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ABSTRACT

We describe a statistical method for the Delphi MicroVertex detector
alignment using interaction tracks. The general principles the method relies on
are discussed and Montecarlo results are also shown.

Inside the DELPHI collaboration (Ref. 1) it has been conceived a detector that
can guarantee a highly precise measurement of a charged particle impact point.
This is the so called VERTEX DETECTOR (VD, from now on). It is placed as close as
possible to the interaction point, its nominal intrinsic resolution is about 5 pum
and it measures 2 points for each charged track in the plane orthogonal to the
beam ( R¢ plane).

A high intrinsic resolution is a necessary but not a sufficient condition to
guarantee a very precise measurement: if a local observer (on the detector itself)
can perform good measurements but its position is poorly known with respect to
the other tracking devices then the precision is degraded.

The Vertex Detector has been described elsewhere (Ref. 2). Here we just
recall its features (Cap. 1) pertaining the second item, i.e. its alignment. We
describe the general ideas about it (Cap. 2) and particularly the statistical method
based on the informations coming from reconstructed charged particle
trajectories (Cap. 3).

Results coming from Monte Carlo simulation are shown (Cap. 4).

Before we proceed any further we have 2 remarks:

* trying to define this procedure we have learned many basic concepts; so in
this paper we will try to be pedagogical. Maybe it will help someone facing
similar problems

* the DELPHI Vertex Detector is by now fully operational and the procedure we
describe is going to be applied.



1. - THE DELPHI VERTEX DETECTOR
The DELPHI experiment has the typical structure of an apparatus conceived

for colliding particle-antiparticle accelerated beams: the central volume detectors

have cylindrical symmetry and the "end caps" guarantee an acceptance over the
full solid angle (Fig. 1). Fig. 2 shows a projection of the central volume detectors
in the plane othogonal to the beams (the so called "R¢ plane"). The TPC (Time

Projection Chamber) is the main tracking device: it can reconstruct track

elements in three dimensions and the separation among trajectories is large

enough in its sensitive volume to minimize the ambiguities. The global track fit
starts from informations coming by the TPC. The OD (Outer Detector) mainly
guarantees a better resolution in the particle momentum measurement while the

ID (Inner Detector) increases the precision on the track fit. These tracking

devices are "gas detectors”: charged particle trajectories correspond to ionization

trails in gas; the track is recontructed sampling and localizing the ionization.

The VD (Vertex Detector) is located between the ID and the beam pipe, inside
a cylindrical volume with minimum radius 8.5cm and a maximum one 11.5 cm.
The impact point of charged particles on two sensitive layers can be reconstructed
with a 5 pm precision in the plane orthogonal to the beam direction. These
informations allow a better extrapolation of the fitted track to the interaction
point. A quality factor for the track fit is the error on the impact parameter, i.e.
the minimum distance of the extrapolated track to the interaction point; Fig. 3
shows the impact parameter error with\without the VD as a function of the track
momentum.

The VD is a solid state detector: ionization is localized inside fully depleted
semiconductor layers. Localization occurs with a microstrip configuration of the
diodes (Fig. 4): the weighted mean of the signal on neighbouring strips around
the particle track allows the measurement of the impact point in the coordinate
transverse to the strip direction.

An assonometric view of VD and a schematic projection on the R¢ plane are
shown in Fig. 5a, b. The main features of the design are:

1) a cylindrical symmetry; the axis coincides with the beam line (z axis in the
standard DELPHI conventions); the dimensions of the detector correspond to
a full azimuthal acceptance and a polar one in (45° 135°);

2) the chamber consists of 2 half shells (separated along the vertical plane), to
allow its insertion after the beam pipe has been mounted;

3) the volume is defined by 24 sectors (15° acceptance each);

4) for each sector we have 2 parallel sensitive modules, defining the so called
inner and outer layer. We have to remark the modules are asymmetric with
respect to the normal line going through the centre of DELPHI (i.e. the
origin of the general DELPHI reference frame, Fig. 5 b).

5) Within each module there are 4 detector plates, with strips parallel to the z
axis (Fig. 5c). So the measured coordinate is the transverse one,
corresponding to the R¢ plane;



6) the 2 detector plates in the +(-) z hemisphere are electrically connected,

strip by strip, and the signals are read out by custom designed chip (Ref. 3).

The strip pitch is 25 pm, the readout pitch is 50 pm. There are 512 x 2 readout

channels on an inner layer module, 640 x 2 for an outer layer one.

