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ABSTRACT - Since more than a decade, a bi-scale, unified approach to strong and
gravitational interactions has been proposed, that uses the geometrical methods of gen-
eral relativity, and yielded results similar to “strong gravity” theory’s. We fix our
attention, in this note, on hadron structure, and show that also the strong interaction
strength ag, ordinarily called the “(perturbative) coupling-constant square”, can be
evaluated within our theory, and found to decrease (increase) as the “distance” r de-
creases (increases). This yields both the confinement of the hadron constituents [for
large values of r|, and their asymptotic freedom [for small values of r inside the hadron|:
in qualitative agreement with the experimental evidence. In other words, our approach
leads us, on a purely theoretical ground, to a dependence of as on r which had been
previously found only on phenomenological and heuristical grounds. We expect the
above agreement to be also quantitative, on the basis of a few checks performed in this
paper, and of further work of ours about calculating meson mass-spectra.

(*) Work partially supported by CNPq and FAPESP, and by INFN, M.P.I. and CNR.



Introduction. — Since 1978, a unified approach to strong and gravitational interac-
tions was proposed!4, which used the geometrical methods of general relativity; and
assumed covariance of physical laws under global (discrete) dilations. It yielded results
similar to those given by the “strong gravity” theory!®! (even if the starting point is
quite different).

Within such an approach, and in connection with hadron structure, we came in
particular to associate hadron constituents with suitable stationary, axisymmetric so-
lutions of certain new Einstein-type equations, supposed to describe the strong field
inside hadrons. Those Einstein-type equations are nothing but the ordinary Einstein
equations (with cosmological term) suitably scaled down(?l. As a consequence, the cos-
mological constant A and the gravitation universal constant G (or the masses M) result,
in our theory, to be scaled up and transformed into a “hadronic constant” A and into a
“strong universal constant” N (or into “strong masses” g), respectively.[l'zl. Our field
equations, to be valid inside a hadron, are therefore:

1 8w
Ry — 50w R} + M = —KNTo 3 [K=27) (1)

where, because of simple dimensional considerationsl?,

A~plA; N=pG; p=p~10*.

If we adopt for the ordinary cosmological constant the value A =~ 10752m™2, then we get
for the “strong cosmological constant” (hadronic constant) the value A = 10°m=? =
(1 fm)~%. Notice that in our present units, for which N = pG, mass M and strong
mass (or “strong charge”) g of the same particle become equal (M = g).

Throughout this paper, we shall choose the signature —2. When convenient, we
shall use units such that it be also ¢ = 1.

The simplest solution of egs.(1) is the Schwarzschild-de Sitter’s, corresponding to
the metric generated by a central, static, spherically-symmetric distribution of strong
charge; i.e., to the metric generated by a hadron constituent (say, a quark) when ne-
glecting its electric charge and intrinsic angular momentum:

ds® = gudztdz” =
2Ng,
r
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where g, is the strong charge of the considered constituent, and (t,r,0,p) are spher-
ical (Schwarzschild—type) coordinates. Let us stress once more that, in the present
units, go is equal to the rest—-mass M, of the hadron constituent. This metric may
be trivially transformed into the Reissner-Nordstrém-de Sitter one by adding the term
ke?/r?; k= (4me,)”! into goo and gur.

Strong-—charge and its dependence on r — Let us now consider the geodesic
motion of a test—particle in the metric (2). [Notice that, if the test—particle is replaced
by a second quark, then the evaluations performed below assume an indicative value

only, since we are not going to involve ourselves here with the (general relativistic) two-



body problem|. Our test particle, when free~falling, will be endowed!® with a constant
total-energy E, = g.¢®, which in the previous coordinates can be written
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; (3)
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where gy = oo, and g, is the (rest) strong—-mass of the test particle.

