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ABSTRACT: The families of narrow resonances of the J/¥ and T spectroscopies are
commonly assumed to be bound states of heavy quark—-antiquark pairs (and these heavy
“quarkonia” play in a sense the role of basic ‘atoms’ of strong interaction physics). The
problem of quantitative spectroscopy is, however, handicapped by the lack of a correct
inter—quark potential derivable from fundamental principles. We have recently put for-
ward a unified theoretical approach to strong and gravitational interactions based on the
idea that our (gravitational) cosmos and (strongly interacting) hadrons —both considered
as finite objects— can be systems internally governed by similar laws, differing only for
the scale factor p which can carry the gravitational into the strong field. Within this
framework, a quark—quark(antiquark) potential has been derived, which is used in this
paper to predict the energy levels of the ground state and first few excited states of the
Charmonium (J/¥) and Bottomonium (T) spectroscopies.

Using computer search for optimum parameters in the model, we compare the the-
oretical level spectra for the first few radial s states with the experimental values.

We take advantage of the present opportunity, moreover, to make known (both in
the text, and in Appendix A) some other, related results obtained by two of us on a purely
geometrical ground.

At last we mention possible applications of our theoretical approach to the fireball
phenomenology (Centauro events, etc.).
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1. - INTRODUCTION

The enormous range of hadronic mass spectra from a few MeV to several GeV and
the multiplicity of observed hadrons in strong contrast to that of leptons, as well as the
lack of a unique potential source for the dynamics of the constituents —e.g., quarks,—
indicate the possibly complex nature of the strong interaction force involved, as compared
to that of ordinary matter which is so well explained by quantum electrodynamics (QED).
The successful candidate theory of strong interactions is the so-called QCD —quantum
chromodynamics,— according to which the hadronic masses correspond grosso modo to
bound states of quarks and/or anti-quarks, moving under the influence of a potential due
to colour forces; and the decay properties of these bound states are described by the usual
rules of quantum mechanical transition probabilities. The formalism of QCD allows a
set #1 of coloured charged quarks! (Fig. 1), together with eight massless exchange parti-
cles called gluons which are themselves colour charged.

This colour force complicates the simple Coulomb-like potential of QED and further
gives rise to a running coupling constant in oppositive behaviour to that found in QED.
Both these aspects are encapsulated in the two basic characteristics of QCD —namely,
confinement and asymptotic freedom. Although great success has been achieved under
this framework by using heuristic potential models for heavy “quarkonia” —such as J/¥
and T for 0.1 < r < 1 fm—, as well as for light quarkonia with relativistic corrections
—such as systems composed of the u,d,s quarks and anti-quarks for » X 1 fm—, so far
no knowledge of the effective potential has been obtained from fundamental principles
and this restricts the credibility of the models when attempts are made to calculate the
energies of ground and higher excited states, life-times, branching ratious, etc.

The quark masses assumed vary rather widely with typical mass values of Mg apm ~
1.5 GeV/c? and mpottom = 5.0 GeV/c2. The potential forms chosen are not unique and
the interpolation between short & long distance behaviour involving free parameters is at
best ambiguous. Even in the region of distances corresponding to the ground state sizes
of charmonia and bottomonia, all common potentials have the same radial dependence,
thus making it difficult to choose between them.

We have recently proposed a fundamental geometric approach? involving the unifi-
cation of gravitational and strong interactions® that allows one, in a natural way, to in-
corporate the non-abelian gauge characteristics of QCD —confinement at large distances
as well as asymptotic freedom at short distances— within the framework of a theoretical
model.* We have made preliminary investigation into the mass-spectra of heavy quarkonia
such as J/¥ and T with reasonable sucess.® We refer here to a more detailed calculation

