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Abstract 

This note collects three presentations te the Second International 
V/orkshop on Software Engineering, Artificial Intelligence and Expert 
Systems for High Energy and Nuclear Physics, held in Lalonde sur Mau­
res (France), in January 1992. The three presentations deal with clas­
sification problems: events in ZO decays, pions in an electromagnetic 
calorimeter, and jets in hadronic collisions. 
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ABSTRACT 

The measurement of the hadronic branching fractions of the ZO boson into 
all five known quarks, from the data collected by the DELPHI detector at LEP 
duriug 1990, is presented. The measurement was based on four single-output 
neural networks. 

Progress is reported on the design of a more powerful network architecture, 
and on the calculation of systematic errors. 

1. Introduction 

DELPHI has measured for the first time in the literature [1] the partial hadronic 
widths into the five flavours kinematically available from the decay of the ZO boson. 

The measurement was performed by coupling four single-output feed-forward 
neural networks, specialised respectively in the classification of bb, ee, S8, and 
(uu+dd) unresolved, and then by using the rate of final-state radiation to estimate 
the relative production of quarks of charge 2/3 to quarks of charge 1/3 [2]. The 
work in Ref. [1] was extending previous studies aiming at the classification of 
decays into bb pairs via neural networks [3]. 

The preliminary results from the neural network in Ref. [1] were 

r uti+iJ/rh = 0.417 ± 0.015 (stat) ± 0.058 (sys) 

r,,/rh = 0.233 ± 0.016 (stat) ± 0.051 (sys) 

rcclrh - 0.139 ± 0.010(stat) ±0.058(sys) 

r bb/rh - 0.211 ± 0.006 (stat) ± 0.020 (sys) , 

and two main problems were left to be solved: 
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1. Correlations between the four networks. The branching fractions were ex­
tracted by constructing an overall X2 from the four networks, keeping into 
account at first order the covariances. The smallness of the statistical er­
ror with respect to the systematic one made us confident that keeping into 
account covariances at all orders should not change much the result. Never­
theless, the problem could be solved by constructing a single network with 
four output nodes, that maps the n input variables into a space R4

, in which 
the four classes could be separated via multidimensional analysis. 

2. Correct estimate of systematics. Main source of systematics is related to 
model-dependence of the classification. The simulated events used for the 
classification of the real ones depend on some physical parameters known 
with errors. Of course a complete treatment of systematics should include 
the effect of variation of such parameters, inside the limits in which they 
are bounded when comparing shape variables to Monte Carlo predictions, 
without any hypothesis or assumption on the branching fractions. Such con­
fidence intervals are not provided by the literature at present, and an effort 
to calculate them is in progress. 

A work has started in DELPHI to overcome these two problems. In this note we 
summarise the results obtained with the four networks technique, and the work 
that has been done related to point 1, that is at present almost solved. 

This analysis is based on a data sample collected by the DELPHI detector [4] 
at LEP during 1990, with an experimental selection procedure described in Ref. 
[5]. 

2. Four Networks Technique 

Eighteen variables were used as an input for the separation. 
Their choice came from the examination of the literature, and from a study of 

flavour-dependent distributions based on the JETSET 7.2 Parton Shower Monte 
Carlo [6] (JETSET PS in the following), that has proven, after two years of ac­
tivity of LEP, to reproduce well the main features of the hadronic decays of the 
Zo [5,7]. The particles in an event were clustered in jets according to the JADE/EO 
algorithm [8], with You, = 0.05. In the following, the most energetic jet will be 
called "first jet", and indicated by the superscript (I); the second most energetic 
jet will be called "second jet", and indicated by the superscript (8) . 

Description of the variables follows. 

1. The sphericity S(J) of the first jet, calculated after a boost (3 = 0.96 along 
its axis. The axis of the jet was defined by the sum of the momenta of the 
particles belonging to it. 
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2. The directed sphericity sH14 of the 4 most energetic particles in the first jet. 
For a set Q of tracks in a jet, this variable is defined as 

where the Ipl's are the momenta in the rest frame of the set Q and the 
Pt'S are their components perpendicular to the original jet direction in the 
laboratory frame. 