The modularity has been chosen to reduce the degradation of the intrinsic
resolution by inclined tracks The asymmetry with respect to the normal is the
optimal solution to let the DELPHI magnetic field (parallel to the beam axis) shrink
the ionization charge distribution for inclined tracks.

2. - THE ALIGNMENT QUESTION

Any unknown deformation of the mechanical structure and deviation from
the nominal position inside DELPHI implies degraded measurements with respect
to the intrinsic resolution of the microstrip detectors. So mapping and recovering
the position of the Vertex Detector is a task as important as building the chamber
itself, since uncertainties at the micron level have to be guaranteed as well.

A rather articulated procedure has been defined to achieve this goal and two
different aspects can be distinguished:

* mapping of the structure. Once the detector is ready, before the
insertion in DELPHI, a full mapping of the surfaces has to be done, looking
for any disagreement between nominal and actual characteristics of the
design. The position of the detector plates in a module and fiducial marks on
it are measured by a microscope; then the position of the module on the
mechanical structure of the Vertex Detector is defined by a three
dimensional metrological machine (Ref. 4).

* alignment of the Vertex Detector. After the insertion in DELPHI, we
have to localize the chamber inside its fiducial volume and we have to
monitor the stability of its position, tracing a time evolution. Since the
general DELPHI reference frame is defined by the TPC, we will often refer to
this problem as to the alignment (with respect to the TPC) question.

The alignment procedure has to be flexible enough to face a wide range of
possible situations, determined by the STABILITY TIME INTERVAL of the detector
position. Breaking of a stability situation can come by temperature variations,
mechanical vibrations, deformations in the Inner Detector inner wall (where the
VD insertion rails are glued) and other unforesecable effects.

So the first element in the recipe has to be a hardware device or a software
method working as an alarm bell when a steady state situation breaks down. Then,
within a stability time interval, we can think of a statistical method to recover the
actual position of the detector.

A canonical statistical way relies on charged particle tracks. If a trajectory is
reconstructed irrespective of the detector to be aligned then it can be extrapolated
(or interpolated) to its reference surface. The residue between the extrapolated



point and the one reconstructed by the current detector has a functional

dependence on the geometrical misalignment and the track parameters. A careful

analysis of the residue distribution allows the calculation of the actual position of

a detector with a precision limited by the available statistical sample. Of course the

achievable precision for an equal number of degrees of freedom depends on the

precision of the extrapolated informations and the detector intrinsic resolution.
Anyhow, if alignment uncertainties have to induce just a few micron error
on a measured charged particle impact point we reasonably need a number of
tracks per module corresponding to 24-48 hours of data taking (see below). Since
it is very hard to state "a priori" whether such a stability time interval makes
sense, the "alarm bell" devices have been conceived themselves as real position
Sensors.
There are 2 complementary hardware survey systems:

1) an array of infrared laser spot. They are attached to the Inner Detector
support tube and they shine directly on the outer layer detectors ( Fig. 6 ).
The variation of the centroid coordinate of the spot marks a break of the
steady state

2) a system of probes measuring local value of capacity (Ref. 5). The sensors are
placed on the VD supporting endrings (Fig. 7) and the corresponding ground
electrodes are glued on the ID wall (Fig. 8). Since the capacity of the probe-
electrode system depends on geometrical parameters (mainly the gap and the
overlapped surface), we can recover global informations on the VD position
variation from local capacity measurements. The procedure is quite complex
and a careful analysis on systematic effects is needed (Ref. 6).

Both systems can provide a few micron precision on a single point and
measurements can be done at a 1 Hz frequency, thus they guarantee a high
sensitivity to any "alarm" situation. Furthermore the set of measurements can be
quite helpful to reconstruct any global VD position variation. Anyhow they are
affected by basic limitations such as:

* they can monitor just relative positions and an independent "bootstrap"
procedure is needed anyway

* the number of surveyed points does not allow a good quality fit at the single
module level, thus a rigid body behaviour has to be assumed for the whole
detector and local effects can not be recovered.

So we can say that the stability time interval determines the relative
importance of any statistical method versus the instrumental one and the
"granularity" of the alignment procedure. At one extreme we could have to face
mechanical vibrations at the Hertz level; then we just might use the informations
from the survey systems, assuming the VD as a rigid body. On the other hand we
could have a weekly long steady state or more; then we can really trust the
statistical method, even distinguishing details in a module.



3. - FUNDAMENTALS OF THE RESIDUE ANALYSIS

As we already said, alignment criteria can be based on the comparison
among informations on charged particle trajectories independently reconstructed
in DELPHI and the Vertex Detector.

