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ABSTRACT — Within a purely classical formulation of “strong gravity”, we associated
hadron constituents (and even hadrons themselves) with suitable stationary, axisymmet-
ric solutions of certain new Einstein-type equations supposed to describe the strong field
inside hadrons. Such equations are nothing but Einstein equations — with cosmological
term - suitably scaled down. As a consequence, the cosmological constant A and the
masses M result in our theory to be scaled up, and transformed into a “hadronic con-
stant” and into “strong masses”, respectively. Due to the unusual range of A and M
values considered, we met a series of solutions of the Kerr-Newman-de Sitter (KNdS)
type with so uncommon horizon properties (e.g., completely impermeable horizons), that
it is worth studing them also in the case of ordinary gravity. This is the aim of the present
work.

The requirement that those solutions be stable, i.e., that their temperature (or sur-
face gravity) be wvanishingly small, implies the coincidence of at least two of their (in
general, three) horizons.

(*) Work partially supported by CAPES, FAPESP, and by INFN, M.P.I. and CNR.



In the case of ordinary Einstein equations and for stable black holes of the KNdS type,
we get Regge-like relations among mass M, angular momentum J, charge ¢ and J cosmo-
logical constant A. For instance, with the standard definitions Q? = G¢?/(4weoc?)) ; a =
J/(Mc) ; m = GM/c?, in the case A = 0 in which m? = a? + Q* and ¢ is negligible we
find M? = J, where ¢ = G = 1. When considering, for simplicity, A > 0 and J = 0 (and
q still negligible), then we obtain m? = 1/(9A). In the most general case, the condition,
for instance, of “triple coincidence” among the three horizons yields for |Aa?| << 1 the
couple of independent relations m? = 2/(9A) ; m? = 8(a? + Q?)/9.

One of the interesting points is that — with few exceptions - all such relations (among
M, J, q, A) lead to solutions that can be regarded as (stable) cosmological models. Worth
of notice are those representing isolated worlds, bounded by a two-way impermeable
horizon.

1. INTRODUCTION.

Within a purely classical approach to “strong gravity”, that is to say, within our
geometric approach to hadron structurelll, we came to associate hadron constituents with
suitable, stationary, axisymmetric solutions of certain new Einstein—type equations, sup-
posed to describe the strong field inside hadrons.

Such Einstein-type equations are nothing but the ordinary Einstein equations (with
cosmological term) suitably scaled downd. As a consequence, the cosmological constant
A and the masses M result to be scaled up, in such a theory, and transformed into a
“hadronic constant” and into “strong masses”, respectively.!!:2,

Due to the unusual range of values therefore assumed by A and M, we met a series
of solutions of the Kerr-Newman-de Sitter type, which had not received attention in the
previous literature. Moreover, the requirement that those “(strong) black-hole” solutions
be stable (i.e., that their surface temperature, or surface gravitity®, be vanishingly small),
implies the coincidence of at least {wo of their (three, a priori) horizons. This fact makes
such black-hole solutions so interesting and with so uncommon horizon-properties, that it
is worthwhile studying them also in the case ol ordinary gravity, that is to say of ordinary
Einstein equations.

2. THE FOUR SPACE-REGIONS ASSOCIATED WITH A CENTRAL,
STATIONARY BODY. HORIZONS AND THEIR MAIN PROPERTIES.

Let us consider Einstein equations with cosmological term
1 8rG

Ry — é‘guuRZ + Aguy = —kT,; [k= c_4], (1)
choose (whenever convenient) units such that G =1 ;¢ =1, and look for the vacuum so-
lutions describing the stationary axisymmetric field created by a rotating charged source.
This solutions is the Kerr-Newman-de Sitter ({NdS) space-time, whose metric in Boyer-
Lindquist— typel¥! coordinates (¢,7,6,¢) writes [¥1 (with the signature —2):

ds® = —p*[dr’/B +d6*/D] — p~2A7?[(adt — (r® + a*)dy)?sin® 6 +
+BA™2p7?[dt — asin® 0 di)?, (2)



withm = GM/c? ; a = J/Mc; p* = 1* +a’cos’0 ; A=1+4+Ad*/3; B= B(r) =
(r* +a®)(1 —Ar?/3) —2mr + Q*; D= D(0) = | + (Aa®cos?0)/3; Q* = (G/4ameoct)g? ;
quantities M, J and ¢ being mass, angular momentum and electric charge of the source,
respectively. For simplicity, let us here analyze only the case A > 0.