3. The directed sphericity sl;L. 
4. The invariant mass MgJ4 of the 4 most energetic particles in the first jet. 

5. The invariant mass Mi;~4 of the 4 most energetic particles in the second jet. 

6 .. 9. The products of the homologue direct sphericities for triplets of particles in 
the first and the second jet, SHJ x stl. 

10 .. 13. The products of the homologue invariant masses for triplets of particles in 
the first and the second jet, MHJ x Mi~2. 

14. The momentum of the slowest pion of the jet 1, after a boost along the jet 
axis corresponding to a D ' energy equal to one half of the beam energy. 

15. Same as 14., for the second jet. 

16. The momentum of the most energetic K O in the event (0 if no kaons recon­
structed). 

17. The momentum component perpendicular to the axis of the nearest jet of 
the most energetic /(0 in the event (0 if no kaons reconstructed). 

18. The sum over the jets of the ratios between the momentum of the leading 
particle and the momentum of the jet. 

All variables were rebinned in such a way that they were ranging from 0 to 1. 
Four independent feed-forward neural networks were used (one for each class 

that was separated from the others) with 18 nodes in the input layer, associated 
with the input variables Xi, defining the pattern space P; a variable number of 
nodes in the hidden layer; and one output node, associated with the output value 
El, belonging to the feature space F. We refer to [1] for details on the training of 
the networks, based on back-propagation, and on their architecture. 

In the training phase, the four networks were specialised in such a way that net­
work "1" was designed to be more performant for separating ZO decays into uu or 
dd, network "2" for separating decays into ss pairs, network "3" for separating 
decays into cc pairs, and network "4" for separating decays into bb pairs. 
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From each of the four networks (i = 1...4), the fraction of events ,BJil of each 
class j (j = 1...4) was determined by means ofaX2 fit to the form 

3?(il(t) = I;,BJila;il(t) , 
j 

where 3?(il(t) is the map of the data through the network i into the feature space, 

and a;il(t)'s are the distributions for each class j in the feature space, both deter­
mined in the test sample. All distributions were normalised to unity. 

The four networks were constructed in such a way that each network provided 
a fit with small correlation coefficients between the class that the network itself 
was teached to distinguish and the other classes. 

Finally, the expression 

X2 ~ I; < iJ(il - iJ* IC(il-' liJ(il - iJ* > , 
i 

where C(il is the covaria.nce matrix in the fit from the i-th network, was minimised 
with respect to iJ*, under the constraint that the sum of the branching fractions 
is equal to 1. This led to the determinations and to the statistical errors quoted 
in (1..4). 

The study of systematics kept into account the uncertainties in the best tuning 
of parameters in JETSET PS as parametrised in [7]. In addition, a detailed study 
of the effect of fragmentation parameters was done, to obtain the systematic errors 
in (1..4). 

3. One Network with Four Output Nodes 

Passing from a one-output neural network to a four output one represents a rather 
nontrivial qualitative step. The neural network should now perform a mapping 
:F : P C R23 ----7 F C R4 ,where P is the pattern space and F is the feature 
space. 

The network was trained to separate four classes of events simultaneously: 
each class was associated to one output node and the flavour of the event was 
interpreted to be the one, the node of which gave the largest output value. For 
every input pattern, therefore, only one of the four output neurons was taken as 
output 1, all the others O. The input pattern was described by 23 variables; 5 new 
variables were added to the previous set of 18. They are: 

19. Sumofthe track impact parameters, each one scaled by the error (to reinforce 
the classification of bb events). Tracks with impact parameters greater than 
2 mm are omitted because they are likely to come from secondary decays of 
strange particles. 
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20. Charge flow (Qf - Qb). The event is divided in two hemispheres by the 
thrust axis, and the axis is oriented so that it is pointing always to the for­
ward hemisphere (polar angle < 90°). The charge in the forward (backward) 
hemisphere is calculated by weighting the charge of each track by its momen­
tum and dividing the weighted sum of charges by the sum of the absolute 
values of the track momenta, i.e., Qf = (2:, IP1Q)/(2:, 1P1), for all tracks 
in the forward hemisphere. This variable is sensitive to the quark charge, 
and the asymmetry of the quark polar angle (due to quark electroweak cou­
plings ). 

