/np/z is distributed as a Student’s ¢t with np degrees of

freedom.

For special case n = 1, the Breit-Wigner distribution:

1. Generate random numbers uniformly distributed on (0,1) u; and wu..
Calculate v; = 2u; — 1 and vy = 2uy — 1 which are distributed uniformly

on (—1,1).
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2. If v24+v2 < 1 accept z = v; /v, as a random number distributed according
to a Breit-Wigner distribution with unit area, center at 0.0 and FWHM
2.0. Otherwise go to 1.

For center My and FWHM I' use W = M, + 2T'/2.

7 Monte-Carlo Integration

Let us consider a function f(z). The values of the independent variable are from
the (a,b) interval. We want to calculate the integral

I =/bf(:v)d:c .

Let us chose a random variable ¢ whose probability density function is p(z). The
random variable ¢ may have any value from the (a,b) interval. Let us calculate the
random variable 7 which is given by

1= f(z)/p(z) -
The mathematical expectation value of 7 is given by

E(n) = [[f()/p(e)lp(e)dz =1 . (41)

Let us take N independent values z1, z,, ...,z of the random variable 7. According
to the center limit theorem (see Section 2.4):

13 D*(n)
Py 2= 1) <3/ 2 ~ 0.997 .
The error of the estimation is sensitive to the selected random variable:
b
D(n) = M(r*) = I* = [[f*(a)/p(=)lds — 1*

One may show that the error has minimum when p(z) is proportional to |f(z)]|.
Of course, if we chose a complicated p(z) probability density function, then the
calculations take a lot of time.

In one dimension there are more efficient numerical methods, but in several
dimensions in many cases the Monte-Carlo method is the most usual one.

7.1 Crude Monte-Carlo

The estimated value of the integral is given by the mathematical expectation
value of the random variable = f(z)/p(z):

b 1 N
a/ fle)e 5 3o
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In the most simple case we may chose a uniform probability density function:

p(m):{(l)/,(b_a)’ ifa<z<b; .

otherwise.

In this case )
OGS SFE

1=1

7.2 Acceptance-Rejection Method

We suppose that in the (a,b) interval any given value of ¢ the function f(z) can
be computed and the function has an upper limit

fl) <M,

so one may enclose the function in a rectangle. One may generate points Q(z,y),
which are distributed uniformly on the rectangle with the following algorithm (Fig.
14a):

1. Generate two random numbers u; and u, distributed uniformly on
(0,1). Calculate the coordinates which are distributed uniformly on the
rectangle:

x :a,+(b—a)u1 and
y= Mu, .

2. If y < f(z), then it is a ‘fortunate’ event.

Repeat these procedure N times. The area of the rectangle is M (b — a). The ratio
of the area below the function f(z) and the whole area M (b — a) is approximately
the ratio of the ‘fortunate’ events k and whole number N of the events:

l{bf(:c)d:z: k
M(b—a) N

and so

f k
/f(:c)da: ~M(b-a).

a

7.3 Control Variate Monte-Carlo

The f(z) function is constructed as the sum of two functions (Fig. 14b):

I= /bf(:z:)d:v = /bG(:z:)d:c -}—/b(f(:z:) — G(z))dz . (42)

The integral of the first function G(z) is known and the error of the other function
(f(z) — G()) is less than the error of the original function f(z).
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Figure 14: Control Variate Monte-Carlo




7.4 Stratisfied Sampling

There are cases where it is useful to divide into subintervals the whole (a,b)
interval. The errors of the subitervals are less than the error of the whole interval
(Figs. 15a and 15b):

/bf(:v)d:v :jf(:l:)d:z:—{—if(z)d:v . (43)

7.5 Antithetic Variate

In order to reduce the error, one may construct more uniform function, if the
original one has symmetry property as it is show in Figs. 16a and 16b.

8 Simulation Examples

8.1 Radioactive Decay

There are N, radioactive atoms at time . The number of decayed atoms dN
during the interval (¢,t+dt) is directly proportional to the number of the radioactive
atoms N, at time ¢t and the length of the interval dt:

dN = —AN,dt .

The minus sign is because the number of radioactive atoms decreases. The constant
A depends on the properties of the radioactive atom. Due to the experiments the
constant A is independent of any physical or chemical effect. Its dimension is s~'.
If at time ¢ = 0 the number of radioactive atoms is Ny, then at time ¢ the number
of radioactive atoms is

N, = Nge~ ™ .