We can get an analytical solution of the alignment question assuming
"small" deviations from the nominal position: we linearize the functional
dependence of the residue on the geometrical parameters of the actual position
with respect to the nominal one (first order in the McLaurin expansion).

This has to be a reasonable assumption when the actual position of every
single module in VD is independently looked for, irrespective of the systematics
by the whole chamber localization in the DELPHI reference frame. And indeed we
assume "mapping” has been succesful and we already "bootstrapped” the
procedure determining the Vertex Detector as a whole position. The procedure we
are going to describe can be applied for this very first step too, once a single set of
six parameters determines the misposition of every local reference frame. The
major challenge in this case comes from the possibility of having finite and not
infinitesimal parameter values. If it is so then numerical solution to the x2
minimization have to be looked for.

3.1 - Preliminary Considerations

The projection of one of the horizontal VD modules in the plane orthogonal
to the beam is shown in Fig. 9. For any other module the same representation
applies in a reference frame rotated by a suitable multiple of 15°. The measured
coordinate in the module reference frame is x', defined as the transverse to the
strip direction.

It is worthwhile to underline that an unknown deviation from the nominal
position induces an error on the assigned impact point in the DELPHI frame
depending on either the track geometry and the actual position of the
module with respect to the assumed one (this is an important remark
expressed in Ref. 7, the very first paper where the alignment question has been
faced in DELPHI) .

In Fig. 10, we show three situations corresponding to Ax, Ay translations and
an a rotation around the module symmetry point. Corresponding to unknown x
translations the impact point of a particle does not change and the systematic
error is Ax, irrespective of the track direction. On the other hand, the effect of a y
translation is an impact point variation, from P to Pay. So if mispositioning is
neglected we assign the coordinate x!'pay at the nominal y rather then x'p and

the systematic error is
_Ay . ii
= Xp- X
tg(e) = “PTXPAY

depending on the track projected direction. If we consider an o rotation around
the z axis then we have either a variation of the impact point and a change in the
local x axis, so the error is:



1
xllpgy - xp = X -1
* 7P p[ cos(a) - sin(a) tg( ’;— - ) ]

A second remark concerns the residue distribution. For each reconstructed
charged particle track we can extrapolate the trajectory onto the VD module
sensitive surface. The residue is defined as the difference between the coordinate
transverse to the strip of the extrapolated impact point (x'extra) and the one
measured by the VD itself (x'vD). If the VD current module is not affected by any
misalignment, the residue distribution will reasonably be gaussian with <Xx'extra
- x'yp > = 0; the variance should be O'ZRES = czx'(VD) + °'2x'(cxtra)’ i.e. the sum in
quadrature of the VD intrinsic resolution and the error on the extrapolated
intersection point.

Because of a neglected deviation from the ideal position the average value of
the residue distribution is shifted and the widht increased, i.e. there are a
systematic average error and a degraded measurement precision. As we
will see below, we can distinguish geometrical parameters of the actual position
affecting just the average value shift or the broadening or both. As example, we
consider the effect of a Ay neglected translation.

Since
B
({dm tg(w) tg(B)
<tgos= g = § [ax Az = 3o (1+ 1620))
fdw
0
B
]dm 192 ()
<tgza)>=oT =
tg(B)
_1 fdx x2__ 1g(B) breta(ta(B) ) _ ta(B)
'BO 1+x2 ~ B B - B
where
0=%-0; Bp= 15°

we have an extra-contribution to the distribution r.m.s.

1/2

2
cres=Ay[‘%m- t- (g5t (1+162(6)) ]

i.e. about 7 pm for Ay =100 pm uncertainty in the y position of the module. The
effects by Ax, Az translations and by the three rotations can be calculated in a
similar way.



So we can get rid of the average systematic error by an unknown
misalignment just recovering the shift of the most probable value of the residue
distribution. But to fully exploit the intrinsic resolution of the detector we have to
determine the values of the 6 correlated geometrical parameters defining the
actual position of the module and the residue has to be corrected on a track by
track Dbasis.

3.2. - Explicit Calculation of the Residue

The module position is identified by its local reference frame (LRF, Fig. 11).
The LRF origin is in the symmetry point of the module and the axis orientation is
defined such as x]oc corresponds to the measured coordinate, yjoc is the normal
direction to the module, z]gc has still the beam direction (parallel to zDELPHI). In
the ideal geometry the LRF origins stay on a circumpherence having a radius

Rinner = 8.740 cm
Router = 10.891 cm

respectively for the inner and outer layer modules.
The actual position is parametrized with respect to the ideal LRF; since we
assume a rigid body movement, we have to recover 6 unknown quantities:

* three translations (Ax, Ay, Az) defining the actual local reference frame
origin with respect to the ideal one.

