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ABSTRACT: In this paper we present a theory of the generalized magnetic monopole
without string, which is distinct from Dirac's original theory and also distinct from the
topological theory of the monopole. Our theory is first formulated in the Clifford
bundle formalism; and in the particular case of electrodynamics we deduce from
Maxwell equations the generalized Lorentz force and the equations of motion of charges
and monopoles. We discuss the conservation laws and the problem of the Lagrangian
formalism. We obtain Dirac quantization condition in two different ways.

Finally, we present a principal fiber bundle formulation of our theory using the spliced-
bundle concept with gauge group GxG, where G is the gauge group of the theory

without monopoles.
1.INTRODUCTION

In this paper we present the theory of the magnetic monopole without string. By this we
mean that in our theory the electromagnetic field generated by charges and monopoles is
described by a generalized potential which is the sum (in the Clifford bundle) of a I-
form and a 3-form field, which are singular only at the location of the charges and
monopoles.

Our approach contrasts with the one by Dirac where an unphysical singularity called
string (where the potential is singular) is introduced in order to be possible to describe
the electromagnetic field of charges and monopoles through a single potential which is a
I-form field (see §3).

Also it is worth-while to compare our theory, where no change in the topology of
space-time occurs, with the topological monopole theory formulated as a principal fiber
theory with group U(1). Indeed, in such a theory the monopole appears as a hole in
space-time which has then the non trivial topology R2xS2. All this is described in

§2,§3 and §4.
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In our approach to the monopole problem using the Clifford bundle formalism (§5), we
are able to deduce from Maxwell equations the conservation laws and the correct
coupling of electric and magnetic particles to the electromagnetic field. We are
consequently able to derive the motion equations for electric and magnetic particles. In
§4 we discuss also Dirac's quantization condition using two different methods. In §6
we discuss the problem of the Lagrangian formalism when monopoles are present.
Although the Clifford bundle formalism seems to be a perfect mathematical design for
the generalized electrodynamics with monopoles without strings, it is insufficient for
introducing analogous monopoles for non abelian gauge theories. We then, produce in
§7 a monopole theory without string in normal way. Indeed, we are able to associate
with the two potentials of the theory of §5 a connection in an appropriate spliced
bundle. In this way we obtain the geometrization of the theory as a principal fiber
bundle with gauge group GxG and then use the full apparatus of these theories to obtain
the field equation, etc.

In §8 we present our conclusions.

The paper contain Appendices A,B,C, that introduce respectively the Clifford bundle
formalism and the necessary ingredients for the formulation of the theory of §7 as a
principal fiber bundle theory.

2.STANDARD ELECTRODYNAMICS IN INSTRINSIC FORM

Let (M,h,V) be a Lorentzian manifold{1], and J. and F respectively a 1-form and a 2-
form fields over Mli.e., Je and F are sections of the Hodge Bundle (see Appendix

A)]. The Maxwell equations in free space are
dF=0, 8F=-J, (1)

where d is the exterior derivative (differential) and & is the Hodge codifferential (see
Appendix A for details). Let xM,p=0,1,2,3, beachartfor UcM. Let
(69=dx0,61,62,03) be an orthonormal system in T*U. Then, for xeU we have

the identifications [h=ny 6" ®56Y; nuy = diag (+1,-1,-1,-1)]:

~ 0 E; E, Es

‘E, 0 -B; B,

F,y = s Gedu= PesdepIesies) )
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where F)=(E1,E2,E3) is the electric field, §=(B1,B2,B3) is the magnetic field and
pe and je are respectively the charge and current densities. When space-time is flat,
then there exist charts valid for all M where  h=m,ydx*®3dx, and in this case

eqs.(1) are equivalent to

V.E = Pe VxB = %}?4 "fe (a)
3)
V.E =0 ~VxE =%’—f—\ ()

where dF=0 is equivalent to the homogeneous equations (3b) and OF =-J¢ is
equivalent to the inhomogeneous equations (3a).

To complete the formulation of classical electrodynamics it is necessary to know the
coupling between the electric currents and the fields.

This is done after we introduce the concept of a charged particle as a triple (mg, €, ),
where me>0 is said to be the mass of the particle, eeR is said to be the charge of the
particle and y: R I—-M is a future-pointing time-like curvelll. We now introduce

the

LORENTZ POSTULATE: The equation of motion of charged particles is given by

the equation

L -LF. )

where p=mys isthe momentum, sel is the proper-time, Y+ is the velocity of the
electric particle, F=FH, dxV®ey and eF(p,) is called the Lorentz-force.

