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ABSTRACT

A theory of the longitudinal painting in high intensity
circular proton synchrotron accelerators is developed. The study
of the uniform filling of a limited region of the booster phase
space (x,y) and a uniform line density on a finite interval of
the x-axis is achieved by describing the particle beam behavior
via the Vlasov equation with no space charge forces. Analytical
painting laws are found for both the cases of small oscillations
and pendulum-like motion.

1. INTRODUCTION

In the proton accelerators recently proposed by several
national and international groups for future basic physics at
intermediate energies, the current intensity appears as the new
fundamental characteristic parameter.

To achieve the requested values for this current in the final
beams, the procedure of injecting particles, without losses, from
one accelerating structure (ring or linac) to the next, plays a
very significant role. In particular it looks quite important to
transfer the beam from the linac to the first circular machine



which, for instance in the EHF projectl, is the booster
synchrotron. To be more specific, in order to accelerate 100 uA
one must reach a reasonable compromise between the number of
particles accelerated at each machine cycle and the repetition
rate: such a compromise is particularly delicate for the
synchrotron that operates at lower energies (the booster in the
EHF) because the space-charge problems become more serious.

The booster has its RF-buckets already formed at injection
and the linac bunches, often called microbunches, arriving
synchronously with the buckets, have to fill them in a controlled
uniform way; this requires either the same frequency for the
booster and linac RF (out of question) or, at least, a linac beam
"modulated” with the booster RF. The latter solution is possible
and must be adopted.

To fill the booster with the inserted amount of protons
(~2.5 x 10™) needs several injections turns (~200) of the linac
beam and the only efficient multiturn injection scheme is based
on the H charge exchange stripping process. The injection must
be arranged so that the high brightness linac beam (37 x 10° rad
m normalized transverse emittances and 0.6 x 107z eVs
longitudinal bunch area for EHF) is used to "paint” the much
larger emittances of the booster beam (257 x 10° rad m and 0.075
eVs respectively).

"Painting” is a term widely used, nowadays, to mean a rule
for populating a two-dimensional phase space with many small
spots in such a way that one finally ends up filling a much
larger surface. The spots represent the small bunches of the
linac and the surfaces of the phase planes considered here are
externally limited by closed continuous curves, named
separatrices, whose areas give the emittances. Painting in the
transverse phase space has been already achieved in existing
machines, but the wuse of simultanecous painting in the
longitudinal phase plane is a new concept introduced in the very
recent proposals for next generation facilities. The importance
of an appropriate filling of the three phase planes is to reduce



the transverse and longitudinal space charge forces and,
consequently, the possibility of losses in very intense current
beams.

An  additional practical advantage of performing a
longitudinal painting stays in using the synchrotron oscillations
to make the injected beam miss the H  stripping foil more
frequently on successive machine revolutions: the scattering in
the foil gets reduced as well as foil heating and activation,
thus enhancing its lifetime.

In this paper we deal with essentially the "longitudinal
painting” neglecting its coupling with the transverse motion,
which will be considered in the near future. Our purpose consists
of working out a general mathematical frame which i) enables us
to deduce various alternative ways of doing the longitudinal
painting, according to the constraints emerging from the special
system under examination, and ii) to formulate, correspondingly,
an adequate code.

A painting procedure constitutes a law of motion for the
center of the linac microbunch (or microbunches if we inject more
than one per turn) that can be realized in practice by using the
flexibility of the linac; it has to allow us to fill the desired
part of the bucket area in a uniform stationary way. The
cartesian coordinates (X, y) commonly employed are x=¢, the
particle phase and y = 274 E/o)s where AE is the energy difference
between the particle and the ideal synchronous particle of
frequency @ . As is well known, x and y are -canonically
conjugate.

To be more precise we here summarize the main features of the
longitudinal dynamics:

a) the equation of motion can be written in a Hamiltonian

form and Liouville’s theorem applies;

b) if no space-charge potential is included into the
equations, the synchrotron oscillations are pendulum-like
(small oscillations are harmonic);

c) at injection, for a limited number of turns (~200 in EHF)



the synchronous phase ¢_can be chosen zero (¢s=0), below
the transition energy, as one does for a storage ring,
thus getting a nice simplification in the oscillation
equations.

In this paper we emphasize mostly the analytical consequences
of the point a) (Liouville’s theorem) and develop detailed
calculations in a simplified model that allows us to derive
mathematical formulae in a compact form: we assume the linac
microbunches as Gaussian functions in the (x,y) plane and treat
them in the delta Dirac function limit. Furthermore, we are also
interested in finding those painting laws which provide the
closest phase space density, in the x variable, to the ideal
constant-uniform one.

In Sec.2 the Vlasov equations relative to both the cases of
harmonic and pendulum-like motion are solved starting from a
given initial beam distribution. Sec.3 contains some
preliminaries and a few considerations about the problem of
painting. In Sec.4 a connection is established between a phase
space radial density and its linear projection. In Sections 5 and
6, respectively, a model of uniform painting under the harmonic
approximation and in the pendulum-like case is dealt with.

Finally, in the Appendixes A, B and C details of the
calculations are reported.

2. THE VLASOV EQUATION

We suppose that a charge-particle beam in an accelerator is
represented by a collection of non-interacting particles moving
in a given external electromagnetic field. Then, the beam
behaviour may be described by the Vlasov equation, which assumes
smooth beam distributions which hold rigorously in the limit of
an infinite number of micro-particles each carrying an
infinitesimal charge’.

If we consider a distribution of particles in the phase space
(x,y), where x and y are canonically conjugate variables (say the
coordinate and the momentum, respectively), the Vlasov equation



reads
p,+xp+yp =0, @1
where p = p(x,y,t) is the beam distribution, subscripts denote
partial derivatives,
- _ dx _ OH - _ dy _ 0H
X = dt - ay ) y - t - = ax s (2'2)

and H is the Hamiltonian of the (conservative) system.
i) The harmonic case
Let us deal with a harmonic system with Hamiltonian
Q
H=—(x*+y") (2.3)

(The mass of the particle is taken equal to unity). Then Egs.
(2.2) give

x =0y, y=-0x, 2.4
and the Vlasov equation (2.1) becomes
p+ .Qypx - .pry = 0. 2.5

In order to find the general solution of Eq. (2.5), we shall
exploit the method of characteristics (Ref. 3, vol. IV, p. 302),
that associates with Eq. (2.5) the following system of ordinary
differential equations

- _dx _ d
dt = oy T T ox - 2.6)
Solving Eq. (2.6), we get
X +y=0C?, Q2.7
x = C sin Q(t+a) , (2.8a)
y = C cos Q(t+a) , (2.8b)

where C and « are constants of integration. We observe that (2.7)
expresses the conservation of the total energy (see (2.3)).

Now we require that at the time t = t’, x(t) and y(t) take,
respectively, the values x’ and y’, i.e.

x(t) = x', y’) =y . 2.9)



Then from (2.8) and (2.9) we obtain

C =vVx?i+ y’2 , (2.10a)

a=-t+ g tat I (2.10b)

Substitution from (2.10) into (2.8) yields
x =V x%+ y? sin (Q4t + tan’ —§:—) , 2.11a)
y =V x%+ y? cos (24t + tan’ —;:—) , 2.11b)

where At = t - t°,

Eqs. (2.11) represent a rotation in the phase space (x,y) at
the constant angular speed of Q.