One meets the event horizons of the space (2) in correspondence with the divergence
of the coefficient g,,, i.e., when B(r) = 0. This equation,

(r* + a®)(1 - A—TZ) —2mr+Q*=0 (3)
3 ~ = Y

admits four roots, one of which, rg, is always real and negative. The interesting case is
when eq. (3) has four real solutions; in that case we shall have three positive roots: let us
call them ry,rq, 73, with 73 > 75 > 1. [The case in which A < 0 is less interesting, since it
yields at most two real positive roots]. We shall sce that at r = r3 we have a cosmological
horizonl®], while at 7 = r, and r = r; we meet two black-hole horizons analogous to the
two wellknown r = r, and 7 = r_ horizons of the Kerr metric.

The three horizons 1, 2, 3, in the general case when they are all real, divide the
space in the four parts I, I, IIT and IV (see Fig.1). On each horizon, quantity g,, = g11
diverges, i.e. ¢"" = 0. Quantity ¢ does change sign when passing from any region to the
adjacent ones.

IV

Figure 1: Given an (almost) pointlike stationary body, generating, when A # 0, a Kerr-
Newman-de Sitter space-time, it will in general possess three horizons 1,2,3, which divide
the associated space into the four regions I, I, I1, IV. On the horizons g,, diverges, i.e.,
9" = 0. Quantity ¢ does change sign when passing from any region to the adjacent ones.
Surface 3 is the cosmological horizon and surfaces 2,1 are the outer and inner black—hole
horizons, respectively.

For instance, in regions III and I it is always ¢" < 0, as expected in the case of
an ordinary Kerr black-hole; on the contrary, in regions II and IV it is always ¢"" > 0.
Actually, it is possible to define a Killing vector K* which is simultaneously time-like in



regions III and I (but not in regions IT and IV too). Therefore one can have stationary
observers (r = const.) only in regions III and I, in the sense that only there the r = const.
trajectories are time-like.

Let us call time-like the (ordinary type) regions III and I; and space-like the other
two regions II and IV. Let us explicitly mention also that if the (time-like) Killing vector
K* is future-pointing in region III, then it will be past-pointing in region I. An analogous
sign—change occurs when passing from region II to region IV (in which, however, K* is
space-like), so that — if the geometry of region IV is expanding — then that of region II is
collapsing!.

From a more formal point of view, lel us represent the properties of such regions,
and of their horizons, by depicting the behaviour of their various radial null geodesics.

For simplicity’s sake, let us confine ourselves to the static case (Reissner—-Nordstrom—
de Sitter metric), which is not qualitatively different. From eq. (2), by putting a = 0, we
find for those geodesics:

ds? = Fdt? - Fldr*=0 ; F = B/r* (4)

By integration of eq. (4), after some algebra one gets [m = 0,1,2,3]:

3 .
t=F3A"1Y ay,r’ log |7— -1+ C¢ (4”)
T'm

m=0

where Cz. are integration constants, and a,, are “constants” whose value depends on the
values of the four roots ro, 7, 79,73 of eq. (3). The behaviour of the radial null geodesics
t = t(r) is given in Fig.2 for the four regions. In eq. (4’) the upper (lower) sign corresponds
to outgoing (ingoing) geodesics.

As confirmed by Figs. 1, 2, our four horizons are semi-permeable surfaces. With our
choice of the time direction, both horizons 1 and 2 can be crossed by causal (time-like
or null) curves only in the direction of decreasing »; whilst the opposite holds for horizon

3. For instance, causal particles can only be emitted by (but not enter) the cosmological,
r = r3, horizon. In Fig.3 we indicate by arrows the permeability of the various horizons
to causal particles in the general case of Fig.l, i.e. of the metric (2). Notice that the
horizon permeability properties are in this general (stationary) case the same as in the
particular (static) case of Fig.2, so that Fig.2 can be chosen (without loss of generality)
to illustrate the horizon permeability properties in the general case.

We are particularly interested, however, in the case when two or more of our horizons
coincide.
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Figure 2: The behaviour of the outgoing and ingoing radial null geodesics in the different
(four) regions of the Reissner-Nordstrém-—de Sitter geometry (static case). The case here
depicted corresponds in particular to T2 =2ry ; r3=3r; (withrg=—r; —ry — r3). The
semi-cones appearing in this figure point towards the future.