The number of radioactive atoms decreases according to a negative exponential law.
The half life time T of the radioactive atoms is given by

NO AT

Y = Nge and so
In2 0.69315
T = = 3 .
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Monte-Carlo Integration
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The number of atoms which decay between ¢ and ¢ + dt is given by
AN dt = ANye ™dt .

The sum of the life times is

No

Ty = / EANoe™dt = 5
0

The mean life time 7 of the radioactive atoms is given by

The probability that the radioactive atom decays in the interval (¢,¢ + dt) is given
by
1 .
f(t)dt = —e"7dt .
T

The exponential distribution is shown in Fig. 5. The values of a random variable ¢,
which has exponential distribution, may be generated with the equation

_lt—ﬁdt_[ 4] = et 41
u_TO/e =|-e"],= ¢ +1,

where u is a uniform random number on (0,1). The value of the random variable ¢
is given by .
t=—7In(u). (44)

The random numbers v and 1 — u have the same probability density function.

8.2 Propagation of Neutrons

Neutrons are launched with E energy against h thick homogeneous plate. The
neutron interact with the atoms of the plate. For simplicity we suppose that the
energy of the neutron does not change in the interactions and it is scattered in each
direction with the same probability. (The last assumption is true if the plate consists
from heavy atoms.) In Fig. 17 there are shown the three different events with may
happen to the neutrons:

e a) The neutron goes through the plate (Fig. 17a).
e b) The neutron is absorbed in the plate (Fig. 17b).

e c) The neutron is reflected back by the plate (Fig. 17c).

We want to determine the probabilities of the transmission (p,), the absorption
(p.) and the reflection (p,). The interactions of the neutron in the medium are
characterized by two constants which are called the crossection of the capture (o)
and the crossection of the scattering (o,). The total crossection is given by

oc=o.+o0,. (45)
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Examples
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Figure 17: Propagation of Neutrons




1. Type of interaction. In each encounter the probability of scattering is
o,/o and that of capture is o./o. One has generate a random number u
distributed uniformly on (0,1). If u < 0./0, then the neutron is captured,
else it is scattered.

2. Path length. The probability density distribution of the path length A is
given by
f(A) = oe™* .

The mean free path length is

T 1
E(\) = / Aoe™" A = = (46)
) o
The value of A is generated with the equation (see Section 6.3.10)
A
/:z:a'e'”d:c =u,
0
where u is a random number on (0,1) and so
1
A=——Iu. (47)
o

3. Fly direction. The cosine of the angle ¥ between the fly direction and the
z-axis, in the case of isotrop scattering (see Section 6.3.7), is uniformly
distributed on (—1,1):

cos¥ =2u—1,

where u is a random number distributed uniformly on (0,1). The
projection of the path length A on the z-axis is given by
p=Acosd

(see Fig. 17d). The abscissa of the neutron position in the n-th
interaction is given by

Tp, = Tp-1 + Acos?, .

— z, < 0, then it is reflected back.
— @, > h, then it crosses the plate.

— 0 < 2, < h, then the neutron is in the plate. One should generate the
next interaction (go to 1).

One simulates N neutrons and counts the neutrons which are reflected N,, captured
N, or go through the plate N;. The probabilities are given by

N, N, N,

and

prNW) chW pt""ﬁ (48)
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8.3 Simulation of K2 — y*u~ Decay

Different decay modes of the Kaons were studied with the BIS spectrometer
which is shown in Fig. 18. The spectrometer, which was one of the first electronic
detectors at the Serpukhov accelerator, is a wire chamber spectrometer. It consists
of 18 wire chambers (at the beginning spark chambers, later multiwire proportional
counters). Each wire chamber measures the  and y coordinates of the traversing
charged particles. The charged particles are deflected by the magnet M, so one
may determine their momentum. The different decay modes are selected by the Ap,
Ar and A anticounters and by the Fy, Fy, G; and G, scintillator hodoscopes. The
electrons and the muons are identified by means of the electron detector eD and the
muon detector pD.

The main steps of the simulation of the K2 — p*p~ decay are explained below.

1. Birth point p; of the K3 in the target. The coordinates of the birth point
are given by .

z, = Ly(2u, — 1.), ¥ = L,(2us — 1.) and z, = —970. ,

where 4, and u, are uniform random numbers (see Section 6.3.1). The L,
and L, are the extensions of the tharget in the z and y directions. The
z-coordinate of the target is —970. cm in the spectrometer’s coordinate
system. The thickness of the target is negligible.