The inverse transformation of (2.11) is given by

x> =V x* +y sin (-Q4t + tan? _g_) ,  (2.12a)

y =Vt + 7y  cos (-Q4t + tan’ _g_) . (2.12b)

Sometimes it could be wuseful to write the relations (2.11)
and (2.12) in a more explicit form. This can be easily done by
means of the addition formulae for the sine and cosine, keeping
in mind that

sin (tan ; ) = X -, (2.13a)
I x2 + y2

cos (tan’ ; ) = Y - . (2.13b)
»J x* + y2

In doing so, from (2.11) and (2.12) we obtain, respectively,

X = x’cos Q4t + y’sinQAat , (2.14a)

y = -X’sin Q4t + y’cos Q4t , (2.14b)
and

X’ = X cos QA4t - y sin QA4t , (2.15a)

y’ = x sin QA4t + y cos Q4t . (2.15b)

If p o(x(t’),y(t’),t’) is a known beam distribution at the



time t’, the general solution of the Vlasov equation (2.5) arises
formally from p 0 replacing x(t’) and y(t’) with the expressions
at the right-hand sides of (2.12) (or, equivalently, of (2.15)),
namely

PR, y, t; t°) =

= p,0/x* +y* sin ('94t+tan'l—;{7—)n/ x> +y? cos(-QAt+tan"! %);t’):
= p,(x cos QAt - y sin QAt, X sin QAt + y cos Q4t; ) . (2.16)

ii) The pendulum-like case
The Hamiltonian of a pendulum-like system can be written as

H=.Q(—gi+l-cosx). 2.17)
Hence, Eqs. (2.2) provide

X=0y, y=-Qsinx, (2.18)
and the Vlasov equation (2.1) reads

pt+9ypx-.(2sinxpy=0. (2.19)

The general solution of Eq. (2.19) can be found resorting to
the same procedure previously used in the harmonic case.
Eq. (2.19) allows the characteristics system

— dx _ d
dt = Oy = " sinx (2.20)
The equation
dx _ dy
y = .21
furnishes
2
{— - cos x =2C , (2.22)

which resembles the total energy of the pendulum (see (2.17)).
On the other hand, with the help of (2.21) the equation

_ dx
dt = oy (2.23)

can be put into the form



VITQdt = = | (2.24)
ICOSX'COSXO

where X, is an arbitrary fixed value of x such that

C? = - cos X, (2.25)
Then Eq. (2.24) can be integrated following the scheme
reported in Appendix A. We have

x =2 sin” [k sn (2 (t + o), B], (2.26)

where sn is an elliptic function of the Jacobi type (Ref.4,p.91),
o is a constant of integration, and

X
k = sin —— (2.27)

means the modulus of sn. Such a quantity is connected with the
total energy H through the relation

K = _2%_ , (2.28)

as we can immediately see by comparing (2.22) with (2.17) and
using (2.25) and (2.27).

The last equation which remains to be examined is (see
(2.20))

Qa=-9 . ___ & (2.29)
l1c*- Yy

where (2.22) has been used.
In what follows we check that (2.29) is compatible with the
expression of y coming from the first of (2.18)s, that is

y = 45 X = <5 S {2sin" [k sn (2 (t+a), BT} =

_ yken(Q(t+a),k) dn(Q(t+a)k) _
{1-k%50% (Q(t + @), k)
= 2 k cn (Q(t+a)K) , (2.30)

where cn and dn design elliptic Jacobi functions which are
related to sn by



cn’() + so’() =1, dn®) =1 -k sn?() . (2.31)
In fact, by differentiating (2.30) we have
dy = -2 k sn (Q(t + o), k) dn (2 (t + ), k) 2 dt .(2.32)
Furthermore, since
GC=2K-1 (2.33)

(see (2.25) and (2.27)), inserting (2.30) into the denominator of
the right-hand side of (2.29), we get

/1-(C*- %j)z = 2 k sn (2 (t+a), k) dn (2 (t+a), k) . (2.34)

Thus, by virtue of (2.32) and (2.34) we obtain that (2.29) is
identically satisfied.
At this point we demand that

() =x, yt) =y . (2.35)
Then Egs. (2.26) and (2.30) imply
x’ = 2 sin” [k sn (Q( '+ a), K], (2.36a)
y =2kcen (2 '+ ), k), (2.36b)
from which we derive
1 4 sin —2—,
@«=-t+tn [2——y,—],k), 2.37)
’2 ,
K = 4 +sin® 5, (2.38)
where tn”' indicates the inverse of the elliptic function
tn (.) = sn ()/en () . (2.39)

Introducing (2.37) and (2.38) in Egs. (2.26) and (2.30), we
provide

X . sin 32{—’
sin - = K'sn [.QAt + to° [2 S k’], k’], (2.402)

. x’
sin —

y =2 Ken [.QAt + tn"[z —+ k’], k’], (2.40b)

and
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»2 s
K =k@,y)= /4 +sin® 5 . (2.41)
Eqs. (2.40) admit the inverse transformations
. x’ -1 sin %
sin 5 = k sn [-gm + to [2 — ] k], (2.42a)
. sin %
v =2kecn [-QAt + [2 2 k ] k], (2.42b)
where
- .
k=k(x,y)=/—§4’—+sin2-§—. (2.43)

Eqs. (2.40) and (2.42) imply k = k’. One expects this result
because of the energy conservation.

On the analogy of the harmonic case, it might be convenient
to express (2.40) and (2.42) more explicitly. This can be
achieved resorting to the addition formulae for sn and cn, i.e.

(Ref. 5, p. 574)

snucnudnv+snvenudnu
sn (u £ v) = 5 5 5 ,(2.44a)
1 -k® sn“u sn’v
cnucnv Fsnudnusnvdnyv
cn (u£v)= 5 5 5 .(2.44b)
1 -k sn“u sn°v

In fact, by setting

?

sin ;{
tan ¢ = 2 y , (2.45)
we obtain (see Appendix A)
tn’(tan @) = cn”'(cos @) . (2.46)

Therefore,

cn [tn"!(tan @)] = cn [cn”(cos @)] = cos @ =

= 1 = oL, (2.47)

Il + tanqu‘
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sn [tn"(tan @)] = sn [sn”'(sin @)] = sin ¢ =

tang = L osin X, (2.48)

Jl + tanzq)‘

dn [tn”!(tan @)] = dn [dn™'(4 @)] = 4 ¢

2
=V 1-k’sin’p = /1-k2 _tan g - s 5 (2.49)

1+tan2¢

where (2.45) and (2.43) have been employed.

If we identify u with QAt and v with tn”'(tan ¢), and put
(2.47), (2.48) and (2.49) in (2.44a) and (2.44b), Egs. (2.40) can
be written as

ycos-2sn(@4t,k°) +2sinX_cn(R4t,k’)dn(24¢,k’)

, (2.50a)
2 [1- sin“z‘— sn?(Q4t,k *)]

Slll2

y’cn(24t,k’) - sin,x’sn(QAt,k’) dn(R4t,k%) (2.50b)
1-sin”2- sn®(Q4t,k’)
where k’ is given by (2.41).
Eqs. (2.42) can be elaborated in a similar fashion. We get

X’ -ycos%sn(.QAt,k)+2sin%cn(.QAt,k)dn(.QAt,k)

sin
z 2 [1-sin> X sn?(Q4t, k)]

X =

(2.51a)

s QAt k) + si QAt ,k QAt,
y = _yen( )1 31121 i sn(2 ) dn( k) (2.51b)
- 8in"—— sn (R4t .k)

where k is expressed by (2.43).

We observe that (2.50) and (2.51) can be obtained
correspondingly each from the other interchanging, respectively,
X, y, 24t, k with x’y’, -QA4t, k¥’ and viceversa, keeping in mind
that sn is an odd function and cn and dn are even functions.

We are now ready to write down the general solution of the
Vlasov equation (2.19). Following the same procedure applied in
the case of harmonic motion, we shall start from a given initial
beam distribution po(x(t’),y(t’),t’) where x(t’) and y(t’) are
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replaced by the right-hand terms of (2.42) (or (2.51)). In such
a way we are led to the formula
sin 2=

px,y,t;t)=p {2 sin”'[k sn (-Q4t + tn”'|2——2 k|, k)],
0 y

sin =

2 k cn (-Q4At + tn"[z -

,k], k); '} =

., -yeos——sn(Q4t,k)+2sin2—cn(R4t,k)dn(Q4t,k)
2 [1-sin’2— sn*(Q41t,k)]

= p,{2 sin

yon(@4t,k) + sin x sn(24t,k) dn(@4tk) . .y

, (252
1- sinZ% sn? (Q4t,k)

with k defined by (2.43).