21. Sum of the absolute values of the charges of the two most energetic jets, 
weighted by the momenta in the same way as in 19. This variable is sensitive 
to the quark charge. 

22. Absolute momentum 1P1 of the most energetic lepton (0 if no leptons with 
momentum> 2 GeV, which is the identification limit). 

23. Ip~1 of the most energetic lepton with respect to the axis of the closest jet. 

The network structure was completed by one hidden layer of 9 neurons, fully 
connected to the input and output layers. 

The training phase of the network was performed on a set of 86,990 ZO decays 
into q7:j pairs. The training set was composed by an equal number of patterns for 
each flavour type. The entire training process was divided into a defined number 
of sessions (training epochs). During each of them, the training set was filtered 
by the network. The weights in the network were initialised with small random 
values in the range [-O.l,O.lJ and were updated every 10 input patterns according 
to the generalised delta-rule. 

After each training the learning parameter 11 and the momentum parameter 
Q were geometrically updated, ranging from 0.05 to 0.0001 and from 0.4 to 0.9 
respectively, while the temperature T was fixed (T = 2.0). 

The testing phase of the network was performed using a different set of 73,691 
simulated events, independent from the training set. The results presented in 
Table 1 were obtained after a test session performed on a training of 200 iterations. 
The quality of the separation of flavours is comparable with the one obtained with 
the four networks described in Section 2. 

The results on the hadronic branching fractions of the ZO boson can be obtained 
by minimising a x2 measure of the discrepancy between the four flavour densities 
from simulated Monte Carlo data and the experimental one in a four-dimensional 
hypercube. The technique involves Multivariate Discriminant Analysis, using an 
optimisation algorithm to fit a discriminant surface between the events of one 
flavour and all the others in R4 [lOJ. 

At present, we are working on a technique (Parzen windows, [11]) to smooth 
the probability density function for the simulated data in R\ in order to reduce 
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Testing Efficiency Purity 
(uu+dd) 44.9 % 55.8 % 

ss 28.4 % 31.4 % 
cC 36.0 % 29.7 % 
bb 75.7 % 60.1 % 

Table 1: Network performance in Testing. 

the statistical fluctuations coming from finite sampling. 
Results in Table 1 indicate the feasibility of the measurement . 
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ABSTRACT 

A neural network (NN) classifier is under study, for the separation of elec­
tromagnetic from hadronic showers in a highly-segmented Si/W calorimeter. 
The performance of the algorithm is studied on simulated data, for a detector 
inspired by the prototype of the calorimeter for the WIZARD experiment. 

1. Introduction 

The gross sketch of the detector, inspired by the prototype of the calorimeter for 
the WIZARD experiment!, consists of a tower of XY sampling layers, alternated 
with showering material (W) planes. The sense layers are formed by two SI­
D detectors, each divided in strips and mounted back to back to give X and Y 
coordinates of sampling. 

Main features of detector are summarized in Table 1. 

Number of sampling layers 

Number of strips for each Si-D detector 

Wid th of strips 

W planes thickness 

Total area 

20 

16 
3.6 mm 

0.5Xo 

(60 x 60)mm2 

0.9 em 

Table 1: - Main features of the detector. 

The granularity of detector provides ability of measuring the shower profile 
for particle identification with high accuracy, also in the absence of full shower 
containment (e.g., for high energy electrons). 

The simulation of this apparatus has been performed with GEANT 3.14 Monte 
Carlo program. The response of each sense strip (i.e., the energy deposed) was 
estimated by means of the track length of the secondary electrons and positrons 
generated in the shower. 
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2. The Input Variables 

Although the detector was designed to generate XY samplings, we used for this 
study only the information coming from the X type strips. After the calibra­
tion, converting data into Minimum Ionizing Particle (MIP) units, and the noise 
suppression, the signals are elabora.ted to recognize clusters and to calculate the 
variables used for the event reconstruction. 