* three rotations (ex, ey, €z) defining the axis orientation. In the actual
position the axis are defined with same criteria as for the ideal LRF.

Instead of the Euler angles we perform rotations around the coordinate axis;
this choice is more suitable for "small" angle approximation. The rotation matrix
from the ideal to the actual module reference frame is

[ cley)c(ez)  c(ez)s(ex)s(ey)+s(ez)c(ex) s(ez)s(ex)-s(ey)c(ex)cez) |

-s(ez)c(ey) -s(ex)s(ey)s(ez)+c(ex)c(ez) s(ez)s(ey)c(ex)+s(ex)c(ez)

= s(ey) -s(ex)c(ey) c(ex)c(t:y) -

where ¢ stands for cos( ) and s for sin( ); for small angles it reduces to

Sy -€x 1

From now on we drop the "loc" subscript to identify the ideal LRF and we
act" if it is needed. We can write the actual module

label the actual one as
indefinite plane equation X in the ideal LRF as



n-(x-xg)=20

where
0
n=M1[1
0
nx = -cos(ey) sin(ez)
ny = -sin(ex) sin(ey) sin(ez) + cos(ex) cos(ez)
nz = sin(ex) cos(ez) + cos(ex) sin(ey) sin(ez)

is the normal versor to the module plane and

Xo = Ax
yo = Ay
zg = Az

identifies the origin.

We have now to extrapolate the  reconstructed trajectory by the outward
tracking chambers to this indefinite plane. As a result of the track fit we get the
charge, the mass, the intersection point coordinates Xref and the 3-momenta p on
reference cylindrical surfaces at different radii. As far as the VD is concerned the
reference surfaces are at 9 and 11 cm, and they are intersected by the module
planes. We then consider the straight line t passing by

(xref, yref, zref)
and having the direction corresponding to
(px»> Py» Pz)

(in the ideal module reference frame); its equation can be written as:

Yy - Yref = g'l (x - xref)
X

X - Xref = E:— (z - zref)

and we calculate the intersection between X and t. Approximating the helix
trajectory to a straight line over a few hundred microns for tracks with more
than 1 GeV momentum is an acceptable approximation; furthermore we linearize
the intersection point dependence on the 6 geometrical parameters.

So at zero-th order we get

xint(0) = Xref - Ex yref
Py

yint(0) = 0

zint(0) = zref - gl Yref
y



corresponding to the intersection with the ideal VD module; the first order
corrections can be expressed through the following derivatives

* x coordinate:

oXint _ . 9Xint _ .. 9Xint _ .

a(Aax) — 7 a(Ay) — a(az) — 7

dXint _ Px [ Pz . ]

aex) = py L py Yref - Zref |

xint _ . axint  (Px Y Py
d(ey) 0 d(ez) (Py ) (yref Px xref)

* y coordinate

int _ . int _ , yint _ .

a(ax) ~ a(Ay) ~ a(Az) ~
dyint Pz ) ayint ..
Aex) = Py Yref - Zref; aey) " 0;

9Yint _  Px Py
Aez) ~ Py (yref Px Xref )

* 7z coordinate

9Zint _ .,  9Zint _Pz 9Zint _ .
a(Ax) — ™ a(Ay) ~ py d(Az) ’
9zint _ Pz (Pz .
Alex) = py( Py Yref - Zref )

3zint Pz (Px ¥ Py
3ez) Px( Py ) (V'ef Px "’ef)

As a last step we need to calculate the x coordinate of the intersection point
in the actual module LRF, the only number that can be really compared to the VD

measured quantity:
Xint

x &t = ( M11 Mi12 Mi13 )| yint |- Ax

Zint
and we finally write the residue as:

x act 3y - x A€t 4 = Res = Res(0) + QkOk:
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where
.Px. .. Px (Pz ! Pz ' Px V¥ Py ):|
= '1 y ’ ) - y = sy 7 -
Q [ Py 0 Py ‘P_ypy ref Zref) (Zref Py yref) ( y ) (yref py ref

[~ A X
Ay
Az

0= Res(0j=0) = (xref Ex yref) - Xvd
Ex py

Ey
_SZ_

The Q vector expresses the residue sensitivity to every misalignment
parameter and it is track dependent. The distribution of the Qj for trajectories
within the module acceptance is shown in Fig. 12 a-d.