#1 By considering quarks to be the real carriers of the strong charge (cf. Fig. 1), we can call “colour”
the sign sj of such strong charge. Namely, we can regard hadrons as endowed with a zero total strc?ng
charge, each quark possessing the strong charge g = sjlgj| with Ls; = 0. Therefore3 when passing
from ordinary gravity to “strong gravity”, we shall replace m by g = ng., quantity go being the average
magnitude of the constituent quark rest-strong-charge, and n their number.
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Fig. 1 — “Coloured” quarks and their strong charge — This scheme represents the complex plane!
of the sign s of the quark strong-charges gj in a hadron. These strong charges can have three signs,
instead of two as in the case of the ordinary electric charge e. They can be represented, e.g., by
s1 = (i—v/3)/2; s2 = (i+/3)/2; s3 = —i, which correspond to the arrows angularly separated by
120°. The corresponding anti-quarks will be endowed with strong charges carrying the complex
conjugate signs 3, 52, 53. The three quarks are represented by the “yellow” (Y), “red” (R)
and “blue” (B) circles; the three anti-quarks by the “violet” (V), “green” (G) and “orange” (O)
circles. The latter colours are complementary to the correspondind former ones. Since in the
real particles the inter-quark forces are saturated, hadrons are white. The white colour can be
obtained either with three-quark structures, by the combinations YRB or VGO (as it happens in
baryons and antibaryons, respectively), or with two-quark structures, by the combinations YV or
RG or BO [which are actually quark-antiquark combinations], as it happens in mesons and their
antiparticles. See also footnote #1.

of these levels using computer search for optimum parameters in the model, whose results
are presented below.



2. — THE MODEL: In the Surroundings of a Hadron

Hadron structure and strong interactions are described by using the classical meth-
ods of General Relativity (GR) and by assuming (in the manner of Riemann, Clifford, and
even Einstein®) that the appearance of the matter particles is due to a strong local curva-
ture of space-time. Let us first recall that empirical observation shows? that the ratio R/r
between the radius (R ~ 10%®m) of our cosmos and a typical hadron radius (r ~1071%m)
roughly equals the ratio between the strengths of the strong and gravitational field, the
ratio p being of the order of 1041,

In our geometrical approach, the strong field surrounding a hadron is described
by a tensorial field s,, to be “added” to the usual gravitational field e,,. Hadrons are
attributed a “strong mass” (or “strong charge”, g) which directly deforms the space-time
in analogy to the gravitational mass (or “gravitational charge”, m) but via the ‘strong
universal constant’ N = pG = hc/m2, where G is the ordinary gravitational universal
constant. Our new field equations

8« 1
Ruv + Aspy = vy [S;w - §guu5,’,’] A NT,.] (1)

reduce to the usual Einstein equations far from the source-hadron, since they imply the
strong—field to exist only in the hadron neighbourhood: so that (in suitable coordinates)
Suy — Ny for 7 >> 1 fm. In eqs.(1) it is A = p%A, quantity A being the ordinary
(gravitational) cosmological constant. For instance, for r > 1fm, when our field equations
can be linearized, the total metric g,, can be simply assumed to be the sum of the two
metric fields; or, rather, 2g,, = e,, + 5, ~ 9, +5,,. Quantity s,, may then be written
as Suy = Nuy + 2hyy, with |h,,| << 1; so that, finally, g.. ~ 7, + k... Eqgs.(1), let us
repeat, do imply that h,, — 0 for r >> 1fm. More precisely, in this case we get, at the
static limit, that V = koo = (S0 — 1)/2 = goo — 1 is just the Yukawa potential #2

_exp[—/2[A]r] .9 —MgTC
V=—g . ~ ——exp[——],
with the correct (within a factor 2) coefficient also in the exponential.?
The source-hadron can be regarded as an axially symmetric distribution of strong

charge g: studying the metric around it leads us to deal with a problem of the Kerr-
Newmann-deSitter (KNdS) type, and look for “strong black-hole”-type solutions. One

#2 We have considered A > 0; in the case of negative A (see the following), we ought® to have set

Suv = NMuv — thw



finds that hadrons apparently can be associated with such strong black-holes (SBH), which
result to possess radii rs ~ 1 fm. For r — rg, we can adopt the approximation “opposite”
to the linear one, putting g,, ~ s,,, so that eq.(1) becomes

87 1
Ruu + /\guu = _6_4 [Suu - §guusg] . (2)

Following recent work by two of us, let us consider, e.g., the case A > 0. In general one
meets three horizons, i.e. three values of rs. If we are interested in the hadrons stable
w.r.t [with respect to] the strong interaction, we have to impose the SBH Temperature®5*
(i.e., the surface field) to be vanishingly small. This requirement implies the coincidence
of two, or more, of the strong horizons; and such a condition yields*®*° some “Regge-type”
relations among m, A, N, ¢ and J, where m, g, J are mass, electric charge and intrinsic an-
gular momentum —respectively— of the considered hadron. Namely, once chosen g, J, A
and N, the present approach determines mass and radius of the corresponding stable
hadron. Our theory is therefore a rare example of a formalism that —a priori, at least—
allows finding out the stable particle [and even quark] masses. Further, interesting work
in this direction has been performed by E.R. and V.T.Z.,%° but it will be reported else-
where. Here (Appendix A) we shall only mention a few results which refer to the strong
coupling—constant.