The variables used by the NN are the following (see Appendix for more details): 

11) Total cluster dispersion normalized: the sum of 
widths of all clusters, scaled to total energy 

12) Total dispersion of clusters normalized: the sum 
of the dispersion of the centers of clusters inside 
each plane, scaled to total energy 

13) Internal/External Energy ratio: Ratio of the sum 
of the energies deposed on each plane in strips 
within 2 X RMoliire from Xpl; to the sum on the 
energies deposed outside the same range 

14) Longitudinal development: it measures the thick­
ness of the shower, compared to a MIP 

E1du,j tr '" IE • d. .!..Jtot tot = t. 
i ~1 

Fig. 1 shows the distributions of variables 11-14 for showers of 2 GeV. 
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Figure 1: - Network input variables 11-14 for showers of 2 GeV. Dotted lines 
represent data from e showers, solid lines from 7r showers. 
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3. The Network 

The NN used for this study is a Feed Forward NN (FFNN) with 4 input nodes, 3 
nodes within 1 hidden layer and 1 output node. Activation is given by means of 
a sigmoidal function g : R -t (0.,1.), with temperature T . 

Training was performed with the Gradient Back Propagation algorithm (GBP), 
based on a standard quadratic error function and with a momentum term. Learn­
ing was tuned by modifying any of the 5-learning rule parameters, that are allowed 
to vary exponentially during the training, from an initial value to the final one. 

The update of weights had been performed every 10 events. 

The training of NN was performed on a set of 1000 events randomly chosen with 
equal probability from the two classes of showers, and subrnited to the network 
over 5 epochs. The test phase was performed with a different set of data, of the 
same size and composition. 

During test we used data containing showers for e of 2, 4, 6 Ge V and 71' of 2, 
4 GeV. Three different kinds of energy mixture were used: all data mixed up, 4 
GeV e and 2 GeV 71', 6 GeV e and 2 GeV 71'. 

Table 2 summarizes the results obtained by applying two different sets of pa­
rameters during learning and thresholds for the discrimination. 

Learning parameters and e 2,4,6 GeV e 4 GeV e 2 GeV 
fiducial regions for NN output 11: 2,4 GeV 11: 2 GeV 11: 2 GeV 

in the classification e 71' e 71' e 71' 

0=0.5 1]=0.5 T=2.0 Efficiency 0.97 0.92 0.98 0.95 0.96 0.98 

0,- E [0.0,0.5) 0" E [0.5,1.0] Purity 0.93 0.97 0.95 0.98 0.98 0.96 

0=0.5-0.71]=0.5·0.1 T=2.0-0.4 Efficiency 0.95 0.92 0.99 0.94 0.97 0.96 

0,- E [0.0,0.1] 0" E [0 .9,1.0] Purity 0.93 0.95 0.94 0.99 0.96 0.97 

Table 2: - Discrimination efficiency and purity obtained with the FFNN. 

Fig. 2 shows a scheme of the system used in the development and test of the 
network. 

The training has been performed on a minicomputer J-L VAX 3000 and data 
(i.e., the weights of the NN) were downloaded to a transputer network, through 
the host file server (an IBM PS Personal Computer), to perform the tests. 

The transputer network had been simulated by a single INMOS T800, with 
4 Kbyte of static RAM, baud rate of 20 Mbit/ s for the physical links, and 3.5 
MFLOPS of peak performance2• 

After elaboration, results were transmitted to a WorkStation for analysis and 
representation. 

The algorithm for the event reconstruction can be divided in two classes of 
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Figure 2: - The system setup and data flow used in the study. 

subprocesses: local variable calculations (of quantities related to a plane of the 
calorimeter) and global variable calculations. Table 3 contains the results of 
timing tests performed for each class of subprocesses and the total time consumed 
by the different tasks. 

The synchronization of data transmission takes the largest part of the time. 
By supposing that elaboration of local information can be performed in parallel, 
we estimate the elaboration rate to be 140 event/so 

Local variables (fLS) Global variables (fLS) 
Mean Max Min Mean Max 

e 423 704 192 1408 1472 
71' 495 768 192 1408 1472 

Synchronization time (for 20 planes) 

Elaboration time for planes variables (parallel) 

Elaboration time for global variables (serial) 

Elaboration time for FFNN discrimination 
Total elapsed time 

Min 
1408 
1408 

5054 fLS 

768 fLS 

1408 fLS 

139 fLs 

7367 fLS 

Table 3: - Results of timing test of the reconstruction and classification algorithm. 