Before closing this Section, we notice that for small values
of x, x’ and k, the pendulum-like solution (2.52) reproduces just
the harmonic solution (2.16), as one expects. This can be -easily
deduced looking at Eqgs. (2.51) in which

sin 3~ ~ Xx'/2 , cos 3~ ~ 1, sn (24tk) ~ sin QAt,

cn (24t,k) ~ cos QA4t, dn (24tk) ~ 1, (2.53)
where the modulus k is considered so small that we may take into
account only the lowest order quantities in the approximation
formulae of sn, cn and dn in terms of circular functions (Ref. 5,
p. 573).

3. STATIONARY CONDITION FOR THE LINE PHASE SPACE

DENSITY

a) The problem of painting

The problem of painting in the longitudinal phase space (x,y)
can be formulated, mathematically, in the following way.

Let (x o(t’), y O(t')) be the coordinates of the center of a
microbunch, injected at the time t’ and represented by the
distribution go(x - xo(t’), y - yo(t’)).

After the introduction of the trajectory (x 0(t), y 0(t)) of
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the center of the microbunch, that allows the wanted painting, we
must have for the microbunch distribution at the time t>t’:

p(xy,t) = J it’) g(x’ -x, ('), y" -y (t")dt’, 3.1
-00

where i(t) (a weight varying with time) denotes the so-called
injection function (whose shape is determined by the linac device
and whose dimensions are those of number of particles/time), and

X! = x'&Xytt), y =y &Eytt’), (3.2)
are the retarded coordinates at the time t’.
The actual coordinates (x,y), formally expressed by

x =x (®@,y,ttY), y=yE,y.,tt), (3.3)
constitute the inverse transformation of (3.2).

The goal one has to achieve in solving a painting problem, is
to obtain the functions of painting x(®), y,() in such a way
that the line phase space density

+00
PRt = J p(xy.9 dy, (3.4)

- 00

with p(x,y,t) given by (3.1), is stationary (time independent),
i.e. p(x,t) = p(x).

b) The stationary condition and the Vlasov equation

Let us write the Vlasov equation (2.1) as

P+ X p, + Y®) p =0, (3.5)

where X and Y are defined by
Xy) = x = 2y,YX) =y = -Q x (the harmonic approximation)
or X(y) = x = Q y, YX) = y = -0 sin x (the pendulum-like case).
Keeping in mind that x, y are canonically conjugate
variables, where y plays the role of momentum, one expects that
the condition
lim pEy,tt) =0 3.6)
x,y>F o0
is accomplished.
Integrating (3.5) with respect to y and taking into account
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(3.6), we deduce

+ 00 + 00

3‘;’—[ pry.LY) dy + @ aQ—J yp(xy.tr) dy = 0, (3.7)
- 00 - 00

from which we find
t + 00 t + 00
J drgd J p xRy, tt) dy+Q J dvgd Jyp(x,y,t;t’) dy=0, (3.8)
- Q0 - 00 - 00 - 00
for t’€(-o,t), where the microbunch distribution p is supposed
such that the interchange of the derivative 8/0x and the
operation of integration is meaningful.
If we require that p(x,t) is stationary, we have

t +00 +00
fp{x.t) — ?RJ av J PRy dy= l pytit) | . dy +
- 00 - 00 -
t + OO0
+ J dt’a%J pxy,tit’) dy = 0 . (3.9)
- 00 - 00
Combining together Eqs. (3.8) and (3.9), we obtain
+ 00 t + ©0
J pxy.tt) | ,_dy - 2 agJ dt’J yp(xy,t;t)dy = 0, (3.10)
- 00 - 00 - 00

that is another way to express the stationary condition (3.9).
Integrating (3.10) with respect to x and taking account of
(3.6) we get the following necessary condition for the occurrence
of (3.9):
+ 00 +00
J de Pyt | . dy = 0. (3.11)
- 00 - 00
Under the hypothesis that the microbunch distribution p is a
non-negative (or non-positive) function in the phase space (x,y),
the vanishing of the double integral (3.11) implies

py )| ., =0, (3.12)
This result means that there exists a value of the time, say
t , such that

o’
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pxy,t;;t)) = 0  for t’ > t - (3.12y

In other words, with the aid of (2.16) or (2.52), from the
relation (3.11) we deduce

px,y,tt) | oy = P,EYH =0, (3.13)

which must hold identically, i.e. for every t lying in the
interval in which one is interested.

Eq. (3.13) tells us that for getting the stationary condition
ap(x,t)/0t = 0, it is necessary that the initial microbunch

=t

distribution p 0 vanishes for every time t’ greater than a certain
fixed value t o Thus p , must take the form

P = P ®yit) Ot t), (.14

where 6 1is the Heaviside unit function. This means that the
condition (3.13) turns out to be verified for t’ > t)-

From (3.14) we infer that in order to achieve a stationary
situation after a given time t o’ the injection process has to be
stopped at the time t 0 itself. However, we remark that this is
only a necessary condition.

¢) An exact result concerning a simple filling strategy

Let us consider a simple filling strategy, where a great
number of microbunches are injected continuously and at injection
times belonging to the interval (0,27/2), where £ is the
synchrotron frequency, at the same locus (X oYo) in the
longitudinal phase space (x,y).

Adopting this filling mechanism, dubbed “"no-painting”
scheme®, the painting action is left to the synchrotron motion of
the microbunches.

Furthermore, let us suppose, by way of example, that the
distribution of any microbunch, injected at the time t’, has the
shape

py;t=t) = plax-x)'+ G-y, (3.15)
where «, f are positive constants.
Under the approximation of particle harmonic motion, the time
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evolution of the microbunch distribution p(x,y,t), for t > t’, is
ruled by the Vlasov equation (2.5). Thus (see (2.16))

pry;t>t) = p {a [(x cos 24t - y sin Q4t) - x I* +
+ B I(x sin Q4t + y cos Q41) -y 1’},  (3.16)
with At = t-t’.
Then, the line phase space density p(x,t) takes the form
p(x,t) =

+ 00
2/ Q 5
- [ dyJ p{al(x cos QA4t-y sin Q4 t)-x,1° +

) (3.17)
o FAL(x sin QAt + y cos Q4t)-y ] }dt’,

- 00
fort > ;22

At this point we recall that, as is well known (see, for

example, Ref. 3, vol. II, p. 401), if a function f(¢), defined
for any real value of £, is periodic with period T, one has

50+T T
J f(§)d = J f(§)d¢ . (3.18)
¢, 0
Performing the change of variable T = -4t and applying the
property (3.18), from (3.7) we get
+00 Qt+2m
1 p {a[xcos T+ ysin T-XO]2+
P(%.1) =HdeJ + B [-x sin T +ycosr-yo]2}dt =
-00 -0
+00 b¥
1 p {a[xcos T+ ysin t-xo]2+
_HJYJ + B [-Xx sin T +ycosr-yo]2}dt=
- 00 0

= p(x). (3.19)
This result shows that, within a simple and physically
reasonable model of filling strategy, the line phase space
density turns out to be exactly stationary.
d) A weak stationary condition

To tackle the problem of painting, one needs to invoke an
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appropriate definition of "stationary condition” for the x-axis
projection of the phase space microbunch density.

A definition of stationary condition weaker than that
considered in a) may be proposed as follows.

Let us assume that a given ensemble of microbunches, injected
in an accelerator machine, is endowed with a characteristic
length parameter, say a, generally depending on the injection
process. Then, we introduce the line density

a
+-
2

F(x,ta) = - | p(x’,0dx’, (3.20)

a
5.
2
where p(x’,t) is given by (3.4) and a is a positive quantity.
We remark that (3.20) recovers the line phase space density

(3.4) when a tends to zero, i.e.

lim F (x,t;a) = p(x,t). 3.21)

a> 0

The stationary condition for F (x,t;a) is reached whenever

3F (x,t;a) / ot = O. (3.22)

In other words, (3.22) (if satisfied) means that there exists
a value of a>0 such that, for every x, the number of microbunches
injected in the range (x-a/2, x+a/2) is constant in time. Of
course, in the case of a physical situation where the stronger
stationary condition dp(x,t)/0t=0 holds, then (3.22) should be
fulfilled for any value of x and a.