Let us finally recall that a preliminary version of this theory was applied in ref.1° to
the fireball phenomenology (Centauro events, etc.): cf. Appendix B.

3. — THE MODEL: Inside a Hadron

When turning our attention to the interior of a hadron, eq.(2) will still hold; which
can be rewritten as

1 8w N
R, - §guuRz - Ay = _c_‘lTﬂl’ i [N = S (3)

In other words, inside a hadron the ordinary Einstein equations (with cosmological term)
will be valid, provided they are correctly scaled down. Namely, S, = NT,, is now
the strong-mass tensor, so as GT,, was the ordinary-mass tensor; and A is the “strong
cosmological constant” (or "hadronic constant”). The interior of a hadron, therefore, is
regarded by us as a micro-universe,® in which the strong field dominates, instead of the
gravitational field. Let us consider eq.(3) in the simple case of a spherically symmetric
field created by a strong charge ¢’ (which may for example be identified with a quark); it
then admits a well-known Schwarzchild-deSitter—type solution, which in our case can be
written as

2Ng'
c?r

2 ! 2
+ ’\T")dt2 ~(1- ng + AT 1402 0240 4 sin?0de?) . (4)

2— —_
ds® = (1 3




Confining ourselves to the radial motion of a test—constituent of strong charge ¢” in the
field of the source~charge g’, described by the metric (4), we get the geodesic equation (in
vacuum), in the usual Schwarzshild-deSitter coordinates ¢,r, as:

d?r 1 2Ng 2Ng 2/\
- I ATy 0,0
1oz T, u'u 3 Ju'u
2Ng’ 2Ng 1,1
—(1- AL S 27
( c2 ) 3 )u u
’ 2
2Ng )u +27‘szn20 (1- 2Ng /\3 Yudu® (5)
At the static limit [v << 1], eq.(5) writes
d?r 1, 2Ng 2Ng  2Xr
a2 T T2 (- c27'2 )( c?r? T)T ' (6)

Even in General Relativity, with some caution, a language can be introduced in
terms of “forces” and “potentials”; for instance by defining#® F = ¢”d%r/dt2. For
“intermediate distances” —i.e., at the newtonian limit— eq.(6) simplifies, yielding the
force F ~ —1c2g”(2Ng'/c?r? + 2)r/3), which is merely the sum of a newtonian and an
elastic (d la Hooke) term. In this limit, incidentally, the last expression holds even when
the test—constituent g” is not endowed with a small strong mass, but is on the contrary
a second quark. In general, our equations have an approzimate validity when g¢” too is a
quark; nevertheless, they correctly describe some important characteristics of the hadron
constituent behaviour, for both small and large values of r.

For large values of # [r X 1 fm], when referring to the simplest hadrons, one
obtains a (confining) radial force proportional to r:

Fr—g"c?Ar/3 «x -7 ; (7
so that the (confining) potential results to be V o r2. This is reminiscent of a har-
monic oscillator potential, which is well known to bind the constituents of a system to
prescribed boundaries so that they are never “ionized”, possibly explaining the so-called
confinement: the non-observance of such constituentes —i.e., quarks and gluons— in ex-
perimental searches. Moreover, since the motion of g” can be approximately regarded
as harmonic, our approach can easily incorporate the interesting results got by various,
different authors (e.g., in connection with the hadron mass spectra) just by postulating
such kind of motion. Let us mention that we can have confinement even with negative A;

% Notice that, in order to geometrize the strong field, we had to generalize the Mach principle: cf.
refs.2*



in fact, with less drastic approximations, we get F = —1g”¢?A(r + A3/3 — Ng'/c?), in
which the A\? term does dominate for r large enough. Let us stress, however, that for non-
simple hadrons [when A, and even more N, can vary] other terms can become important,
as the newtonian one, —Ng?2/r2, or even the constant one, + N Ag'2 /3, which corresponds
to a linear potential. Let us observe, finally, that the last equation predicts two quarks
to attract each other with the force of a few tons when the inter—quark distance is of the
order of 1 fm.