4. The Unsupervised NN Approach tc;> the Problem of e/7l' Classification 

Besides the study of the FFNN performances in e/7l' classification above described, 
we have tested the application of a NN with Kohonen3 structure to the problem. 

We used an array of 20 x 20 nodes, connected planarly. The response of each 
node of the network was given by the euclidean distance between the vector of the 
input data and the weight vector associated to the neuron. 
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The response of network was defined as the node with the minimum distance. 
In the training phase the weights wij) of the jth node inside a zone of neighboUl'hood 
around the winning node were modified, following the learning rule 

6.wl j) = 'l(t)(x,(t) - wlj)(t)) with 'let) = A"e-~t. 
The width f3 of the neighbourhood zone during the training was allowed to 

decrease with time, to resolve progressively narrower structures: f3(t) = Ail + 
B -~'t 

ile . 
Typical values of the parameters used were: 
A" = 0.8 Ail = 1. Bil = 8. >. = 2/ ((# of data) ).' = 1.15>' 

The network has been trained to discriminate two different kinds of set of 
variables: one related to the longitudinal shower profile and the other to the 
lateral shower profile. The profiles are defined as the number of activated strips, 
projected in the first case on the beam axis and in the second case on a plane 
perpendicular to that axis. 

Tests have been performed on 2 Ge V data. Fig. 2 shows an example of the 
results of test. 
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Figure 3: - Kohonen NN response to lateral profile data, 2 GeV. 

The upper half of the figure shows three stages of evolution of the network 
trained with the lateral profile data. In each diagram a circle represents a node 
which registered more ethan 11: and a cross a node which registered more 11: than 
e. The activation status of the nodes evolves until almost all nodes are classified. 
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The lower part of Fig. 3 shows the final state of the network in more detail. 
The size of the boxes is proportional to the number of activations of a node, for 7r 

on the left and for e on the right. After training, efficiency and purity have been 
calculated from the number of events inside each fiducial regions for 7r and for e, 
delimited in the figure by the polyline. 

Appendix: The Definition of the Variables 

Given a set S of strips, we define the variables 

Energy in Set 

Baricenter of Set 

Dispersion in Set 

were Xi is the position of strip i'h. 

By means of these quantities the following variables are defined: 

Es = L:iES €i 

_ 2:ifS ei >ti 
Xs - Es 

LiES e':{Zi-ZS )2 
Es 

For the k'h cluster (set of contiguous firing strips in a sense plane) 

Edk,2!dk,Udk 

for the j'h plane 
Eplj,Xplj,<Tplj 

and a variable related to the dispersion of the clusters in the planes 
Lei!: Ell'; Eel!;; (:tel,\; -:Cpl j F 

Eplk 
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ABSTRACT 

The use of feed-forward neural networks for the identification of jets from 
pp collisions has been investigated. Simulated data was used to train and 
optimize the network and it's effect on real data was evaluated qualitatively. 
An alternative method of discrimination was also investigated for comparison 

1. Introduction 

The identification of the parton ancestors of jets has drawn a lot of attention in 
the course of the last decade. Many prescriptions l

, based both on theoretical' 
and empirical3 criteria have been proposed. Nevertheless, uncertainties in the 
hadronization models remain a major obstacle in the detailed testing of QCD. 

The problem is twofold; (i) identifying the jet characteristics or "variables" 
most sensitive to the differences between quark and gluon jets and (ii) developing 
the most efficient discriminant function. Neural networks (NNs) are well-suited to 
solving the latter aspect of the problem and may also contribute to the former. It 
is therefore not surprising that NN s have recently been applied to it's solution, the 
more so because the might be applied on-line. Most of the work"s has involved 
the application of feed-forward networks to discriminate between jets produced in 
e+e-collisions at LEP energies. However, some work6 has also been done for jets 
from pp collisions at CERN energies. 