3.STANDARD ELECTRODYNAMICS AS A PRINCIPAL FIBER
BUNDLE THEORY

The model of electrodynamics as a PFB is a follows ().Let (M,h,V) be a Lorentzian
manifold and let 7:P—M be a PFB with group U(1)={ei9,0e R} and with Lie
algebra  U(1)={ci,aeR}.
Let ® be a connection 1-form over P, i.e., we Al(P, fJ(l)), and let UcM,oy:U—P
be a local section. The pullback of @ is the electromagnetic potential, and we write
oy = o( © = -iAy (5)

(*) See Appendix B for details.



The electromagnetic field (Q® =dw) relative to oy:U—P is
iQy =Fy =dAy .. 6)

If oy:V—P is another local section, then from the fact that U(1) is abelian we have
[see eq. (B18)] that Fy=Fy. It follows that the curvature of the connection is in this
case a 2-form which is well defined in the base manifold M; in other words, the

electromagnetic field is gauge invariant.
Then, fixing UcM, if Ae A1(U,R) is the potential *), the field is F=dA with
A=AydxH, and Fyy=dyAy-dvAy. From Bianchi identity it follows that

dF=0 (homogeneous Maxwell equations) @)

As there are no reasons for OF to be null ,we put

8F=-J¢ (inhomogeneous Maxwell equations) "

where J is the current one-form here introduced in a purely “phenomenological”
way. Eqs (7) are the Maxwell equations introduced in §1 [egs(1)].

4. THE MONOPOLE

We put now a question: How can we modify Maxwell equations in order to describe
also magnetic monopoles. In order to understand the problems associated with the
existence of the monopole we consider here (M,h,V) as being a Minkowski space-time.
Then, there is a global coordinate system (x* ) in M where Maxwell equations have the
form of egs (3). The natural guess for introducing monopoles is to generalize

phenomenologically egs (3) into

VE=p B =%_%9-+ Te @
®)
V.B = Pm -VxE =Qg+ 'j')m ®)

The magnetic particles (monopoles) are modelled as triples (mg,g,0) where

(*) See Appendix B for details.



mg € R+ is the mass of the monopole, geR is its magnetic charge and 6: ROI—-Misa
future-pointing time like curve. The Lorentz force in this case is postulated to be

Fp=—gB+gvgxE ; 0,= (vg 1) ©)

where v is the Lorentz factor.
The intrinsic formulation of eqs (8) in the Hodge bundle read

dF = - *J (a)
F=-1J¢ (b) (10)

where Je, already introduced (eq. (2)), is the phenomenological electric current 1-form
and Jn=(Pm,—im) is the phenomenological magnetic current 1-form.
Before we go on, it is necessary to emphasize that egs (8) are invariant under the

transformations

Eo E'cosd + ?'sine
B- —F'sin0 + _B"cose

(11)
-  Jo'cosb + jp'sin® 2 —32'sin® + j'cosd
Pe—>  Pe €0sO + pp'sin® Pm— —Pe sind + py,‘cosO

As a consequence of this fact, we see that if the ratio e/g of all particles in nature is a
universal constant, ie, Je=kJm, k a constant, then it is a always possible to choose an
angle in eq (11) such that egs (8) transform into egs (3), i.e., the usual Maxwell
equations. In that case the label electric charge or magnetic charge would be arbitrary. In
what follows we suppose that  Je# kJm.

It is a well known fact that the existence of a Lagrangian formalism for the
electrodynamics of charged electric particles rtests on the fact that we can write
F=dA , for all xe M, since in this case the canonical momentum of a given charged

electric particle e is

Iy =pu teAy = -Q:L- ;u=0,12,3 (12)

dxH

where py is the kinetic momentum and



1 1
L = 5=(p, +eA, )2 - 7PVEuy (13)

Now, a magnetic monopole g at the origin of the coordinate system (xH) in M creates
a magnetic field satisfying V-B'= g8(%).
If the magnetic field is defined globally by a potential A, singular only at the origin