Let us pass to consider the case of not too large distances, still at the static limit.
It is then important to add to the radial potential the ordinary “kinetic energy term” (or
centripetal potential) (J/g”)?/2r2, in order to account for the orbital angular momentum
of g” w.r.t. g’. For the effective potential*®® acting between two constituents ¢’,¢” we
thus get the expression

L _2Ng1 2\Ng A,
¢z r 3c? 3

V = %g” 2[2( )2 3)2 4]+ (J/g”)2

2( ’
which, in the region in which GR reduces to the newtonian theory, does of course simplify
into Veg = —Ng'g”/r+(J/g”)?/2r%. In such a case the test—constituent ¢g” can stabilize
itself (we shall come back to this point) at a distance r. from the source-constituent ¢’ for
which V' is minimum; i.e., at the distance re = J2/Ng'g”2. At this distance the “effective
force” vanishes. We therefore get, for small distances, the so-called asymptotic freedom:
for non-large distances (when the force terms proportional to r and 73 become negligible)
the hadron constituents behave as if they were (almost) free.

Let us go back, however, to the complete expression for V.. Let us first observe
that we can evaluate the radius for which the potential is minimum also when J = 0. In
the case of the simplest quarks®, we get always at least a solution: r, =~ 0.25 fm. Passing
to the case J = & we get, under the same conditions®, the interesting value 7, ~ 0.9 fm.

By recalling that mesons consists of two quarks (qq), our approach suggests for
mesons in their fundamental state —at least for J/ = 0— the model of two quarks oscil-
lating around their equilibrium position. It is worth mentioning that for small oscillations
(harmonic motions in space) the dynamical group becomes, then, SU(3)! Let us notice
also that the value m, = hv/c? corresponding to the frequency v = 102 Hz yields the
pion mass: Mgy X My

4. - THE INTER-QUARK(ANTIQUARK) POTENTIAL Vg

Let us now apply the above formalism to the case of charmonium and bottomonium,
where we consider the test as well as the source constituent of the hadron as quarks without
the colour degree of freedom (i.e., the sign of their strong charge) specifically mentioned.
In that case, as we already mentioned, the considerations above can be applied only



approzimately.
The inter—quark(antiquark) force, according to eq.(6), is
nd?r _];czg//(l 2Ng

Fa=9'gm =-

2Ng"  2Ar

+ 202N By

c2r?
By integration, we get the inter—quark(a.ntiqua.rk) potential:

c? 2¢?N? 1 _2Ng' 1 2¢AN A A2,
”2[ A 2T &2 7 32 §T+ET]. (8)

Vaa=yg

the combined effect of all the terms can be shown to be roughly of the shape in Fig. 2.

5. — CALCULATING THE QUARKONIA MASS SPECTRA

Passing temporarily to the quantum mechanical language, after the usual manipu-
lation, the radial dependence of the potential can be written:

L+ 1)K 1

Vq‘%(r) Vaa(r) + 242 2

, (9)

where the centripetal potential has been properly included, quantity £% being the orbital
angular momentum. We ignore the spin of the quarks in our approximation; and g is
here the average quark strong-mass magnitude®®* [g = |¢/| = |¢”|]. Let us insert such
expression in the non-relativistic Schroedinger equation.

Before entering explicit calculations, let us recall the following.®%* Consider two
identical particles endowed with both gravitational (m) and strong (g) mass, i.e. two
identical hadrons, and the ratio between the corresponding strong (S) and gravitational
(s) interaction—strengths. One finds that /s = Ng?/Gm? ~ 10%0%41, thus verifying that
p = R[r ~ S/s. For example, for m = m, one gets Gm?/hc ~ 1.3 x 1074%; while
Ng?[fic ~ 14 or 3 (or 0.2) depending on the particular coupling constant considered:
ppr or wmp (or quark-quark-gluon), respectively. At this point, it is important to
observe —however— that the gravitational coupling constant Gm?/hc (experimentally
measured in the case of two “tiny components” of our particular cosmos) ought to be
compared with the analogous coupling constant for the strong interaction of two tiny
components (partons? partinos?) of the corresponding hadron, or rather of a constituent
quark of its. Such a constant is not known to us. We know only, for the simplest hadrons,
about the quark-quark-gluon coupling constant: Ng?/fic ~ 0.2. As a consequence, if we
now set® more carefully