In this paper, an investigation into the possibility of applying feed-forward NNs 
to discriminate between quark and gluon jets at CDF (Collider Detector at Fer­
milab) is presented. The network was optimized and trained using simulated data 
generated by means of standard Monte Carlo's (MCsr and "smeared" by prop­
agating it through a full detector simulation. The choice of variables was guided 
by conventional wisdoml .'.3 and by experience at CDF. They are: (i) the charge 
multiplicity; (ii) the sum of the transverse momentum Pt for tracks inside a cone 
of radius r ::; 0.2 around the jet axis, where r = V'72 + </>', '7 is the pseudorapidity 
and </> is the azimuthal angle; the analogous sums for (iii) 0.2 ::; r < 0.4 and; (iv) 
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Figure 1: Bayes clas8ification of PYTHIA jet8; (a) quark and gluon 
b'-di8tributions; (b) the average identification efficiency f as defined in the text 

0.4 ::; r < 0.7; the variances of the transverse energy (E,)-weighted distributions of 
(v) T} and; (vi) </> ;(vii) p, (w.r.t the jet axis) of the leading particle in the jet and; 
(viii) the distance (in T} - </» space between the jet axis and the leading particle. 
Note that the p, sums are normalized to E, and that E, is not used explicitly as 
a variable because, as opposed to dijets from e+e-collisions, the total cm. energy 
is unknown. 

Bayes classification (section 2) was used to evaluate the discriminating power 
of these variables. A feed-forward NN was then optimized using MC-data (sec­
tion 3) and applied (section 4) to different MCs to evaluate model-dependence. 
Flavor-dependence was studied by tagging MC quarks and the NN's effectiveness 
with real data was evaluated qualitatively. An alternative discriminant ( Fisher 
discriminant) was also applied for comparison (section 5). 

2.BAYES Classification 

A Bayes classifier was constructed and applied to N = 1000 events consisting of 
equal numbers N, = a,N of quarks and N g = agN of gluons (a, = a g = 0.5). The 
distributions of quarks and gluons with respect to the modified Bayes probability 
b' = 2b - 1, where the Bayes probability b = no/en, + no) and n, and ng are 
the numbers of quarks and gluons in a cell of feature-space, is shown in fig. 1a. 
The average classification efficiency f = (Nq(> thresh) + N g « thresh))/N for a 
b'-threshold of 0, is shown in fig. lb. A classification efficiency of about 70% is 
attainable with a signal-to-background ratio of 3:1. The rise on the right is due 
to limited statistics. 
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Figure 2: Results of propagating the "test" data set from PYTHIA through the NN 
trained with the same Me; (a) output distributions and; (b) the average identifica­
tion efficiency as defined for the Bayes classifie,' (see text). Also indicated (solid 
line) is the efficiency for the training set. 

3. The feed-forward network 

The software simulation of a feed-forward NN containing 8 inputs, one hidden 
layer with 6 neurons and a single output was trained, using Gradient Back Prop­
agation (GBP), on simulated data; a set of 5000 simulated jets containing equal 
proportions of quarks and gluons. A similar but independent set was used to test 
generalization. The network was optimized for our application. Criteria for the se­
lection of the network architecture may be summarized as follows; (i) suggestionsS 

that a "symmetric" sigmoid (e. g. one that varies between -1 and + 1, rather 
than 0 and +1) speeds up convergence of GBP were substantiated; (ii) a simple 
percept ron was observed to obtain all but a few percent of the best attainable 
classification efficiency but; (iii) a few more neurons were needed to guarantee 
the functional flexibility required to render the output distribution independent 
of the starting point for training (see also the discussion below in connection with 
the Bayes classifier); (iv) too many neurons were seen to lead to overspecialization 
and; (v) more than one hidden layer contributes only to increasing the convergence 
time of GBP. 