Furthermore, we observe that

a
x+ =
2

N = lim p(x’,t)dx’ (3.23)
a-> + 00
a

- 3

which should be independent both from the variables t and x,
provides the total number of injected microbunches.
Eq. (3.22) can be viewed in the light of the Vlasov equation

(3.10). In doing so, by the integration of (3.7) with respect to
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the variable x’ from x-a/2 to x-+a/2, we obtain

+ @
. +00

2
e J p(x’,t)dx’mj yloa+ Lyt - px- Lyl dy = 0, (3.24)

a > 00
2

from which we arrive at the (mecessary) condition

+ 00
J ylox+ 2y;0 - p(x- 2y;0] dy = 0, (3.25)
- OO
if (3.22) is supposed to be valid.
As a simple example of application of (3.25), let us take the
injection of a sole microbunch, described by the Gaussian
distribution

p&y;t=t) = C exp {-alxx(t) + ¥}, (3.26)
where C and « are positive constants, and (x O(t’),O) denotes the
center of the microbunch injected at the time t’.

Assuming, for definiteness, the particle harmonic motion
approximation, the evolution of (3.26) is governed by the Vlasov
equation (2.19); therefore

pEy;t>t) = C exp {-a [(x cos QAty sin QAt-x (')’ +

+(x sin QAt+y cos Q4At)Y}. (3.27)
Inserting (3.27) into (3.25), we are led to the constraint

a(x + X, cos QAat) = 0, (3.28)

from which we argue that no value of the parameter a>0 can be
determined such that (3.28) is satisfied for any x, i.e. the
stationary condition (3.25) cannot be achieved via the injection
of one microunch only. This result, although obviously expected,
can be reproduced as well starting from the requirement of the
stronger stationary condition.

4. DISTRIBUTION OF PARTICLES WITH A RADIALLY
SYMMETRIC PHASE SPACE DENSITY
For later wuse, it is of interest to establish a connection
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between a phase space radial density and its projection (line
density).

For this purpose, let us consider in the phase space (x,y) a
radially symmetric particle distribution of the type

pxy) = p &+ y)) 6 ®R*- x*-y), (4.1)
where R is a given constant and # means Heaviside’s unit function

(that is equal to unity for x*+ y’< R?, and zero elsewhere).
By definition, the line density p(x) reads

+ 00
px) = J p(x.y) dy, (4.2)
- 00
which becomes upon substitution of (4.1):
\/ R? - x? R? - %*
p®) = | p,(+y)dy =2 p (F+y) dy, (43)
J R2 - X2 0
with |x| = R.
In the polar coordinates frame x = r cos B, y = r sin B,

Eq.(4.3) can be written as

B £p,(r)
pPx) = 2 —_— dr, 4.4

/P x

while the number of particles is

R

N = 2n J r po(r) dr. 4.5)
0
Therefore, the radial density n(r) is expressed by

n(r) = 2nr po(r). 4.6)
Taking account of (4.6). (4.4) yields

px) = = | —20 g4 @4.7)

2 2
r -Xx

Furthermore, by letting
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z=R-¢ " w =R?-%° , 4.8)

(4.4) takes the form of the Abel integral equation

\ 4

g(w) = J _x(@) g 4.9)
0 vVWwW-12
where
gw) = p(x), x(@ = p,r) . (4.10)

As is well known. Eq. (4.9) affords the solution’

v4

x@ = — ng EW) 4w =
vV Z- W

0

=L g0 L + },J £®  gw, @1

where g’(w) = dg/dw.
Below we deal with some simple special applications of
(4.11).

i) Let us choose g’(w) = 0, i.e. g(0) = const. Then (4.11)
gives

2@ = const - 1 4.12)
vV Z
and, consequently (see (4.6) and (4.8)):
n(r) = const — 28 | (4.13)

VR -
If const = 1/(2R), (4.13) coincides exactly with the radial
density quoted in Ref. 6, corresponding to the constant

projection p(x) = 1/(2R).

ii) Let us start from g(w) = const X w = const X (Rz-xz).
Then (4.11) gives
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x(z) = const [ L aw = const x = VZ', (4.14)
which, by setting const = %, yields the elliptic radial density
4R
a) = 2L V/R -2, (4.15)
R3

S. DISTRIBUTION OF PARTICLES IN A PHASE SPACE POLAR
COORDINATE SYSTEM

Here we shall easily prove that in a phase space polar
coordinate system, a distribution function p(x,y,t;t’) leads to a
time independent phase space density.

In doing so, assuming for simplicity the small oscillations
approximation, we notice that if

p (xyt = t't)) = po(x,y,t’) = po(r cos B, r sin B;t’) =
= 7,@pt) .1

denotes the initial distribution, then the evolution of the
distribution for t>t’ is formally given by (see Sec. 2)

DB t>t5t) = p,r cos(B - QAt),r sin(f - Q4t);t’]. (5.2)

We can determine the full particle distribution by
integrating (5.2) over all the injection times t’€ (0,t}), with
t the maximum injection time. We get

t?

M
P @pit) = J P @B t>vi) dt’ . (5.3)
0
Then, we can define the phase space density P(r,t) as

27T 2 ¢

M
P(r,t) = J p@pit) df = J dg J B t>tt) dt’ =

0 0
0

tL’{ 27T
= J dt’J P [r cos(B-Q4t),r sin(B-Q41)t’] df,  (5.4)
0 0
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which can be written as

Tt - QAv+27m

Prt) = | d’ | P ,(r cos B, 1 sin Bt)dp =
Yo QA
ty AT
= dt’ ?)'o(r cos B, r sin B’;t°)df’ = P(r), 5.5
o o
where the change of variable 7 = g - Q4t and (3.8) have been
used.

A similar result can be obtained as well in the case of

particle pendulum-like motion (see Ref. 6).

6. MODEL OF UNIFORM PAINTING UNDER THE HARMONIC

APPROXIMATION

Case I: injection of microbunches along the x-axis

Let us suppose that a great number of microbunches is
injected in a booster of a proton synchrotron machine along the
x-axis of the longitudinal phase space (x,y). Assuming a
continuous injection mechanism, we consider an initial microbunch
distribution of the delta function type, namely

p,(xy;t’) = 1 o(x-x (t'))d(y), 6.1)

for injection times t’ such that 0 =< t’st’M, where (xo(t’),O) are
the coordinates of the injection point at the time t’, and I
denotes a constant injection function. In what follows, we shall
normalize I in order to have one particle only injected in the

. . 1
interval (O,tM), so that I = T

The form (6.1), wh;::h tells us that the microbunch
distribution 1is particle-like at every time t° lying in the
interval (O,t’M), can be regarded as the limit of a Gaussian
distribution (see Appendix B).

In the case in which the particle motion is harmonic, the
time evolution of the distribution (6.1) is given by (see Sec. 2)

pPEXy,t;t°) = I d[x cos QA4t - y sin 4t - xo(t’)] X
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X O(x sin QAt + y cos QA4t), 6.2)
where At = t - t’, and (X,y) denotes the position of the
injection point (x 0(t’),O) at the time t.

The center of the microbunch distribution (6.2) occurs at the
point (X,y) such that

X cos QA4t - y sin QA4t - xo(t’) = 0, (6.33)

X sin A4t + y cos Q4t = 0, (6.3b)
which imply

X = xo(t’) cos At , y = -xo(t’) sin QAt . (6.9

The total microbunch distribution is obtained by integrating

(6.2) over all the injection times t’G(O,t’M), i.e.
e’ e’

M M
pRy,t) = Jp(x,y,t;t’) dt’ =I J 0 [x cos QA4t-y sin QA4t

0 0
X, ()]6(x sin QAt + y cos QAt) dt’. (6.5)

Let us perform the calculation of the integral (6.5) using
the second delta function. To this end, we recall that if f(&) is
a single-valued function, the following property

5 [f®)] = ¥ 1 5 (&-¢) (6.6)
F1E@ ey ’
j

holds, where f° = df/d¢ and Cj are the (isolated and simple)
zeros of f(&).