X =0 , i.e., F=dA, (or ?=Vx?), then the magnetic flux through any closed surface
S containing g must vanish. Indeed, dS=0 and by Stokes theorem we have

st=fasA=0 or

'[s B.dT = js (VxR).dS

- dr.ae - Pr.av-0 a9
r

where I is any closed curve in S . The moral of eq (14) is the following: If the field of
a magnetic monopole is to be described by a single potential A ,then at least one
assumption used to deduce eq (14) must fail to hold. We have at least three possible
solutions for the formulation of the monopole theory:

THE DIRAC STRING: A way out of this dilemma was found by Diracl?]. Imagine
an infinitely thin solenoid extending form -eo to the origin in the x3-axis of the (xH)

coordinate system. Its field ﬁsol satisfies V-?sol =0 and is given by

B o1 = g7 +£0-28(x)8(y)e (1)

4
where /z\ is the unitary vector in the x3 direction and (&) is the Heaviside function. This
magnetic field differs from the field of the monopole B= g—r)/41tr3

only by the contribution g0(-z)6(x)8(y)z due to the solenoid. Writing ﬁsd:VxK} ,

we have

I:i‘?»_) = VxR - gb(-2)8(x)8(y)2 (16)

The line occupied by the solenoid is called the Dirac string. We can solve eq (16) for
A obtaining



2D _ E . 1 —cos®

A(T)=7= > a7
where § is the unitary vector in the ¢-direction of the spherical coordinate system in
R3. Eq.(17) shows very clearly the singularity in the negative z-axis (6=n). Using
this potential invalidates the deduction of eq (14).
It is fundamental to observe that the line occupied by the string can be changed into
another arbitrary line in R3 starting at the origin, by a gauge transformation
A—)A—f;VQ where Q: R3R is a differentiable function.

This fact shows that the Dirac string is a non physical object. Dirac in 1931(2] and then
in 194803] developed, using the potential given by eq (17) a Lagrangian theory for the
motion of a charged particle in the field of a monopole. In particular in 1931 studying
the quantum version of the theory he found the famous quantization condition*)

%=ng—;n eZ (18)

We will obtain this condition in our theory (§5) using a procedure different from the one
used by Dirac.

To end, we must observe that in the case of the quantum formulation of the motion of
charges and monopoles with string there are non-trivial problemas which have not been
solved in a satisfactory way [4,5].

THE TOPOLOGICAL MONOPOLE: We saw in §3 that, interpreting the
electromagnetic connection as a 1-form defined globally over a principal U(1) bundle
over M, provides an alternative description for the electrodynamics of charged
particles. In this case eqs (3) hold good instead of eqs (10) and we meet the question:
Can Maxwell equations [eqs (3) ] accomodate the existence of magnetic monopoles?{’]
The answer is yes : all we need is a situation where does not exist a global defined
potential such that F=dA . This happens if the PFB ,n:P—M with group U(1)is non
trivial, since the existence of a global section (gauge) oy would provide a way to define
the potential iA=c{'} @ globally over space-time M. As all fibre bundle over a
contractible paracompat base space are trivializable[7}, we must choose as base of our
PFB a noncontractible space-time. This can be done by deleting the world line of the
magnetic monopole from Minkowski space. We choose then M=R4 - {pole world-
line}

In this theory the magnetic monopole is then of topological origin: it is a hole in
Minkowski space-time!

() In general we use units such thatti=1



Since M=R2xS2 and R? is contractible, the classification of the PFB's n:P—M with
group U(1) reduces to the classification of the PFB's m:P—S82 with group U(1).
The classification is given by the first group of homotopy w1 (U(1))=m1(S!)=Z . The
integer n, coresponding to the element of 7;(S!), is obtained by calculating the first
Chern class of P, cj(P)e H2(S2Z,R) over S2

[ see Milnor-Stasheffl6]]. Quantity c;(P) is given by

¢;(P) = —'i%i' (19)

where Q is the curvature of the electromagnetic field. The number

C, = 2n .[32 c,(P) 20)°

is an integer called the first Chern-number and it classifies all nonequivalent PFB
n:P—S2 with fiber S! and then it also classifies all solutions of Maxwell equation in

R3-{0}2S2. Thisinteger n is called the magnetic charge of the monopole.
Letthen S2 be described by two open sets Hy and H. and let 0<6<m; 0<¢<2rn

be the coordinates of H; and H. .
Let U(1) S! be described by the coordinates el¥,0<y<2n.
H;NH. is a thin band around the equator parametrized by . The =~ PFBm:P—S2
with group U(1) is then decomposable into two local trivializations.