Since the Schwarzschild—type coordinates do not correspond to any physical ob-
server, let us pass —however— to the local coordinates (T,R,0,p), associated with
observers at rest w.r.t. [with respect to] the metric at each point (r,8,¢) of the consid-
ered space:

dT = /gxdt ; dR = /—gredr,

where g,r = g13. The local observers measure a new total-energy E, for the considered

test particle. Quantity E, is no longer a constant of the motion and is related to E,
through the relation

dT
E,= T - T'=.\gur, (4a)
that is to say
1.2
E,=4gct= 9o° (4b)
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The interesting point is that (in the static case) /gz = V1 —V?, provided that
V is measured by the local observers.

The physical meaning of egs.(4) is more evident if, instead of setting M = g and

N = pG, we put N = G = 1 so that (in such new units) for the strong charge it holds

g= \//_’M 7 Go= \//—7Mo- (5)

Incidentally, in connection with egs.(5), let us recall? that, for M ~ m,, one gets ¢ =
Planck-mass; that is to say, the strength of the interaction between two (strongly inter-

acting) quarks is equal to the strength of the interaction between two (gravitationally
interacting) particles endowed with the Planck mass.



In whatever units, egs.(4) tell us that the strong charge ¢’ of the test-particle does
change with its speed V, w.r.t. the local observers, as follows:

g,

g = \/——1—_'—7—2 ; (6a)

where V = dR/dT (and ¢') are measured —let us repeat— in the local reference-
frames: actually, it is in these frames that they have a direct physical meaning.l”! In
the case of generic motion, we are left, of course, with the relation

r_ 9
= . 6b
= (6b)

In other words, the strong charge (or strong mass) of a particle does depend, inside a
hadron, on the particle speed exactly as the ordinary gravitational mass does in our
space-time.

Notice that egs.(6) allow us to express the value of the strong charge ¢' as a
function, e.g., of its radial coordinate r relative to the source—quark. Namely, in the
case of eq.(6a) one has

V?=2Ng,/r+Ar?/3,
and therefore, from eq.(6b):

!
g’= gO , (60)
\/1 —2Ngo/r — Ar?/3

where, let us recall it, g, is the rest strong—mass (or rest strong-charge) of the source-
quark.

Quark—quark coupling costant - In analogy with the electromagnetic case, in
which ag = (ke?)/(hc), the strong interaction strength is defined!"? as

which is also a pure number and —passing to the field-theoretical language— cor-
responds to the dimensionless square of the vertex coupling—constant. Let us re-
call that g' is measured by the local observer. ~ From eq.(6c) we obtain as =
(N /he)g!}(1—2Ngo/r — Ar?/3)7}, where go, g, are the (rest) strong mass of the source-
quark and the test—constituent, respectively. In the case when also g' is a quark, we
have:

T he 1—2Ng,/r—Ar?[3

(7)



Therefore, the strong interaction strength as, which in elementary particle physics
is ordinarily called the “(perturbative) coupling-constant square”, is predicted by our
approach to decrease (increase) as the “distance” r decreases (increases). This yields
both the confinement of the constituents (for large values of r, of the order of 1 fm),
and their so-called asymptotic freedom (for small, but not too small, values of r inside
the hadron): in qualitative agreement with the experimental evidence. In other words,
our approach leads us —on purely theoretical grounds— to a dependence of as on r
which was previously found, within the perturbative QCDU, only on phenomenological
and heuristical grounds.(*)

Before going on, let us stress the following point, which is essential when per-
forming explicit calculations. To evaluate p, at the beginning we tacitly compared!! the
gravitational interaction strength Gm,? ke with the value N go?/hc =~ 14 corresponding
to the ppm coupling constant square. However, the gravitational interaction strength
(which is experimentally measured for the interaction between two ”tiny components”
of our cosmos: two pions, or two nucleons, for instance) should be compared with
the analogous strength for the interaction between two small components of the corre-
sponding (” reference”) hadron, or rather of a constituent quark of its. Such a strength
is unknown. We know, however, the quark—quark-gluon coupling constant squarel®! for
the simplest hadrons: N gol/hc =~ 0.2. As a consequence, the best value of p that we can
work out, for calculations inside such hadrons, is p ~ 10%® — 10*. Actually, the value
10% is the one that yielded the results closest to the experimental datal?1°l.