The zeros of the argument of d(x sin 24t + y cos Q4t) take
place at

o=t + — (@ - jm), 6.7

where 6 = tan’'(y/x) and j is a (positive or negative) integer.
Then, with the help of (6.6) we can write
J(x sin QA4t+y cos QAt) =

1
% Q2| x cos Q4t-y sin Q4t]| ,_,
j

_ 1 s o
= L, g o"-t), (6.8)

where

S(t-t) =

r=xcos 8 + y sin @ (6.9)
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and (6.7) has been taken into account.
Inserting (6.8) in (6.5), we get
M
pPXy,t) = p(r,0,t) = —}2— Z'j + J a(r-xo(t’))a(t’-t;) ar’ =
0
= o z = 3%, ), (6.10)
where the summation index j runs over all those values for which
0=t = t;{.
Now we shall evaluate the number of particles, AN(r),
contained in a circular ring of radii r and r+A4r, where Ar< <r. We

have
27T r+4: 2T
AN(@) = J a6 [ r’p(r’,0,t) dr’~ rar [ p(r,0,t) do . (6.11)
0 r 0
To calculate (6.11). we need to evaluate
27 2
J p(x.6.1) 48 = z = J 5-x,(t)) do. (6.12)
0 0

At this point we make the hypothesis that x o) is a
monotonic function for t’G(O,tL’{). This means that the microbunch
carrying out the painting passes once only through each point
(x,y). Consequently, in (6.10) only one term contributes. If we
suppose also that xo(t’) is a continuous and monotonic function
and X 0(O)=x p X 0(tl"{) = X, the microbunch distribution p(r.0,t)
turns out to be different from zero for all values of r belonging
to the interval of extremes x ] and X, Therefore, in (6.12) only
one contribution survives..

To compute (6.12) we exploit formula (6.6), which entails the
determination of the zeros of the argument of the delta function

J(r-xo(t’)) in terms of the variable 8. We find (see (6.7))

s 1 .
r = xo(tj) = xo[t + - (00- jm)l. (6.13)
Calling m the value of the index j corresponding to such a
contribution, from (6.13) we have

6, =-21It-x'()-m - 1 (6.14)
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Then

Q
o(@-x (t) = a(6-6), 6.15
(Tx,(t) o] 6-6)) (6.15)

] dx
where x = 9
o dt’ -

Indeed, remembering that 8 = tan'l(y/x) = QAt, the
application of (6.6) requires

ex @)= 3 - x % = x5 = & 2O (6.16)
Hence, by virtue of (6.13),

d ex @)= %) . = 5%x'D] (6.17)
da () 0=00 2 Yo re=t’ 2 %ol . :

Finally, by substituting (6.15) into (6.12), (6.11) becomes

AN(@) ~ — 14t (6.18)
| x,[x;" @] |

Hence, the average density of particles inside the circular

ring is given by

AN(r) _ I
2 nrdr 27r | f;o[x;l(r)] |

P(r) = (6.19)

We point out that this average density is obtained starting
from a distribution function which is not rotationally invariant.
In fact, in the case of continuous injection, the particle
distribution in the phase space (x,y) is different from zero
along a spiral whose parametric equations, in the parameter t’,
are given by (6.4), and whose pitch depends on the painting law,
i.e. on the shape assigned to the function x o(t’). In the case of
a discrete injection mechanism, the particles will be distributed
on points belonging to the same spiral.

We notice that the approximation (6.19) approaches the
rotationally symmetric particle distribution as the spiral closes
onto itself (reduced pitch).

After these considerations, in the following we shall derive
the painting function x,(t) which allows two densities of
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physical interest, namely i) a uniform density inside a circle
centered at the origin of the phase space, and ii) a uniform line
density on a finite interval on the x-axis. In doing so, we shall
replace the exact particle distribution with the average density
(6.19).

i) We observe that in order to have a uniform density, the
number of particles contained in a circular ring of radii r and
r+A4r has to be proportional to the area of the ring itself. This
condition reads (see (6.19))

2 r+4r
ANG@) = J aé j 1’P(r’) dr’=
r+Aro ’ 1
-1 ,[ | x(’,[x(‘)l(r’)] | dr = 1| X(_,l(r+Ar)-x(',1(r) | =
= y [A(r+4r1) - A(D)], 620)

where A(r) denmotes the area of the circle of the radius r, y is a
constant of proportionality, and the change of variable t’=x(')l(r)
has been used.

From (6.20) we infer that

x!() = (@M A() = (1/d) I*, (6.21)
apart from an additive constant, where d = I/(ny).
Remembering that x(')l(r) is the injection time of the beam on
the x-axis at distance r from the origin of the phase space
system, we get

x(t) =vVdT . (6.22)

Hence, to obtain a uniform filling of a circle of radius R
centered at the origin of the (x,y) frame, the injection has to
be carried out by means of the painting law (6.22) from t’° = 0 to
t’ = (R¥d).

A discrete version of (6.22) may be formulated by introducing

the injection time
t"=nr7, (6.23)
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where n is the injection turn number and 7 is the (constant)
interval between two injections. With the aid of (6.23), (6.22)
provides

n = 1/(d7) xin , (6.24)
where Xon is the position of the center of the microbunch
injected at the n-th turn.

il) Keeping in mind Sec. 4, we may approach a uniform line
density p(x) = 1/(2R) by choosing

py®) = ! : (6:25)
27R V R? -
(see (4.13) and (4.6)).
Comparing (6.25) with (6.19), we find

I _ 1
L] _l -
rlxx; @Il R /R.P
Since t* = x;l(r), (6.26) can be written as
xdxo—IR\/Rz- 2 (6.26)’
o dt” X, .26)
which yields

x,t) = RV 1-Iz(t;{-t’)2 . (6.27)

Therefore, to find uniform line density in the interval
(-R, R) on the x-axis, one must exploit the painting law (6.27)

from t'= 0 to t'= ¢’ = I »/R’-xf )

IR
Following the procedure set up for the case i), ome can also
determine a painting law corresponding to (6.26)° when a discrete

(6.26)

injection mechanism is assumed.

Case II: injection of microbunches along a curve in the phase
space

Here we generalize the content of Case I, in the sense that,

adopting again a continuous injection scheme, we consider the

injection of a great number of microbunches along a curve in the
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longitudinal phase space (x,y).
We start from the initial microbunch distribution

P(x,y,t) = 1d(x - x (") (F - y, ('), (6.27y

where t’E(O,t;{) is the injection time, and (xo(t’), yo(t’)) are
the coordinates of the injection point at the time t’.
Now (6.2) takes the form
pPEy,tt°) =1 d(x cos A4t - y sin A4t - xo(t’)) X
X O(x sin QAt + y cos QA4t - Y, (). (6.28)
To carry out the integral

tM
Jp(x,y,t;t’) dt’,

0
where p is given by (6.28), let us perform a rotation of the

(x,y)-frame which transforms the coordinates (xo(t’), yo(t’)) of
the injection point at the time t’, into the coordinates

(ro(t’),O) along the x’-axis, where ro(t’) = \/ xz t) + yz(t’) ‘.
The rotation angle is

Bo(t’) = tan'l(yo(t’) / x,(t), (6.30)
while in the new frame the coordinates of the point (x,y) read

X’ = X cos 00(t’) + y sin 00(t’), (6.30a)
y’ = -x sin Oo(t’) + y cos 0o(t’), (6.30b)
with
x () y,(t")
cos 00(t’) = W , sin Oo(t’) = W , (6.31)
X (1) = r,(t), y,t) = 0. (6.32)