Hx U(1), coordinates (9,(p,eiw+)

H_ x U(1), coordinates (9,(p,ei\l’—)
The transition functions gy, . :H+ N H.—U(1) are functions of ¢ and therefore are
elements of U(1) . We then relate H; with H. by

elV_ = elnP iV, @1)

For the resulting structure to be a manifold, n must be an integer. This means that the
fibers must be indentified when we complete a turn around the equator. This is
essentially the topological version of Dirac quantization condition [7],

When n=0, we have a trivial PFB;P(n=0)=S2xS1. When n=1 we have the famous
Hopf fibration of S3,P(n=1)=S83, which descibes a monopole with charge n=1. For
a general ne Z we have a PFB corresponding to a monopole with charge n. As we
already said n corresponds to the first Chern class and is given by eq (20). Let us do the
explicit calculations. Consider then a connection ® defined globally over the PFB
n:P—S2 whith group U(1) such thatthe “pull-backs” for two local trivializations

Hi are



Ay +:,,_1?d\|!+ over Hy
do ¥ @= 1 (22)
Hy A_+ Ed\v_ over H_

The choice of the transition function eiV  =¢in¢ ein¥_ [eq.(19)] implies the gauge

transformation A =A_+ ;—n do.

The potentials that satisfy Maxwell equations [V-'§=O] in S2=R3-{0} and are
regular in H; and H. are given by

Ay =7 (cos - 1)dg = j= XY 23)

The electromagnetic field on H{UH. is given by

F = dAi=ZnESine dOAd(p:—Z%lI-_g'(xdyAdZ+deAdx+ZdXAdy) 29

Using eq (20) we get
Cr=2n [, ei®) = [q F
R M

We see from eq (23) that Ay are singular along the “strings” - z and +z ,respectively,
where they are not defined. In the Dirac formulation local charts have not been defined,
A, being used for all R3-{0): this is the source of the (fictitious) “string”
singularities.
We end this “resume” about the topological magnetic monopole with the observation
that in the U(1) gauge theory of electromagnetism the discreteness of the unitary
representations of U(1) implies also the quantization of electric charge [7]. To see this,
consider a one-dimensional unitary representation of U(1) on C, i.e.,

p:U(1)-U(1); exp(it)—exp(iat)

The condition a(t+2m)=at+2nn,where ne Z, gives a=n. Assuming a minimal coupling
of the electromagnetic potential A with the matter field, of the type ( p, C ).[see App.
C] we have

DY =3,¥ - p,(0)eA,¥ = 3, ¥ — ineA, ¥ 25)



Since the electromagnetic potential couples to all charged fields, e is fixed!

We mentioned at the begining of §4 that there are three possible ways to formulate a
monopole theory. We already examined: (i) the Dirac monopole with string, and (ii) the
topological monopole.

In (i) we have unphysical singularities, and in (ii) [which refers to an extremely
beautiful theory] we need to change the topology of the space-time manifold.

We now present in §5 a theory of magnetic monopoles without string, with a
generalized potential, which is formulated in the Clifford bundle over space-time (for
definitions see Appendix A). The resulting theory rivalizes in mathematical beauty with
the topological monopole theory although it desviates from the main stream of present
theoretical physics which gives emphasis to the Lagrangian formulation. In § 6 we
present a generalization of the theory of the monopole theory without string as a PFB
theory with gauge group GxG using the spliced bundle concept and where G is a gauge

group of standard gauge theory.

S.THEORY OF MAGNETIC MONOPOLES WITHOUT STRING IN
MINKOWSKI SPACE.

We learned in Appendix A that, among others, we can give the structure of a Clifford
algebra to @AP(Tx* M) and, then, we can define the Clifford bundle over space-time

M, C(M). We know that in C(M) the natural derivative operator is the Dirac operator

Ve, (26)

where Y =dxH in the case of a natural basis and Veu is the usual covariant derivative.