Now we can point out a few remarks already introduced in a qualitative way:

* a Ax translation changes the residue irrespective of the track direction. So
an x uncertainty strongly determines the average residue shift but it does
not affect the distribution width.

* Ay influence is determined by px/py. Since the module acceptance is 15 °, we
have 0 < px/py < 0.27, so a normalized y uncertainty changes the residue less

than a x one

* we have no first order effect by Az. This is quite natural since z is the strip
direction and the transverse coordinate is the measured one.
* as far as rotations are concerned, we have a hierarchy too, determined by

the px/py factor in the corresponding Qgj:

Pz
e ————— - - —
y > ( zref Dy Yref )

Ex - > ox ( Pl}’ref - Zref )
Py

2
€z - > '(pi) ()’rcf'p—Lxrcf)
y Px

* since < Qgy > = < Qgx > = 0, neither ex nor ey contribute to the average residue
shift, they just influence the distribution width.
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3.3 - Parameter Estimate

Once a suitable sample of tracks have been collected (see below), the
parameters 6 = ( Ax, Ay, €x, €y, €z ) can be estimated minimizing the sum in
quadrature of the residues:

N
2
x2 = E Wi ( Res(0) + QkO6k )j

j=1
If we define the matrices
Res(0)1 21 0 0 0
AL ; v 0 6220 O
Res'(o)N 0 0 0o2N
Q11...Q215
B =
QN1 ... QN5

then the quadratic sum reads
x2 = (A-Be)T v-1 (A - Be)
Minimization corresponds to the solution of the linear system

(BT v-1B)e = BT v-1 A
where

BT v-1B - z QTi wi Qi 5x5
i

BTv-1A = ) aT; wjResj(0) 5x1
i

so, if the LHS matrix is not singular, we get:
6 = (BT v-1B)1 (BT v-1 A
And the covariance matrix of the estimated parameters is:

Viit = (BT v-1B)1
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Apart from the pure technical procedure to get the estimated parameters, we
think there are a few important remarks:

1) alignment error. If the association between a VD measured point and an
extrapolated track is defined onto the ideal position plane, then the VD
information to be considered is

(xact(measured) - m), M = Q;6;.

So the error is

2
e e O
02VD =°21ntnns1c+02n = °2mtnns1c( 1 + 5 )
O Tintrinsic

i.e. the sum in quadrature of the intrinsic resolution and the alignment precision.

Since
o2y = Q@ Vit QT

the full covariance matrix of the estimated parameters enters the m error. The
number of tracks to be collected is determined by the condition

__ o2y

3. o << 1

C“intrinsic
and it corresponds to different precision on the single parameters, depending on
their impact on the residue (see below).

2) convergence of the estimated parameters. Using Vfit we can check
the consistency between the estimated parameters and the foreseen statistical
error.

First of all we can rely on the diagonal elements Vijj = 02i , the second order
momenta of the marginal distributions.We do expect the ratios 6x/ck, calculated as
the number of degrees of freedom increases, to be distributed as a normal. Indeed
ok's are also determined by correlation effects (see below) but if we wish to take
into account the influence on the current parameter value of the other estimated
ones we have to refer to the conditional distributions: their first and second order
momenta do depend on the actual parameter values, on the 62jand on their true
value.

Let us consider 2 correlated variables with gaussian probability distribution
function (p.d..f):

f( x1, x2) =2n1—~/|v|°"1’(' 15()t-u)T v-1 (X-u))
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where
621 poio2
x = (x1, x2); K= (n1, p2) vV = 2
pcic2 ©°2
p = correlation coefficient = xy.
Gxo'y

The conditional p.d.f. F(x2 | x1 fixed) is defined as the distribution of the

possible x2 values once x1=x1ﬁx°d:

f(x1 fixed, X2)
h(x1 fixed)

F(x2 | x1 fixed) =

where h(x1) is the marginal p.d.f. Since

+ oo
hix) = [ dxp f(x1, x2) =

B 1 oA xipg 2
~ V2p oy CXP( 2( o1 ) )

F simply reads

; 1 (x2-peff V2
F( x2 1 x1 ﬁxcd)=_mceff C"P(' 2( ceff ) )

so it corresponds to a normal distribution with squared mean
o2eff= 622 (1-p2)

and average value

o2
Heff = M2 +p - (x1 fixed-11)

and the correlation among the measured quantities is expressed by the functional
dependence of the x2 conditional p.d.f. parameters on the actual x1 value and its
marginal distribution quantities.