From (6.30) we deduce the inverse transformation
X = x’ cos 0o(t’) -y’ sin 0o(t’) , (6.33a)
y = X’ sin 6 (t") + y’ cos 0,(t) . (6.33b)
Inserting (6.33) and (6.31) in (6.28), we find

Py’ tt)=I d[x’cos (.QAt+0o) - y’sin (!2At+00)-r0cos 00] X
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X & [x’sin (QA4t+8)+y’cos (QAt+6) - r_ sin 4], (6.34)

where the dependence on t’ of x’,y’,0 ) and T, is understood.
The microbunch distribution (6.34) is centered at the point
(x’,y’) such that

X’ cos (.QAt+0o) -y’ sin (!2At+00) = 1, COS 00, (6.35a)

X’ sin (QAt+00) -y’ cos (.QAt+0o) =T, sin 00, (6.35b)
which yield

x(’) = ro(t’) cos QAt, y(’, = - ro(t’) sin QAt, (6.36)

as one expects.
We notice that (6.34) can be written as
pELY,t5t) =10 [x’ cos 24t - y’ sin QA4t - ro] X
X 0 [x’ sin QA4t + y’ cos 2A4t], (6.37)
whose center, in the coordinate system (x’,y’), coincides with
(6.36) (see Appendix B).
Since in (6.37) the second delta function implies

tan? (y'/x’) = -Q4t , (6.38)
we may re-write the argument of the first delta function as

x’ cos QAt - y’ sin QAt - I, =r-r=r1-1
(see (6.30)). Firthermore, if in the second delta function we
replace x’, y’° by (6.30), we obtain the expression of (6.37) in
the old coordinate frame (x, y), namely

pRy,tt) = Ié(r-ro(t’))é[x sin(.QAt-Bo)+y cos(R4t-6 o)] (6.39)

The total microbunch distribution reads
t ’

M
pxy,t) = J p(x,y,t;t°) dt’ =
0
¢

=1 Jg(r-ro(t’))é[x sin(QAt-ﬁo) +y cos(.QAt-ﬁo)] dt’. (6.40)
0
Following the same scheme adopted for Case I, this integral
can be evaluated applying (6.6) to the second delta function,
whose argument vanishes for

y/x = -tan (24t - 00) R (6.41)
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which yields
QA4t = -0 + § + mr , (6.42)

where § = tan’'(y/x) and m is a (positive or negative) integer.

Unlike what happens for the Case I, (6.42) does not allow one
to determine explicitly the values of t’° for which (6.42) is
satisfied. This is due to the fact that now one does not know how
00 depends on t’. Anyway, indicating by (tme) the set of zeros of
(6.42), we get

Q(t - t;m) = -0 + 00(t;m) + mr . (6.43)
Therefore, we can write

Jd [x sin (Q4t - 00) + y cos (24t - 00)] =

= Z _1 st ) , (6.44)
rlQ+6 1 ,._. jm

jm

where 90= d Bo/dt’.
Substituting (6.44) in (6.40), we easily have

p,0,t) = Z 1 ST () (6.45)
Lrle+b @)l 0 im
which corresponds to the formula (6.10) previously derived.

If we suppose that r (t) is a monotonic function of t’, then
a sole term corresponding to ome root among the values {t;m}, say
t’, contributes to the summation in (6.45).

Furthermore, if r 0(t’) is also a continuous function with
ro(O) = T, ro(t;a) = I, the microbunch distribution p(r,0,t)
will be different from zero for all values of r belonging to the
interval of extremes r , and ..

With the help of (6.45), now we shall evaluate the integral

/4

T
rp(r,a,t) g = 1 3Gt (€)) db. (6.46)
. r] Q+6 @) |

0
In doing so, we observe that (see (6.43))

U=l =t+ 4 [F-0F) + mn, (6.47)
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where m’ is that value of m corresponding to the zero t’, and @
is the (unique) zero of the argument of the delta function in the
variable 6.

Thus, we can write

31, @) = o 3(6-9), (6.48)
0

a6 v =r(')l(r)

which leads to the relation (see (6.46))

/4
I
p(r,0,t) df = - Py =
’ t’)
'E rl Q+00(f ) | I'=r'1(r)l 9 |
0 - -1
v=r @

=L , (6.49)
] [r (]|
where (6.43) has been used. We can then exploit this expression
to calculate the total number of particles and the average
density inside a circular ring of radii r and r+A4r, centered at
the origin of the phase space frame.
The average density is given by

P@r) = 1 . (6.50)

2zr | 1 [ @] |
Comparing (6.50) with (6.19). we deduce that the results
(6.22) and (6.27) can also be achieved in this case in which the
microbunches are injected along a curve, instead of along the
x-axis of the phase space, provided that x ) is replaced by I,
Moreover, we remark that the corresponding formulae depend on the

painting variables, xo(t’) and yo(t’), only through ro(t’).

7. MODEL OF UNIFORM PAINTING IN THE PENDULUM-LIKE
CASE
Here we abandon the harmonic motion approximation and deal
with a model of uniform painting in the case where the
synchronous oscillations are pendulum-like.
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In this circumstance the particle motion is described by the
Vlasov equation (2.19), which reduces to (2.5) for small
oscillations.

Our model will be built up following the pattern of Sec. 6.
In doing so, it is convenient to introduce a new set of
coordinates, defined in terms of the phase space variable x and y
as follows:

sin 5 = k sn (8,k), (7.1a)

y = 2k cn (8.k), (7.1b)
where k? coincides with the energy of a particle of phase space
coordinates (x,y), and
2 sin

N

g = tn? [— k] . (7.2)
y

From (7.1b) we get
y=%2ken W] = 2k sn B dn BK) B. (7.3)
Comparing (7.3) with

y =-Qsinx (7.4)

and taking account of (7.1a), we find
B - A4t = const. (7.5)

Consequently, if

pxy,t = t’;t’) = Py (x,y;t") (7.6)
denotes the initial microbunch distribution in the (x,y) phase
space, the time evolution of (7.6) in the coordinate frame (k,5)
reads (see (2.52))

P EBt>t5t) = py {2sin” [k sn (5 - Q4AtK),

2k cn (B - QA4t.k);t’}. 7.7
Now let us consider an initial microbunch distribution of the
form (6.1). Keeping in mind (7.7), for any t>t’ we have

P kpB.tt) =16 {2 sin’ [k sn (8 - QA4t,k)]- x,(t)} X
X & [2k cn (B - Q4t,k)]. (7.8)
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By integrating (7.8) over all the injection times t’e(o’t;a)’

we obtain the total microbunch distribution
s

t
M

P kBt = J 7 kpB;t,t) dt’ =
0

t,
=1 JMa {2 sin” [k sn (8-24t,k)] - x,(t)} x
0

X 0 [2k cn (B - 24t.,k)] dt’. (7.9)

The integral (7.9) can be evaluated applying first the
property (6.6) in the second delta function. We have

5 2k cn (8 - Q4LK)] =
3(t-t’)
- ZJ 2kQ | sn(B-Q4t,k)dn(B-Q4t,%) | . _.
i

where {t;} is the set of zeros of cn (8-24t,k), namely

(7.10)

C=t-gB-@G+DK, j=0%1 %2 ., (.1

J
and K = K is the quarter-period of the Jacobi elliptic

functions, i.e.
T2

K (&) = J dp : (1.12)
o v 1-k*sin’g
Hereafter, resorting to the same assumptions made on the

painting function x (') under the harmonic approximation, we
pursue our calculation taking into account only one zero, say

 =t-—[f-@m+ 1)K]. (7.13)
Then, Eq. (7.10) becomes

I(t’-t?)
Jd [2k ¢cn (B - Q4t,k)] = m =
2kQ | sn(X,k) dn(X,k) |

3 J(t’-t;) .14

20k vV 1-X2

Substitution from (7.14) into (7.9) yields
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t°

pk,B,t) = I JMJ {2 sin[k sn (B-Q4tk) - xo(t’)} X
20kv 1.k Yo
X 8(t-t)) d = 1 o2 sin’k - x ()].  (7.15)
20kv/ 1-k?
In what follows, we need to know the value of the integral
4K
[ pcBt) df =
0
4K
- - J 3 [2 sink - x (t’ )] 4B . (7.16)
20k V 1.2 Yo