N=pG; A=p%A, (10)
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Fig. 2 - In this figure the shape is shown of two typical inter-quark potentials Vg
yielded by the present theoretical approach: cf. eq.(8). We show also the theoretical
energy-levels calculated for the 1-3s;, 2—3s, e 3—3s; states of “Bottomonium”
and “Charmonium”, respectively [by adopting for the bottom and charm quark the
masses m(b)=5.25 and m(c)=1.68 GeV/c?). The comparison with experience is
satisfactory:!! see Chapt. 5.
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the best value of p; that we can predict at the present time for those simple hadrons is
p1 =~ 10%8:10%; and actually 1038 is the value that yielded the results closer to experience.
On the contrary, the values of the quantity p, related to ), are theoretically expected to
not vary very much (even when the particular hadron, or cosmos, under analysis does
change®) w.r.t the “reference value” 10%0+41: for this reason, in eqs.(10) we distinguished
p from py.

The Schroedinger equation for Vq%(r) [eq.(9)] is in spherical polar coordinates. It was
solved, by using a finite difference method, for those r intervals for which the Hamiltonian
yields n = 5 or 6 eigenvalues and eigenfunctions. Thus, we set n points for r and Vaa(r),
giving a matrix of n X n dimensions to be solved. After this, the process was repeated
with the same parameters p, p; and J for 2n values of r, and so on, until convergence
is obtained. Always it has been correctly assumed N = p;G and X = p2A; with the
costumary values A = 107 m~? and G = 6.67 x 107! m3kg~'s~2. It is interesting
that, due to the dependence of Vgg(r) on N and A, i.e. on p; and p, we could verify
also by such computer calculations that only values p; = 1038 and p =~ 10*! are actually

consistent with 7 ~ 1 fm systems. This fact makes the terms in 7% and r* very important.

The following Table I gives the comparison between theory and experimental results
(for radial s-states; J = 0):

Energy Level (MeV)
Ground State | Quantum | Theory

Heavy Quarkonia radius State M Experiment?

Charmonium 0.42 fm 1 35 3244 3096.9 +1

Mcharm = 1.69 GeV/c? 2 2s 3679 3686 £ 1
3 35 4129 | 4028.7 + 2.8
Bottomonium 0.35 fm 1 3 9484 | 9460.0 £+ 0.3
Mbottom = 5.25 GeV /c2 2 %s; | 9856 | 100234 < 0.3
3 35 10139 | 10035.5 + 0.5

The charmonium spectrum has been obtained —by the computer fit— just in cor-
respondence with the the expected, “standard” values p = 10*! and p; = 10%8. The
bottomonium spectrum in correspondence with p = 0.5 x 10* and p; = 0.5 x 10%.

The agreement between theory and experiment!! is good, considering the approx-
imations made. Moreover, it can be interesting to notice that the ground-state sizes of
charmonium and bottomonium are consistent with the asymptotic freedom in the sense
that (r)char is larger than (r)uou, as should be the case; both being less than 0.5 fermi.
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APPENDIX A
The Strong Coupling—Constant

Following recent work still to be published,® let us add here that (in the case of
a static, spherically symmetric metric, and for coordinates in which it is diagonal) the
Lorentz factor is proportional to V900, S0 that the strong coupling-constant ag = S as-
sumes the form

(=X % (11)
W)= e 1-2Ngl/cr + Ar2/3

because of the fact that the value of any strong mass ¢” varies with its speed,

g”o g”o
w_ 9 _ , 12
J V90 1—-2Ngl[r+ ArZ/3 (12)

so as an ordinary relativistic mass. Our “constant” as(r) behaves analogously to the
perturbative coupling constant of the “standard theory” (QCD): that is to say, ag(r) de-
creases as the distance r decreases, and increases as it increases, once more justifying the
phenomena both of confinement and -of “asymptotic freedom”. Let us recall that, when
9”0 = gy, the definition of ag is as =8 = Ng'?/he.

The Schwarzschild-type coordinates (¢;7,0,) are known, however, to not corre-
spond to any real observer. From a physical point of view it is therefore interesting to pass
to local coordinates (T'; R,0, ) associated with the observers at rest w.r.t. the metricl?
at each point (r,0,¢) of space: dT = ,/gudt; dR = /=g, dr, where gy = goo and
grr = g11. These local observers measure a speed U = dR/dT (and strong-masses) such
that® Vit = V1 = U?, so that eq.(12) gets the transparent form

= (12)

NS

Once the speed U has been evaluated as a function of 7 (by the geodesic equation), it
is then easy to verify, e.g., that for negative A the minimum value of U2 corresponds
to 7 = [3Ng./|A]/3. For positive A, on the contrary, a similar expression, namely
ro = [6Ng,/A]Y3, yields a (confining) limit-value of 7 which cannot be reached by any
constituent.