Figure 3: We indicate by arrows the semi-permeability to causal particles of the various
horizons in the general case of Fig.1 (metric (2)). Let us recall that, a priori, the opposite
choice is also allowed (“white-hole” solution) by time reversal invariance.



3. ON THE HORIZON TEMPERATURES (SURFACE GRAVITIES).

In the general (stationary, i.e. KNdS) case of metric (2), the Bekenstein-Hawking
temperaturel® T, of each horizon in Figs. 1, 3 is known to be proportional to the horizon
surface gravity as follows:

T,=¢v, ; e=h/(2rkpc) (5)

where kp is the Boltzman constant and n = 1,2,3. On any null-surface (in particular
on every horizon) the surface gravity’®'! can he defined by the equation 8,(K,K*) =
—2vK,, symbols 0, representing the covariant derivatives.

To evaluate the surface gravities v, let us then recall that our metric (2) does admit
two Killing vector K}, K, 4, the former being related to time-translation invariance and
the latter to rotational invariance of the space-time. By linear combination of K* and
. K one can construct Killing vectors K% = K/ +w, K* which vanish on the n-th horizon;
1.e., which there satisfy the relation (K,)*(K,), = 0. One finds w, = g1,/ (evaluated
at 7 = r,). We finally get for the horizon temperatures (and for A # 0) the expressions
T, = e, with

eA

In = 6A(r2 + a?)

H?;Sn(rn -r)| , [£=0,1,2,3] (6)

Eq. (6) yields the result that the horizon temperature can be vanishing small only
when two (or more) horizons tend to coincide; i.e., when two (or more) roots r; of eq.
(3) tend to coincide. This result is important since it leads to the conditions for a BH
(black-hole) to be stable, i.e. it implies some relations among mass, radius, charge, an-
gular momentum (and A) of a stable BH.

In the particular (Kerr-Newman) case when A = 0, one gets only two (or no) hori-
zons, corresponding to ry = m £ /m? —a® — ()?, and eq. (6) has to be replaced by
Te =¢(ry —r-)/(r] +a?).

We get a stable (T' = 0) black-hole solution when
ro=r_=m |, (7a)
that is to say, when the Regge-like condition does hold:
m?=a%=(Q*. (7b)

Incidentally, let us notice that in this particular case the stable black-hole e still
bounded by a semi-permeable horizon [in fact, r_,r, behave as ry,r; of Figs. s, «,.
However, since in this case region II disapeared, then the whole BH-interior is time-like!,
so as the external region III (with the difference that the light—cones reverse when passing
from region III to region I, i.e. the time-flow direction in region I is opposite to that of
region IIT). Let us call a solution of this type a semipermeable “time-like black-hole” (at
variance with the ordinary “space-like BHs”).



4. THE STABLE SCHWARZSCHILD-DE SITTER BLACK-HOLE:
A FIRST EXAMPLE OF NON-PERMEABLE HORIZON.

A more interesting case is that of the Schwarzschild—de Sitter metric, in which Q?
a’? =0, so that B = —Ar*/3 4+ r? — 2mr and two horizons only (with radii r_ = rg , .
rc, respectively) are met, whose surface temperatures result to be

en Bm

Tﬂ:=ﬁ( N TE) (8

N’

Once more, the requirement 7' = 0 implies that 13 = r¢ = r and that r = (3m/A)'/3.
The last equation can be read as

r=A"Y2=3m , [rg=rc=r] (9)
since those two radii coincide (only) when
9Am? =1 (10)

For completeness’ sake, let us mention that the two horizons radii can be written as

2ry = (Br + B2) £ V=3(B1 — Ba), with B, = [B£ VBT~ A3V ; B=3m/A.

Let us observe that the condition for a BH to be stable yields, besides the BH radius
(as a function of m and A), a further relation between m and A.

More interesting, here, is the observation that r_ and r, behave so as r; and rj3,
respectively, of Figs. 2 and 3. For this reason we called r_ =rg ; ry =r¢ (B