The NN was trained to associate output values of -0.9 and +0.9 with gluon 
and quark jets, respectively. The result of 4096 passes through the entire training 
set ("epochs") is shown in fig. 2. The best attainable efficiency is around 70% 
and the generalizing power of the network is seen to be good. A comparison of 
the output distributions shown in fig. 4a with the analogous Bayes distributions 
shown in fig. la reveals a striking similarity. This similarity is not casual as has 
already been remarked ing 

• For a NN trained on a set of N jets containing quarks 
and gluons in proportions a q and a g , respectively (aq + a g = 1), the error E, 
minimized by GBP, may be expressed in terms of the probability distributions 
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Pq(X) and Pg(x) (each normalized to 1), as follows; 

Minimizing this expression with respect to the NN output 0 (assuming no con­
straint on the functional adaptability of the network9 , one obtains the following 
expreSSIOn; 

(2) 

The similarity between the distributions with respect to b' and 0 is therefore 
explained; the NN approximates the Bayes classifier and, to the degree that it 
succeeds, obtains a discriminant function that can not be improved upon. The 
degree to which it succeeds depends on it's functional adaptability; i.e. on the 
number of neurons in the hidden layer. These considerations have had a bearing 
on our choice of network architecture as mentioned above. 

4. Application 

If an arbitrary set of N' jets containing a~ and a~ (a~ + a~ = 1) proportions of 
quarks and gluons is propagated through the NN, the resulting output distribution 
Pl(O) will be given by; 

PI(o) = a~Pq(o) + (1 - a~)Pg(o) (3) 

Eq. 3 may obviously be used to extract unknown values of a~, assuming the dis­
tributions Pq(o) and Pg(o) can be determined reliably from training on simulated 
data. One can fit these distributions to the data to extract a q real jets. The success 
of this method depends on how well the MC simulation represents reality and this 
is not easy to gauge. An idea of the model-dependence of this method may be had 
by using an NN trained on one MC to distinguish between quark and gluon jets 
generated by another. The MC HERWIG 7 was used alternately with PYTHIA7 

for this purpose. Some model-dependence ( about 15%) was observed. Fig. 3a 
shows the results of using a PYTHIA-trained network to determine a q from data 
generated by HERWIG. Flavor-dependence was also investigated by propagating 
"tagged" jets through the NN. From fig. 3b., one could conclude that B quarks 
are gluon - like. Further investigation revealed that this similarity decreases with 
increasing energy and that B quarks regain their quark - like characteristics above 
30 GeV. 

A preliminary evaluation of the applicability of MC - trained NNs to real data 
was also made. A detailed analysis will appear in a later work. Fig. 4 shows the 
result of propagating jet-20 ( events taken with a 20 GeV trigger threshold on the 
jet E t ) data from CDF and dijet events from the AMY detector'o. It appears that 
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Figure 3: (a) Output distribution /rom HERWIG data (80% quark. and 20% glu. 
ons) p1'Opagated through a PYTHIA·trained NN and fitted with PYTHIA distribu· 
tions. The proportion of quarks extracted is displayed. (b) The distribution of B 
quarks propagated through the NN. 

the jet-20 data is composed primarily of gluons, with a small admixture of quarks. 
The expectation from QeD is 10-20% in tillS kinematical region (an attempt to 
extract the quark fraction is reserved for a future work). It is encouraging to 
note that the AMY dijets, which are expected to by exclusively quark jets, are 
interpreted primarily as such by the NN. 

5. Classification with Fisher Discriminant 

It is interesting to compare the previous results with a standard linear classifier 
like the Fisher Discriminantll . The discriminating power of this method was found 
to be worse than that of the NN applied to the same data. It is known that the 
Fisher Discriminant approaches the Bayes limit only if the input distributions 
are Gaussian and if the covariant matrices of the two samples are identical. One 
concludes that these conditions are not fulfilled in this application. 

6. Conclusion 

The effectiveness of the jet parameters proposed, in identifying parton ancestors on 
a jet·by·jet basis, has been investigated using a feed-forward NN. After optimiza· 
tion, the NN was seen to be equivalent to a Bayes classifier. A method for using 
the NN output distributions corresponding to simulated quark and gluon jets, 
to extract their relative proportions, was evaluated and model· dependence was 
estimated at 15%. Flavor-dependence was observed, but only for E, ::; 30Ge V. 
Real jet data from CDF and dijet data AMY were also propagated through the 
NN. A qualitative examination of the results was encouraging. Finally, a Fisher 
Discriminant was applied to the same data for comparison. Results were not as 
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good. 

t This work was funded in part by the Italian INFN and the US DOE. 
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