To calculate (7.16), we take first into account (6.6), which
gives

- o o(B-B,)
J [2 sin"k - xo(tm)] = () , (7.17)
af
B-8,
where £ o indicates the root of the equation
2 sin” k - x (t) =0, (7.18)
Second, since (see (7.2))
Xy (1)
k = sin —— (7.19)
and
X, dx 0 d x 0
COos 7 W =2 aB sin N (7.20)
by virtue of the well known property
f(x) 6(x - a) = f(a) o(x - a), (7.21)
where a is a constant, we can write
4K 1 4K a(ﬂ'ﬂo)
p(k’ﬂ’t) dﬂ = mE dﬂ =

: o Jap %ty
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g

_1 JAK J(B'ﬂo)
&1 %X W] |

0

1 . (1.22)
& X [X'@]|

In deriving (7.22), we have put

b

) xo(tm) ,
k = sin —y— = Xo(tm) , (7.23)

and have used
X (t") | dX (") dt’
B lpp, T Tl pp,

1 dXo(t’) 1 3 -1
=L e = - & X X',
L Y~

.
where ’
= X" () . (7.24)

Furthermore, we notice that (7.22) has been obtained assuming
for X, the same hypothesis already made on x ) for the harmonic
painting in the computation of the integral (6.12).

At this stage, let us consider a surface S in the phase space
(x,y) delimited by two closed curves corresponding to the phase
paths of particles of energy k’and k*+ Ak respectively.

The number of particles, AN(k), contained in S, is

AN(k) J p(x,y,t) dx dy =
N

= J pleBt) 17] dk dp ~ — 14K : (7.25)
S [ X X, ]|
where Ak< <k, J is the Jacobian of the transformation (7.2) (see
Appendix C), and (7.22) has been used.

The area 4A(k) of the phase space ring S is expressed by
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4K +4x
A4AKk) = 4 J dg rk’ dk’ ~16 K(kz) kAk, (7.26)

0 k
where A(k) denotes the area of the phase space region D,

including the origin, whose contour is the phase path of a
particle of energy k2.

Thus we can define the average density of particles inside
the ring S as follows:

AN(K) _ I

P& = '
k) AA(K) 16k K(k*)|X [X ' (k)]|

(7.27)

Now, in analogy with the harmonic painting treated in Sec.6,
we look for the painting function X 0(t’) which permits 1) a
uniform density inside the region D, and 2) a uniform line
density on a finite interval of the x-axis.

1) In order to have a uniform density, it must be

AN k) =y[Ak+4k-A®], (7.28)

where y is a constant of proportionality. With the help of
(7.25), (7.28) yields

X)) = 4 A ®, (7.29)

apart from an additive constant.

Keeping in mind that X(')l(k) is the time at which a microbunch
is injected on the x-axis at the position xo(t’), from (7.29) we
deduce

t = _}’_ A (K). (7.30)

We remark that under the approximation of elliptic phase
paths, A (k) coincides with the area of an ellipse of semiaxes X,
and 2 sin (x0/2) (see (7.19)).

Therefore, (7.30) gives

v ~ 2z 4 x sin (x/2), (7.31)

that is just the painting law employed by Colton /8,9/. In other
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words, to fill uniformly an elliptic region centered at the
origin of the phase space, the injection must satisfy the
painting law (7.31).

2) In the following, we shall regard the average density
(7.27) as a local distribution, in which the dependence on the
phase space variables (x,y) appears through the expression of the
energy k (see (7.1)). On the basis of this consideration, let us
define the line density

p () =2 r Llg(k) dy , (7.33)
0
where (O,yM) is the interval in which P(k) is different from zero
for a given value of x.

By means of (7.1), (7.33) can be written as
k

M
Pk =4 PE) o, (7.34)
JKk?-sint ™
- k“-sin >
s1n 2
where
x (t?)
k, = sin % = sin 3. (7.35)

We point out that (7.34) resembles (4.4). Therefore, the
problem of finding an expression for P(k) such that p(x) be
uniform, is similar to that tackled in the case of the harmonic
painting. As a consequence, P(k) should be given by

P (k) = S , (7.36)
k k; -k?

M

where s is a suitable constant. Substitution from (7.36) into
(7.27) yields the relation

_ Ik
X, K'®]] = e —1 /& 0*1 , (137

16s K(kz)
2
IkM

where ¢ = 165 °
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From (7.37) we have

k
M

k’K(k’?)dk’

. )

M

ot} t) . (7.38)

For practical purposes, it would be useful to exploit the
following series representation for K(kz) (see Ref. 4, p. 905):

K = F [g ,k] - % 21=l[% . ;1;18] -

{1+[ ] [1.3] k‘+...+[M]2k“+...}, (7.39)

2"n!

where F denotes the Gauss hypergeometric function.

Eq. (7.38) formally provides the expression for the inverse
of the painting function X () in order to have a uniform line
density on a finite interval of the x-axis of the phase space. We
remark that for k:a< <1, (7.38) reproduces just the corresponding
filling law (6.27) already found in the case of harmonic
painting. This arises taking into account only the first term of
the series expansion (7.39).

In doing this approximation, one can determine the constant s
appearing in (7.36), which turns out to be %ﬁ

Substituting the first three terms of (7.39) in (7.38), we
arrive at the approximate expression

k2 1,2, 3 s ., 1 (1,3 2] .2
M

- k‘] “I(t - ). (7.40)

In Figs. 1 and 2 we report the values of It -t") vs. X
calculated from (6.27), (7.38) and (7.40) for two different
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values of R, precisely R = 2.0 and R = 3.0.

We observe that for values of R smaller than 2, the
approximation (7.40) is better than that found for R = 2. We
deduce that formula (7.40) constitutes a very good approximation
of the exact law (7.38) in a large range of values of R.

CONCLUSIONS

We have outlined an analytical treatment of the longitudinal
painting problem in circular accelerators with high intensity
currents. The particle beam behavior is described using the
Vlasov equation with the harmonic approximation and for pendulum-
like motion, respectively. In both these cases, in which space
charge effects are neglected, starting from an initial microbunch
distribution of the delta function type we develop a model of
filling a limited region in the two dimensional phase space
(x,y). We also determine a painting law in such a way as to get a
uniform linear projection density. In doing so, we assume that a
great number of microbunches is injected turn by turn via a
continuous injection mechanism.

For the pendulum-like motion, a general painting law is

obtained which includes the corresponding one holding in the
harmonic case.
We point out that in dealing with the injection of microbunches
along a curve under harmonic approximation, we find a painting
law which is formally the same as that derived in the case where
the microbunches are injected along the x-axis. It 1is quite
reasonable to guess that this situation may occur also in the
case of the pendulum-like motion.

Concerning the arguments of Sec.3, we remark first that a
very simple filling strategy leading to a stationary line density
is achieved, where the painting action is left to the self
synchronous motion of the microbunches. Second, in regard to the
concept of the weak stationary condition, we feel that it
deserves further deeper investigations for a more systematic
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theory of the painting.