= black-hole horizon; C = cosmological horizon). When rg tends to coincide with rg,
the (time-like) region III disappears, so that we are left only with regions II and IV,
and the BH tends to occupy the whole space inside the cosmological horizon (roughly
speaking, the BH itself can be regarded as a model for a cosmos). See Fig.4(a). As a
consequence, the r = 3m horizon of the stable BH becames a totally impermeable surface
in either ways, i.e. a (two-way) non-permeable membrane, since it is the superposition
of two membranes semi—permeable in antiparallel directions. It is worthwhile mentioning
that, by choosing for A the value |A| ~ 10752 m~? ordinarily assumed for our cosmos,
the condition (10) yields m ~ 1 x 105 kg, which is close to the estimated mass of our
own cosmos. Incidentally, when passing to the “strong BH” case % with A replaced by
A ~ (10%°)%A, one would get m = m,.
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Figure 4: These figures depict the horizons and the available regions for the stable BH
solutions (and/or cosmological models) considered in this paper. Namely: 4(a) refers to

the Schwarzschild— de Sitter solution with vanishing surface gravity (i.e., for r_ = r);
4(b) and 4(c) refer to the general (Kerr-Newman-de Sitter) solutions for r; = ry and
ro = r3, respectively. In 4(b), the non-evaporating horizon is the internal, while in

(c) is the external one. Fig.4(d) does still refer to the general stationary case, but for
r1 = ry = 3. We meet semi—permeables horizons only in Fig.4(b), and (as far the internal
horizon is concerned) in Fig.4(c). All the other horizons in Figs. (a), (b), (c), (d) are
totally non—permeable. See the text.



5. CHARACTERISTICS OF STABLE BH (= BLACK-HOLES) AND
THEIR HORIZONS.

Let us now consider the characteristics of stable BHs in the general
(KNdS) case when the source is endowed also with angular momentum (sta-

tionary case) and charge. We have at our disposal two equations: (i) the
equation B(r) = 0 which yields, as before, the radii r, corresponding to
the horizons; (ii) the equation 7' = 0, implying the coincidence of two, or

more, *) radii r,, which guarantees the horizon stability. Those two equations yield
the system:

4 2
~ATT+(1—ATG)T2—2mr+a2+Q2=O
(11)
Ar® Aa?
—‘ZTT+(1—TG)7"—m:O

whose second equation requires the vanishing of the derivative B'(r) in correspondence
with the values r, which satisfy the first equation [B(r) = 0]. Such second equation,
therefore, ensures the solutions of the system to be double (or triple) “roots” of eq.
B(r) = 0.

After some algebra, we get explicitly — besides a first equation, yielding the stable
BH radii — a second equation providing us with a link among the various parameters
m,A,a,Q:

Imo
. (12)
Imio(bo —~ E) +2nE? =0
with E = 36% +4A6n — 18m?A ; 6=1—Ad?/3 ; n=a*+ Q% ; o =6 —4An.
It is easy to verify that: (i) for A = 0, egs. (12) reduce to egs. (7a), (7b); and that
(i) for n = a® + Q% = 0, eqgs. (12) reduce to egs. (9), (10).
Egs. (12) do yield, of course, both the stable BH solut*

dence of r,r,, and those resulting from the coincidence of 7y, 3. - scwund of
egs. (12) can be written as

T =

3ma _ 3Im 9m?2 2

—_ = —_—— 13
E 26 462 5’ (13)

from which one can of course construct two independent systems (yielding r4 and r_,

respectively, as a function of three out of the four remaining parameters m, A, a,Q).

Let us consider the two cases separately:

(*) Let us recall that the real positive radii (the roots of eq. (3)) can be at most three.; actl.lall).' they
can be one or three. The latter case is of course the only interesting one: and we shall imagine in the
following that three out of those (four) roots have actually positive real values, even if our formulas have

general validity.
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(i) When r; = r, = r_, region II of Figs. 1 - 3 does disapear and we obtain a stable
semi-permeable Kerr-Newman-de Sitter BH, similar to the stable BH encountered at the
end of section 3, in the particular Kerr~-Newman case. In that case, however, the stable
BH was surrounded by an asymptotically flat region III; whilst in the present case our
stable BH is surrounded by two regions (since we are still in presence of a cosmological
r = r3 horizon): region III, and a (space-like) region IV, asymptotically de Sitter.

In other words, both the external (III) and the internal (I) regions of the present
stable BH are time-like regions, separated just by a semi-permeable membrane. See
Fig.4(b). In such regions, however, time flows in opposite directions, in the sense that the
light—cones get reversed when corssing the horizon (cf. Fig.2 when eliminating region II,
by gluing 7, to 7). For the interpretation of this fact see e.g. refs. [&7.

Let us emphasize that the internal region (I) of our stable BH is not collapsing;
any causal observer O, can live therein without falling into the singularity r = 0: that,
incidentally, will appear to O, as a naked singularity.