Extending the definition to the 5 parameters situation, we can write

f (X‘I y Xifs |=215)
F( x1 | x2f, X3f, Xaf, X5f) = (1 K=3.5)
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where the marginal distribution h is characterized by a covariance matrix
Vireduced deducted from V, cancelling row i and column j. So the generalized
conditional p.d.f. has a variance

o2 v

i,conditional = IV reduced|

while the exponential function argument reads
[ x-w)Tm V-imn (x-pdn ] - )Ty Vilig (x-p)g L g =

Statistical significance and parameter convergence have been checked on
MonteCarlo data using both marginal and conditional distributions (see chapt. 4).
In the latter we have artificially set pj to the true values; of course this is possible
just in the simulated world, where nothing can in principle escape our willing.
Since Nature likes to joke on our guess, inspite of our wisdom we should better
limit ourselves to the marginal distributions when real data have to be faced.

3) statistical weight of each residue. It has been simply calculated as
the inverse of the error on the residue at null misalignment parameters. Since

Res( 0j=0) = (xref - s

Py Yref) - Xvd

then through the error propagation we get

02Res(0) = 02xref + c72xvd + (p_); )2 02yref + (Yr_ef )2 02px +

PxXrg )2 oy +2 PxYref )pr,

- (Y_r_e_f_ PxYref )0 < _2(p_x PxYref )0 ref

3.4 - The 2 Parameter Case

In order to get a better insight into some numerical results, we considered
also an oversimplified situation where we allow just Ax, Ay translations. Being so,
the residue reads

Res( Ax, Ay ) = Res( 0,0)-Ax+%);Ay

Res(0,0) =R = (xref - ;)L; yref) - Xvd
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and the quantity to be minimized is

2
x2 = 2 wi( Ri-ax+aidy ) ai=(‘;,—’; )i

i
12
N = <WR2> + <w> AX2 + <wa2> Ay2 - 2<wR> Ax -

- 2 <wa> Ax Ay + 2 <wRa> Ay
The parameter estimates proceeds through the first order derivative

calculation, defining the linear system to be solved:

2

oxc . . _
3(Ax) = 2<w> AX - 2<WR> - 2<wo> Ay = 0

2

a(Ay) = 2<wa2> Ay - 2<wo> AX + 2<WwRa> = 0

The solutions are
Ax =D1/D Ay =D2/D

where

N> -<Wo>
D =det ( )

<Wo> -<Wol>

wR> -<wa> > <whR>
D] =det D2 = det
<WRo> -<wal> <wo> <wRo>

If we assume a constant wj, i.e. all the tracks in the sample have the same

statistical weight, then
D = -w( <a?> - <a>?2 ) =-w02a

so we have a determined system unless the sensitivity factor distribution is
delta-like, i.e. the detector to be aligned has a very limited geometrical acceptance
or particles in a narrow cone are selected. If it is so then we have an ill posed
problem indeed, since it is Dj1=D2=0 too. Whenever it happens we have no chance
of distinguishing Ax, Ay and we just recover the average shift of the residue
distribution.

In our situation a = px/py and it is uniformly distributed in (0, 0.27), with oq
= 0.27712 = 0.078. So, apart from numerical problems, the system is determined

and the solutions are
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<0l><R> - <a><aR>

AX =
<a?s> - <a>?

<o><R> - <aR>

Ay =
y <(X.2> - <(1>2

We can realize the estimated parameter values scale by an o factor,
reflecting the different contribution to the residue. We will see below this effect
again in the covariance matrix.

As far as the 5 parameter case is concerned, we have to say that the matrix
BTv-1B is not singular but the determinant is very small so to get reliable results
in its inversion all the calculations have been done in double precision.

We can now turmm to the error analysis; the questions we asked ourselves
were:

a) how the poissonian trend scales because of the residue sensitivity to the
current parameter

b) when we go from one to n parameters how the correlation changes the
values of the diagonal elements of the covariance matrix.

Let us start assuming we have just one misalignment parameter, that is to
say:

2 _ a 2
X E o2 ( Resk(0) + akw )

The error on its estimated value is

-1
o2 - z:az_k =[N<<ﬁ>] _1_ 02
@ o2k o2 N~ o2

k

so if we presuppose measurement errors and sensitivity are statistically
independent (this could not be true since o is strongly determined by the
extrapolation error, depending on the same quantities defining o) then

G = 1 <02>
©~" YN V <a2>

So the Poisson behaviour scales linearly with < 62 > and inversely with the
sensitivity r.m.s. Because of this we can state for example that, in the single
parameter case or for geometrical acceptances corresponding to uncorrelation,
the Ax error will be smaller than the Ay one since a = px/py.
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If both Ax and Ay are considered, then