Further remarks - In connection with eq.(6a), it is interesting to write down the
explicit dependence of g¢' on the radial coordinate r, by expressing V = dR/dT as a
function of r starting directly from the geodesic equation.

Since in our metric the geodesic motion is always a motion in a plane, let us fix
= /2. From the geodesic equation d2z#/dr? + T4, (dz” /d7)(dz?/dr) = 0, in which
7 is an affine parameter [e. g., the proper time: 7 = s], one gets

(dr/ds)> =1/H* - (1 - 2Ng,/r — Ar?/3)(1 + a?/r?),

where 1/H and a are rest-energy and angular momentum, respectively, for unit rest-
mass; notice that H is an integration constant. The last equation yields

2N, 2. ®

3

V2

dR
(G =1- 1~

(*) Let us explain in this note what do we mean by “not too small” distances. The horizon radii for
metric (2) are the roots of the equation

gt =1—2Ngo/r—Ar?/3=0.

The physically interesting casel?! is the one in which this equation has two real positive solutions ry,
r2 (the third solution being always a negative real number). We suppose the effective radius r, of the

source—quark to be much larger than r; [and much smaller than 73], so that the "space” available to
the other constituents is the one between rq and rs.



Let us observe that, for A > 0, the minimum of V2 is got for r = (3Ng,/A)/3.

When H = 1, one is simply left with VZ = 2Ng,/r + Ar?/3. Let us remark that
eqs.(3),(4),(6) were just written down with the choice H = 1. It is moreover worthwhile
to notice that, for A < 0, one meets a limiting value of r, namely r, = (3Ngo/|A|)*/3,
which cannot be reached by any internal constituent: V(r,) = 0; so that one obtains
again a confinement of the costituents.

By substituting eq.(8) into eq.(6a), we get once more eq.(6¢), as expected. In
connection with eq.(6c), let us here emphasize that [for p; = 10*!; p = 10%, and
go = my/3 =~ 313 MeV/c?] the minimum of ¢', namely ¢' =~ 1.5, is obtained at
r ~ 0.6 fm. It can be easily verified, moreover, that the plot of (1—2Ng,/r — Ar?/3)~!
as a function of r has the shape of a confining potential.

Let us now consider, in particular, the case of circular motion. By imposing
dr/ds = 0 we get, w.r.t. the local observers, the orbital velocity

dp Ng,/r — Ar?/3
2(9P 2 _ 0
’ (dT) 1—2Ng,/r — Ar?/3 "~ )

By substituting eq.(9) into eq.(6a), and taking into account the fact that for geodesic
circular motion [r = constant along each geodetics] it holds
2Mg, /v — Ar?/3

1—-3Ng,/r

a?/r? =

we obtain the interesting relation

g' = goy/1 + @?/r? (10)

which allows writing the strong interaction strength (for a test-quark orbiting around
the source-quark) in the particularly simple form

2

N , a
~— 14+—<). 11
as thO( +’I"2) ( )

At last, one can observe that —if A > 0— the angular momentum per unit
rest-mass, a, vanishes (i.e., V = 0) in correspondence with the geodetics r = rqq =
(3Ng,/A)'/3; in such a case the test-quark remains at rest, at a distance rqq from
the source-quark. For instance [for the same set of values py = 10%; p = 10%, and
go = myp/3 ~ 313 MeV/c?] we get the interesting value rqq ~ 0.8 fm.

Conclusion — We have seen that the strong interaction strength, as, ordinarily called
the “(perturbative) coupling-constant square”, can be evaluated within our theory, and
found to decrease (increase) as the “distance” r decreases (increases). This yielded
the confinement of the constituents (for large values of 7), as well as their asymptotic
freedom (for small values of r inside the hadron): in qualitative agreement with the
experimental evidence. In other words —as we already mentioned— our approach led



us, on a purely theoretical ground, to a dependence of as on r which had previously
been found only on phenomenological and heuristical grounds.

. We hope the abovementioned agreement to be quantitative, and not only qualita-
tive, on the basis of the few checks performed here and, even more, of our work [past
and in progress] for calculating, e.g., the meson mass spectra.[®410l , ’
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