2. Absolute value of the momentum |pk| of the K2 meson is generated by:
Pk | = 15. + 40.u (49)

where u is a uniform random number. The absolute value |pi| of the
momentum is generated uniformly between 15 GeV/c and 55 GeV/c (see
Section 6.3.1).

3. The fly direction of the K2 meson (see Section 6.3.7) is given by

p =21y ,
¥ = 006’&2 y
v, = sindcosyp , v, =sin¥dsing and v, =cos?d . (50)

The z-axis of the spectrometer coincides with the z-axis of the coordinate
system. The maximum value of ¥ is limited by the acceptance of the
detector.

4. Fly distance d of the K2 to its decay point. The mean life time of the
K2 meson is 7 = 0.8922 x 107'° s in the Center of Mass System (CM
System). In the Laboratory System (L System) the mean life time is
given by

T =T, (51)
where v = EX/m®™ and E? = p? + m? (the speed of light is ¢ = 1).
E? ~ p? because m? << p®. The mean fly distance is given by

A~ CTy, (52)
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because the K2 meson flys nearly with the speed of light. So the fly
distance of the K meson is given by

d=—Aln(l. — (1. — e "/ *)u) . (53)

The fly distance is generated from 0 to one mean fly distance (see
Section 6.3.10). The space vector of the decay point is given by

Ba=pi+di. (54)

. Decay of the K2 meson in the CM System. The mass of p~ is equal to
the mass of u*. Due to the momentum conservation the absolute value
of the momentum of p~ is equal to the absolute value of the momentum
of pt:

|p, CA[I Ip;ﬂ'l\ll (55)

From the energy conservation we have
1
CcM CM mEM .
E;” =E; =omKy - (56)
The sum of momenta in the CM System is zero, so
I;;‘Cl\l _5,421” . (57)

The absolute value of the momentum of the muons is given by

|7 CM| —oCMl_\[EcM EM)z

The decay products (= and p*) are emitted isotropically in the CM
System (see Section 6.3.7):

p = 2wy, ,
cos?¥ = 2uy — 1.,
vy = sindcosp , v, =sindsing and v, =cos?. (58)

The momentum of the muons in the CM System are given by

—OCI\[ = CAf

~CM |P CMIU and 5.8 -3¢

Ppu-

. The transformation of momentum of the muons into the L System. The
Lorentz transformation is given by

E L ~ _713 0 E CAM
ptl=1-8 v of|p"™|, (59)
plL 0 0 1 pLCl\I

where y = EX/m®M and 48 = |p*|/m®M . The CM System of the muons
is moving with the velocity of the K2 meson and so

Eg |pk|
7 mﬁ“ an 78 mg}\[ ) ( )
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where (EE)? = (pk)? + (mk)? (the units are A = ¢ = 1). The parallel
components of the muon g (g~ or pt) is:

CM _ IS;ACA/IﬁI(L
Plw = 7158
Ppgoost = (7 — l)pﬁ”g + ’)’,BEEM and finally
L CM ﬁKL
Py = Dy +PBoost |ﬁKLI . (61)

7. The charged particles are deflected by the Lorentz force in the magnet
M. The Lorentz force is given by

F=g(#xB). (62)

8. Intersection point of the trajectory of a charged particle and a wire
chamber. The trajectory of the charged particle is given by the straight
line

T =7 +1tv, (63)
where 75 is a point on the staight line and v is the fly direction of
the particle along the line. The intersection point is determined by the
equation:

(r—qu=0, (64)
where ¢'is a point on the chamber’s plane and % is the unit normal vector
of the chamber’s plane.

In Fig. 19 one may see a simulated event. Analysing the simulated events one may
determine the acceptance of the detector, etc.

8.4 Quality of Equipments

Let us consider an equipment which consists of several component parts.
The quality of the equipment is described with a function which depends on the
parameters of the component parts. For example an electronic equipment contains
resistors, capacitors etc. It is described by a function which depends on the
parameters of the resistors, capacitors etc. For example this function f may be
the voltage U measured at a given point of the equipment:

U - f(R],RQ,...,C],CQ,...) . (65)

The real value of the resistor, capacitor etc. is in an interval around the nominal
value. There are cases in which one may calculate the extreme values of U using
the extreme values of the parameters. In complicated cases these calculations are
not simple and on the other hand the probability is small that each parameter has
extreme value. If we study a lot of component parts, then we may determine the
distribution of each parameter and its mean value. So it seems more resonable to
calculate with the mean values:

E(U) = f(E(R:), E(Ry), .., E(C1), E(C)), ...) . (66)
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In most of the cases it is difficult to give the analytical form of the function f. One
may use the Monte-Carlo method in this case too. Knowing the distribution of the
parameters one may generate the parameter values. With the generated parameter
values one may calculate the mean value and the standard deviation:

1 N
E(U) ~ N > U; and
i=1

1 N

DXU) ~ 5— (Ui — E(U)) = ﬁ(;wﬁ - %(Z v)’)

=1

8.5 Reliability of Equipments

We would like to estimate the life time of an equipment. Let us suppose that we
know the probability of the break down of each component part. The break down
of one component part means the breakdown of the whole equipment. In case of
four components the life time of the equipment is given by

t= min(tl,tz,tg,tq) . (67)

If we duplicate one component part, then in the case of the break down of one of
the two parts the whole equipment does not break down. There are five component
parts in the equipment. The third and the fourth may substitute each other. In this
case the life time of the equipment is given by

t = min(tl,tg,max(t;;,t‘,),ts) . : (68)

One may generate the time values of the component parts with Monte-Carlo method
and calculate the life time of the equipment. Repeating N times the calculations
one may calculate the mean life time and the standard deviation

E(t) ~ Nzti and

One may develop the method taking into account that the whole equipment break
down only if some combinations of the component parts do break down and so on.
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Appendices

Appendix A: Gamma Function
The gamma function I'(p) is defined for p > 0 with the integral:

I'(p) = /wp_le_zdm .
0

The properties of the gamma function are

Irl) = /e_zdw =1.
0

1 oo_l._l —z oo]' —z oo—u2
I‘(—2-)=0/:z:2 e dmzofﬁe d:c=20/e du = /7 .

I'(p+1)= /:c”e_’d:c = [—m”e_r];o + p/mp_le_rdm = pI'(p) .
0 0

o In the case of positive integer numbers

I(n+1)=n!.

Appendix B: Binary Search

There are n values z,Zs,...,z,. To find the value of these n values which is the
closest to a given z in average one has to make n/2 comparisons in the sequential
search. With the binary search one has to make only 1 + [log, n] comparisons. In
the case of 512 elements the numbers are 256 and 9 respectively. In the binary
search one has to arrange the n values into increasing order. One may find the
serial number of the smallest element which is greater than a given value z with the
algorithm as follows:

I=1landJ=n+1.
K=[(I+J)/?].

Ifz < zx ,then J = K and go to 5.
IF £z > z)x , then I = K and go to 5.
IfJ>TI+1,then goto 2.

The serial number of the smallest element, which is greater than or equal
to z, is in the variable I.

I
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Appendix C: The Function URAND

Here is presented a uniform random number generator. The program is written
in FORTRAN, so it is rather independent of the computers. The URAND (Universal
RANDom number generator or Uniform RANDom number generator) uses the
formula described in Section 3.2.3. The parameter IY of the function URAND
may be optional integer number at the first call. One must not change its value
further on. The values of the constants of the multiplicative congruent method (a,

b and c) are calculated at the first call.

RO NONONONS!
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REAL FUNCTION URAND(IY)
INTEGER IY

The function URAND generates uniform random numbers
on the (0,1) interval. The value of the variable I'Y
determines the first value of the generator. In the
successive call the value of IY must not change.

INTEGER IA,IC,ITWO,M2,M,MIC
DOUBLE PRECISION HALFM

REAL S

DOUBLE PRECISION DATAN,DSQRT
DATA M2/0/ITWO/2/

IF (M2.NE.0) GO TO 20

The length of the computer word (Integer number).

M=1

M2=M

M=ITWO*M2

IF (M.GT.M2) GO TO 10
HALFM=M2

The coefficient and the constant of the linear congruent method.
IA=8*IDINT(HALFM*DATAN(1.D0)/8.D0)+5
IC=2*IDINT(HALFM*(0.5D0-DSQRT(3.D0)/6.D0))+1
MIC=(M2-IC)+M2

S is the coefficient of the floating point transformation.
S=0.5D0/HALFM

The next random number

IY=IY*IA
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These instructions are needed for the computers where the
overflow is not allowed for integer numbers.

IF (IY.GT.MIC) IY=(IY-M2)-M2
IY=IY+IC

These instructions are needed for the computers whose word
length is longer in the case of addition than in the case
of multiplication.

IF (IY/2.GT.M2) IY=(IY-M2)-M2

These instruction are for computers where the overflow
changes the sign.

IF (IY.LT.0) IY=(IY+M2)+M2
URAND=FLOAT(IY)*S
RETURN

END
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