1 -0k
oTkok = )

and we define the covariance matrix by the inversion of

( 2 E D3
o2k o2k

p 17 k k
V-l o= 2Qka=
Gk

k

\. k

assuming again 62k = < szcas >, then

and

v o= 62 mis > 1 <a?>  <a>
N <(12>-<(X.>2 <> 1
02A - <<52mis> <02> S <02mis>
X N <a2>-<a>2 N
o2py = <c?mis> 1 <c?mis> _1
y N <02>-<o>2 N <o

and we can see how correlation increases the values of the diagonal elements of
the covariance matrix. By the way, < a> = 0, i.e. uncorrelated translations, simply
corresponds to a symmetric module acceptance with respect to the DELPHI (y, z)
plane (or a rotated plane by a suitable multiple of 15 °). As we stated before, the
asymmetric geometry has been chosen to let the Lorentz force induced by the
DELPHI magnetic field shrink the charge carrier distribution for inclined tracks.

On the other hand, we can see how the correlation effect does not change the

average shift error, as expected:

02<'r|> = QVQT =
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<02mis> 1 <a?>  <o> -1
= 5 5 (- 1 <a> ) =

but we also recall that to get the nominal resolution back we have to correct the
residue on a track by track basis and then the full covariance matrix enter the nk

calculation.

Correlation effects are clear in the 5 parameter case too. Table I shows the
estimated parameter values and their marginal variance for different
configurations. We can clearly distinguish two uncorrelated subset of correlated
parameters:

* gy, €z
* AX, Ay, €7

We see how the second subset corresponds to the parameter defining the
average shift of the residue distribution while the first set ones are responsible

just for its broadening.

Table I - Estimated values of the geometrical parameters and their
variances for different configurations; the results refer to NDF=1500 and
the aim of the exercise is highlighting the correlation among subset of

parameters.

# of parameters

# 2 3 3 4 5
Ax 1 0.7 1.7 0.62 1.8
o 21 2.1 3.98 21 3.98
Ay 8.9 54 18.7 5.0 19

c 16.1 16 43 16.1 43

y
ey ©0.04 " 0.008 0.008
Oey " 0.02 ©0.05 0.05
Ex ' ' ©0.25  0.25
Oy ' ' ' 0.405 0.405
£y ' " 1.3 ' -1.3
o ' " 3.7 ' 3.7
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- Numerical results from a MonteCarlo calculation

The described procedure has been numerically tested through the DELPHI

apparatus simulation (Ref. 7) and analysis program (Ref. 8). The assumed
hypothesis are:

1)

2)

3)

A 35 um most probable measurement error on the null-parameter residue.
We have a fixed 5 pm contribution by the VD intrinsic resolution and an
extrapolation error; its distribution is not symmetric but it shows a long tail
to larger values, corresponding to badly reconstructed tracks.

We have generated and tracked through DELPHI isolated charged particles, to
skip any topological problem. In the following we will estimate the fraction
of tracks by hadronic final states that guarantee safety conditions. We
assumed a flat momentum distribution in the interval (2; 45) GeV/c; lower
momentum particles have strongly influenced trajectories by Coulomb
multiple scattering.

True geometrical parameter values are zeroes, that is to say we aimed to
check the measurement precision of the nominal position using the
described method. We have to remark this is a quite easy assumption; for non
zero parameters a major challenge is the identification of bias in the
associated tracks. In order to get rid of this problem we have to rely on very
simple topologies where associations can not be ambiguous and we have to
carefully cross check the experimental distributions of the sensitivity
coefficients (Fig. 12) with the Montecarlo ones.

The first numerical evaluation we did concerns the 2 parameter case; for

7920 degrees of freedom (NDF) we got

ox(1) = 0.890 um
oy(1) = 6.931 um

while for NDF = 4680 we had

ox(2) = 1.162 pm
oy(2) = 9.052 pm

and we can remark three points:

a)

ox(1) _ .ooy() : N(2) _
ox(2) = 0.766; oy(2) ~ 0.766; '\/N(‘l) = 0.769

so we numerically check the poissonian trend.

b)

ox(1) ox(2)
oy(1)  oy(2)

=0.128

since a e (0.017; 0.213) then
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<a>= 0.115

Go = 0.196/N12 = 5.66 x 10-2

thus
<ol>= 0.128

in full agreement with the numerical result

c) oy value has to be
6.95 N = 7920

_1_omis . {
Y =N oa

9.04 N = 4680

as we find from the numerical experiment.