Let us finally consider the case of a geodesic circular motion, as described by the
“physical” observers, i.e. by our local observers (even if it is convenient to express every
quantity as a function of the old Schwarzshild—deSitter coordinates). If a is the angular
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momentum for strong rest-mass unit, in the case of a test-quark orbiting around the
source-quark one meets the interesting relation g¢” = 9oV/'1+ a2/r2, which allows writing
the strong coupling-constant in the particularly simple form:°

N, a?

~—g(14+—=). ’
as hcg°( +3) (11°)
We can observe, e.g., that —if A < 0— the specific angular momentum @ vanishes in
correspondence with the costumary geodesic r = rq, = [3Ng./ |AI'/3; in such a case
the test-quark can remain at rest at the distance Tqq from the source-quark. With the
“typical” values p = 10" p; = 10%, e g/ = m,/3 ~ 313 MeV/c?, one gets Tqq =~ 0.8
fm.

APPENDIX B
On the Fireball Phenomenology
The data on hadron multiple production in very-high-energy interactions!® have

been shown to be compatible with a discrete mass spectrum of fireballs, which are formed
in such collisions and trail the colliding hadrons after the interaction.!® See Table II:

Hadron () Fireball estimated | Other characteristics
Name multiplicity | (Gev/c) | rest energy (GeV) | (all have n(7°) ~ 0)
Centauro ~ 100 0.35+0.10 200 = 300 —
Mini-Centauro | ~ 1520 | 0.35% 0.10 20 - 40 —
Chiron ~ 10+20 25+04 > 200 mini-cluster
Geminion ~ 2 24+04 > 30 mini-cluster

These fireballs seem to possess different decay modes: either into pions only, or into
baryons only. The decays are statistical and their temperature were derived; for instance,
in the so-called “Chiron mode” the temperature appears to be about 10 GeV.

The most famous decay modes are associated with the Centauro events —multiple
production of high p; (transverse-momentum) ‘baryons’ accompanied by little or no pion
emission,— which were first found by the Brazil-Japan Emulsion Chamber Collaboration
about twenty years ago in cosmic ray Ej,p, > 100 TeV interactions.!® Speculations into the
nature of these puzzling events do not seem to have yet produced any reasonable insight
within the existing theoretical framework of high energy physics.



13

Most of the mentioned speculations on the mechanism undergoing the Centauro
events referred to the formation of a new type of hadronic matter, which would then de-
cay in exotic ways. For example, Bjorken & McLerran suggested that in an extremely
energetic interaction, high in the atmosphere, a metastable cluster of quarks —a “glob” of
quark matter— is formed, and penetrates about 500 g m~2 of the atmosphere to the moun-
tain level. Afterwards this glob decays, preferentially into baryons and antibaryons, with
very little electromagnetic component (due to 7°’s), above the detectors. Alternatively,
Evans argued that the Centauro events could be explained in terms of baryon number
violating processes, within the standard model. However, no matter what the production
mechanism can be, the reported high p, (~ 1 GeV/c) of the produced ‘baryons’ implies
extremely short range (~ 0.2 fm) final state interactions, which ought to lead in any case to
the appearance of pions. In particular, if heavy resonances were also formed, they would
decay into nucleons and pions.

A reasonable mechanism that avoids pion production has been actually proposed by
Sinha & Bandyopadhyay.'* But in that model it is difficult to account for the Planck-type
spectrum and the clustering property of the produced baryons.

Therefore, we regarded as worthwile applying a. (preliminary) version of the new the-
ory sketched in this paper to decay events like Centauros, Chirons and Geminions. Let us
recall that this was done in ref.'® Namely, those events were tentatively considered by us as
“strong black-hole” evaporations.®* Even if some difficulties are still to be solved, various
positive results were thus obtained. For instance, our analysis seemed to suggest that in
the considered collisions some phase transitions can take place, associated with the collapse
of the colliding matter inside its possible “strong horizons”. The horizon radii resulted
in fair agreement with experience and yielded, in their turn, the transition temperatures
through Bekenstein-Hawking—type relations;* the most interesting result being probably
that, according to our model, heavier particle emission is expected to be favoured.1®
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