Although many questions remain unanswered about the painting
strategies in circular machines, we believe that the analytical
approach developed in this paper may be a first attempt to set up
a satisfactory theory of painting. An obvious next step of our
program is to tackle the painting in which also space charge
effects are taken into account.
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APPENDIX A
For the reader’s convenience, in this Appendix we report the
standard procedure to solve the pendulum equation

2
X L Psinx=0. (A1)
dat?

where x = x(t), being t the time variable.
First, let us multiply (Al) by dx/dt and integrate the
resulting equation. We get

_%_ [g%]z - cosx = C. (A2)

where C is an arbitrary constant.
If we suppose now that x 0 is the greatest displacement from

the equilibrium position, then (dx/dt)t=t = 0, where t, is such
0
that x(to) = X, Thus, (A2) provides

C = -Q cos X, - (A3)
Inserting (A3) into (A2) we obtain

1 dx = VI Qadt. (A4)
V/COS X-COS XO

At this point we introduce the quantities k and ¢, defined by
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X
k = sin -3, (A5)

and
cos x = 1-2 k¥ sin® ¢ , (A6)
which allows us to write

COS X - COS X = 2 K cos® o, (A7)

sinx =2 ksing v 1K sin’p . (A8)

Substitution from (A7) and (AS8) into (A4) yields

and

1 do = Q dt . (A9)
v l-kzsinqu

The time 7 necessary in order that the pendulum reaches the

position x = X starting from the equilibrium position x = 0, is
given by
g [P0 1 1
T = HJ dop = o) F(k,¢o), (A10)
o V 1-K*sin’p

where (see A6)
9, = sin’ [ji— sin —5- ] (A1)

and F(k,q)o) denotes the elliptic integral of the first kind.
Now let us put

@
u=mm=J : dp’, (A12)
oV l-kzsin2¢’
where ¢, the amplitude of u, is denoted by
¢ =amu (A13)

By means of (Al2) one can define the following Jacobi
elliptic functions of modulus k:

sn (u,k) = sin ¢ , (Al4a)

cn (k) = cos ¢ = v 1-sn’(u,k) , (A14b)
dn (wk) = 4¢ = vV 1-k*sin’p , (Al4c)
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dn (u,k) = sn (u,k) / cn (u,k) = tan @ . (Al4d)
The inverse functions of (A14)s read
u = sn'l(sin ¢.k) = cn'l(cos ¢.k) = dn'l(Aq),k) =
= am”’ (p,k) = tn? (tan ¢,k) (A15)
By integrating (A9) and using (A15) and (A6), we obtain

P
J g dp’ = Q-t) =
0

v 1-k%sin%p’
— sn(sin p,k) = sn"[ Lsin X ,k], (A16)

which finally yields the general solution of (A1), namely
x = 2 sin” [k sn (Q(t-t),k)] . (A17)

APPENDIX B

In order ti prove that (6.34) and (6.37) have the same center
(6.36), for the reader’s convenience we report here some
mathematical notions on the theory of distributions.

Following essentially the terse exposition of Ref. 10, a
distribution <f, ¢> is called regular, when it can be put into
the form

+
<f, ¢> = J fx ¢ (x) dx , (3B1)

- Q0
where the integral is meant in the Lebesgue sense, f(x) denotes

the conjugate of f(x), the test function ¢ (X) € c® e ¢ x) =
¢ & PR SPP xn) is an infinitely continuously differentiable
complex valued function defined in every point of Rn).

As is well known, the Dirac delta function is really a
singular distribution. However, there exist sequences of c®
functions which have distributions as their weak limits'®. To
this regard, we remind the reader that a sequence of
distributions {fn(x)}(n = 1,2,...), converges to the distribution
f(x), iff
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lim < f (x), $(x) > = < f(x), ¢(x) >, (B2)

n->+ ©0

for each test function ¢(x). f(x) is named the distributional (or
the weak) limit of the sequence {f (x)}.

An  important example of  delta-sequence, for  the
one-dimensional case, is constituted by the sequence of test
functions of the Gaussian type

f(x) = —2 exp (-n°%%) . (B3)
n v

Then, the Dirac delta function can be represented by

lim < f (), ¢(x) > = ¢(0) , (B4)
n->+ 00
for any test function ¢ (x) € D, where D is the space of all
C%-functions ¢(x) defined on R and vanishing outside some bounded
region of R " which depends on ¢(x).
From (B4) we have

lim < f (x) = J(x). (0:5))
n->+ 00 .
In the two-dimensional case, the Dirac delta function can be
defined by

lim < £(x, X)), 8(x,, X,) > = $(0,0), (86)

n->+ Q0

for any test function ¢(x . x2)€ D, where fn(x 1,xz) is given by

fn(xl,xz) = %2exp [-nz(xf + x;)] . B7)

Eq. (B6) tells us that

lim < fn(xl, x2) = J(XI, xz) = 5(x1) 5(x2) . (B8)

>+ 00

It turns out that the two-dimensional delta function (BS8) is
invariant under rotations.

We shall resort below to the following operation. Let A be a

non singular linear transformation of the independent variables
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X = (xl,xz,...,xn). The formula

<f (A x), ¢(x) > = <f(x), $(A"'x)>, (B9)

| A
holds, where A is the inverse transformation and |A| the
absolute value of the determinant of A.

Now let us introduce two systems of cartesian coordinates,
say (X,Y) and (X’,Y’), where (X’,Y’) are rotated counterclockwise
through an angle 00. The coordinates of a genmeric point (X,Y) in
the first frame are transformed into the coordinates (X’,Y’) in
the second frame by the relations

X’ = X cos 00+ Y sin 00 R (B10a)

Y’ = X sin 00+ Y cos 00 . (B10b)

By means of (B7) and (B8), we may define in the (X,Y)-plane a
delta function centered at the point (X o’Yo) = (r , Cos 0
rosin 00), where I, is a positive real number.

Keeping in mind (B9), under the rotation (B10) the two-
dimensional delta function (X - X 0) oy - Yo) is transformed
into the two-dimensional delta function o(X’- r 0) d(Y’), whose
center takes place at the point (X(’), Y(’)) = (r 0,0) of the rotated
frame (X’,Y’).

If we identify X and Y with

o’

X = x’ cos (.QAt+00) -y’ sin (24t+6), (B11a)

Y = x’ sin (Q4t+0) + y’ cos (24t+6)), (B11b)
(B10) provides

X’ = x’ cos QA4t - y’ sin QA4t, (B12a)

Y’ = x’ sin QA4t + y’ cos QA4t. (B12b)

Therefore, the expression (6.37), regarded as a distribution
in the (X’,Y’) plane, can be obtained from (6.34) under the
rotation (B10).

In the coordinate systems (X,Y) and (X’,Y’) the distributions
(6.34) and (6.37) are centered at distinct points. However, we
point out that in the coordinate system (x’,y’), (6.34) and
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(6.37) turn out to have the same center, which is located at the
point (xo, y(’)) = (r0 cos 0A4t, I sin QA4t) (see (B11) and
(B12)).

Since

{[x’ cos (4t + 0)-y’ sin (4t + §)]-r, cos 6}

+ {[ x’sin (Q4t+0) + y’cos (Q4t+6)] - rsin 6 }* =

= [(x’ cos QAt-y’ sin Q4t) - r0]2 =

= (x- r,cos QA + '+ r,sin QAt?, (B13)
by virtue of (B7) and (B8) it follows that (6.34) and (6.37)
represent the same delta function.

APPENDIX C
Here we calculate the Jacobian of the transformation (7.1),
namely:
dx ox
dk 9B

g% g% (C1)
To this aim, exploiting the derivatives of the Jacobi
elliptic functions in regard to their modulus k (Ref.12), we have

- 2 Sp ks B =
Y 1-Ksn?(8,k)

- 2 [sn (8.%)k cn(B,k)dn(B,k) dF], (C2)
v 1-K%sn%(8,k) o

0x _
& = 2k en (B0, (C3)
8 =2 caBk) + 2k $p cnBk) = 2 ()

+ 2 k sn(8k) daBk) $F (C4)
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g% = 2k sn(8,k) dn(8,k), (C5)

where F denotes the elliptic integral of the first kind. The
insertion of (C2) - (C5) in (C1) provides J = -4k.
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0 0.4 0.8 1.2 1.6 x.cey 2
Fig. 1: Behavior of the injection function xo(t’) for the
harmonic case [Eq.(6.27), curve (a)] and the pendulum
case under the approximation (7.40) [curve (b)].
Curve (c) represents the exact painting law (7.38)
for the pendulum-like case. Elsewhere we have chosen
25.
ICE,-E)
2.0+

Fig. 2:

R = 2.0.

Behavior of the same painting laws pictured in Fig.1
corresponding to the choice R = 3.0.