Stepping to the 5 parameter case, we started with the consistency check
between the estimated values and the covariance matrix. Fig. 13 show the
distribution of the parameters normalized to the corresponding variance of the
marginal and conditional distribution. The histograms have been filled with
values after NDF=100, for 100 cycles. Furthermore, in Fig. 14 we have the trend

0kx/ox vs NDF

up to NDF=5000 and sampling frequency 1/50. They show the absence of errors in
the code and check the self consistency of the procedure.

For a few NDF values, we collect in Table II the estimated parameters, their
uncertainty, M and on as well as their own variance. This last quantity is
meaningful because it is related to the effect we mentioned since the very
beginning, i.e. the dependence of the residue on the track direction too; m and oy
distributions within a module acceptance are shown in Fig. 15 for NDF= 300, 700,
and 3000.

We then considered the full covariance matrix for NDF=3000 (linear
quantities in pm, angular ones in milliradians):

( 1.728 76.43 0.402x10-3 -0.2428x10-1 -5.847 \
»+  864.7 0.561x10-2 -0.3194x10-1 -69.95
V = . +  0.1367x10°2 -0.9435x10-2 -0.4886x10-3
. . . 0.8033x10-1 0.2263x10-2

- . . . 6.624 Y,

it is clear how the variances scale with the "importance" of each parameter in the
residue definition, according to what we remarked starting with the 2 parameter
case. We can also build up a correlation Table, according to the definition
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pij = Vij/oiaj

so we have
AX Ay Ex gy €z

Ax " 0.963 4x10-3 -3x10-2 -1.0

Ay : 5x10-3 -4x10-3 -0.924
Ex : -0.901 -5x10-3
ey ' 3x10-3
€z

The Table confirms the possibility of defining two subsets of uncorrelated
parameters, as we previusly stated.

TABLE I
T T N
| 700 1500 3000
X (nm) 14 1.8 0.6
ox(um) 5.7 3.9 2.7
y(um) 152 19 6.0
oy(um) 61 43 29
ey(mrad) 0.02 0.83x10°2  0.85x10"2
oey(mrad) 0.08 0.54x10-1 0.37x10-1
ex(mrad) 0.24 0.26 0.13
oex(mrad) 0.6 0.40 0.28
ez(mrad) -9.6 -1.3 -0.66
oez(mrad) 54 3.7 2.7
<> (um) 35 0.4 0.07
Ven2>-<n>2 (um) 84 1.98 1.0
<oq>(wm) 4.0 2.9 1.9
V<o2p>-<on>2 (um) 2.0 1.2 0.7
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Last but not least, we can estimate (Ref. 10) the time we need to collect about
1500 tracks per module, a reasonable number to get a oy value small enough with
respect to the VD intrinsic resolution.

The fraction of tracks from hadronic events useful for alignment purposes
can be calculated taking into account the following reduction factors:

1) VD acceptance (f1=0.8)

2) dead angles in its acceptance (f2=0.94)

3) separations between neighbouring trajectories larger than 1 mm at the
reference surfaces (£3=0.85)

4) momenta larger than 1 GeV/c (f4=0.60)

5) single module acceptance (f5=0.041)

Hadronic events correspond to 68% of the interactions and the average
number of charged particle is about 20. If we assume a luminosity L = 6x1030 cm-2
s-1 and a Z° production cross section o = 30 nbarn at its peak, then we have an
interaction rate 0.18 events/s. Being so, we should collect about 3500 useful tracks
per module a day, leptonic events included.

Even considering an extra 50% reduction factor, we should be able to have
enough statistics in 24 - 48 hours; but we have to remark the very strong
assumption we made concerning the extrapolation error about 35 pm; the larger it
will be in reality the longer the period we need to integrate over.
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FIG. 2 - Transverse (with respect to the beam direction) view of the DELPHI
barrel detectors.
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FIG. 3 - Impact parameter error in the plane orthogonal to the beams for different
detector configurations as a function of the particle momentum; the assumed VD
intrinsic resolution is Spm.
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FIG. 4 - Layout of the diode configuration in the Silicon microstrip detectors.



0 -5 0 5 "0

readout chip

c)

strip counter

mounting hybrid

FIG. 5 - A VD half shell (a); a schematic projection of the chamber in the plane
orthogonal to the beam (b) showing the module position; a single module layout (the
readout chip position is also shown) (c).
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FIG. 6 - Schematic drawing of the optical fiber + microprisma system bringing
laser light onto the outer layer detectors in 24 doublets of spots.
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FIG. 7 - Layout of the Capacitive Probe setup on the VD.
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