At last, region IV is analogous to the exterior of a de Sitter (cosmological) horizon.

(i1) When ry = r3 = r4, region III of Figs. 1 — 3 does disappear and we obtain a stable BH
bounded by a non-permeable horizon originating from the fusion of a BH-type (r;) surface
and a cosmological-type (r3) horizon. The stable ry = r3 null-surface can be regarded,
therefore, both as a BH-membrane and as a cosmological horizon. Outside such a surface,
we meet region IV, asymptotically de Sitter. See Fig.4(c). No causal particle can cross
the (impermeable) ro = r3 surface, either coming from region II, or coming from region
IV.

Both the internal (II) and the external (IV) black-hole regions are space-like, since
the time-like region III (where causal observers usually live) disappeared. In regions
II and IV the light-cones, now, point in the direction of decreasing and increasing r,
respectively; no stationary observers can exist therein: region II is collapsing while region
IV is expanding.

Inside the r, = r3 surface we moreover have at 7 = r; a null surface that can be
considered the internal BH boundary, so as in the Kerr-Newman (or Kerr) case. In other
words, the r; (semi-permeable) horizon separates a space-like region II from a time-like
region I, so as it occurs in the interior of an ordinary Kerr-Newman BH.

6. TOTALLY IMPERMEABLE BHs AND “COSMOSES”: THE PARTICU-
LAR CASE OF THE TRIPLE COINCIDENCES.

In the very special case when all the three positive roots of eq. (3) do coincide, i.e.
when r; = ry = r3, we shall meet a stable BH with a single horizon, whose radius takes
on a simple analytical expression. Let us write eq. (13), more conveniently, as:

3Im Im? 2p
r=—=x\—(— ¢
26 462 46
and observe that the conditions of triple coincidence (which implies the existence of a
single positive solution) requires the vanishing of the square root, i.e. yields the solution:
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r=37 (14)
with the two simultaneous Regge-like constraints [ = a® + Q?:
(= Yo+ 07 (142)
Ad?
ﬁ . [6=1- T]
] m? = oK (14b)

Eq. (14b) comes from inserting egs. (14), (14a) in either of egs. (11).

In the present case, both regions II and III did disapear, and the horizon of our stable
BH becames a totally impermeable membrane separating a space-like external region (IV)
from a time-like internal region (I). Such solution is therefore a (non-permeable) “time-
like black-hole”. Region IV is asymptotically de Sitter. See Fig.4(d).

Such a BH solution is more conveniently interpretable (like in the cases in sections 4
and 5(ii)) as a cosmological model: namely, as a model of a totally impermeable (stable)
COSmos.

7. A FEW COMMENTS.

Let us stress, first of all, that for stable BHs we got “Regge-like” relations among
their mass and angular momentum and/or charge and/or the cosmological constant. For
instance, in the case A = 0 we got eq. (7b):

m? =a® + Q?, (7b)

which - when ¢ is negligible — can just be written M? = ¢J/G, that is to say [with
c=G=1]:

M?=J. (7)

On the contrary, when J = 0 and ¢ is still negligible, then we meet eq. (10), which can
read M? = (¢*/9G?*)A, or [with c = G = 1]:

M? = %A_l. (10°)

In the most general case, the considered relation (among M, J,q,A) is involute, and was
given by the second one of egs. (12). In the (simpler) case of section 6, i.e. of the “triple
coincidence”, we obtained two such relations, namely eqs. (14a), (14b), which are still
complicated. However, if |Aa?| << 1, eqs. (14) yield both

(®+Q% , (14%a)

m? ~

N=} ol
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to be compared with egs. (7b), (7’), and [with ¢ = G = 1]:
2
M? ~ '§A—] y (14’b)
to be compared with eq. (10’).

The most interesting point is that — with the exception of egs. (7b), (7’) - all such
“Regge-like” relations can be attributed to our (stable) cosmological models, i.e., to the
stable “cosmoses”.

Still with reference to our stable “cosmological objects”, particularly worth of notice
are those characterized by a totally (two—way) impermeable cosmological horizon: cf. sec-
tions 4, 5(ii) and 6. Such solutions may well represent (semi-classically, at least) isolated
worlds; whilst the ordinary cosmological models are usually bounded by semi~permeable
membranes!

Finally, let us mention that elsewhere we shall apply (and interpret) the results
presented in this paper to the case of “strong gravity” theories and “strong BHs”: i.e., to
the case of hadronic physics.
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