In what follows we restrict ourselves (for simplicity) to the case where M is the
Minkowski space-time and then

o= Veu =M d/oxH @7
where - %,=8\H.
We know that

d=d-9 (28)
and

*p = Dty fp : fp e APT*M (29)

We then can write equations (10 a) and (10 b) describing the phenomenological theory
of monopoles and charges as

10



OF =J, - *J_ =], + Y], (30)
We now define generalized potential 8] the quantity
o=a+yYa ;o a e sec Alt*M 31
Applying the operator d to ® we get the sum of a 0-form, two 2-forms and 4-form, i.e.
=0-a+dAa+3- (Yo )+IA(YSa')

and imposing the Lorentz gauge 0-a=0<d!0y=0,0A(Y° a')=0<>01 a'y=0 we obtain

F as a 2-form, i.e.

F = 0aa + 9.(Y°a") (32)
We get also that

a=J, ; [Jo'=J, . []=093=@p2-V2 (33)
O ;0

To see the power of the Clifford-formalism, we now deduce the conservation-laws and
the couplings of the electromagnetic field to electric charge and magnetic monopole.

CONSERVATION LAWS AND GENERALIZED LORENTZ FORCE:
Let us observe that from eq (30), by applying the anti-automorphism + (reversion), we

get the equation
Fror=1J, +J, ¥ (36)

where the symbol 0” refers to the fact that the Dirac operator acts on the right; i.e.:

Fror= —aa(Fuv)')u‘ 0

Multiplying eq (30) by F* on the left and eq (3.7) by F on the right, and summing both

equations, we get

% (F*dF +F+0/F) = -;— (JF-FJ. )+ % U ¥F—7¥FI, ) 37

Defining moreover

SH = —ZFHiF (38)

11



eq (37) can be written as

0,SH =FJ. - *FJ, (39)

Now, from eq. (38), we get immediately that SH*=SH and SH=-SH ,where the bar
indicatey the inversion, i.e., the main automorphism defined in Appendix A. The
unique objects in the Clifford algebra of differential forms that satisfy these equations

are the 1-forms. We call the quantities SH the energy-momentum 1-forms. The reason
for such name is that EHMV=SHK .4V are the components of the symmetric energy

momentum tensor of the electromagnetic field, as we show below.

In particular S0= -il-F Fy0, F=yOFy0 and, writing F=F-yB, we get by projecting
into the Pauli-Algebra (see Appendix A) the following splitting into two quantities
SOP=U+T0 U =-;— (B2+B2); TO-ExB (40)

which we recognize as the energy-density and the Poynting vector of the
electromagnetic field, respectively.
More generally we have

EuV=—<%Fwav>=_<(F.yu)FyV> - ;_-<-,uF’2qV>

=~ (E).F.) - ER P @n

= FP“FM'T] o 4 %npv FaBFaB

Writing ,
KC=F'Je and Km= - % F‘Jm,
(42)
Ke=F1v].v Knp=-*Fv],Y
and projecting K¢ and Ky, on the Pauli-Algebra we get
Key=R.E +(p.E+1xB) @@
(43)

KnY’=-Ja.B + (=puB + 2xE) ©®)

12



We see, then, that K. and Ky, represent the Lorentz forces that act on the electric
charges and the magnetic monopoles, respectively. As this result has been derived only
from the Maxwell equations, we arrive at the conclusion that the Lorentz forces (electric

and magnetic) need not be postulated, as is usually done (see § 2).
We note that, due to the symmetry EHV=EVH,we can write dyE*V= g, EVH=
=0y (SV-y!)=0-SV . Then eq (39) can be written

9.8V=Q" ; Q' =(FL)Y - R  (39)

The interpretation of eq (39) is now clear. The equation

9 EHV = I, Jv = * FH, J v (39"

expresses very clearly the fact that the energy momentum of the field is not conserved,
JuEMY20 when mater (described by Je,Jm) is present. Actually, one expects that only

the total energy momentum of field and currents be conserved.
If we write the r.h.s. of eq (39") as -dyMHV, with

I MH = Ke + VW Kp 44)
then eq (39) assumes the structure of a global conservation equation
dp (EWV+MWV) =0 (45)

where MMV plays the role of the symmetric energy momentum of matter (i.e. of the

currents).

THE MOTION EQUATIONS DERIVED FROM MAXWELL
EQUATIONSD): In analogy to what happens in general relativity, the identification
of MMV with the actual energy -momentum tensor of the matter currents leads directly
to the motion equations.

Let us show this in the simple, but easily generalizable, case in which the field
F is generated by a single electric charge e and a single magnetic charge g .Be in fact,
the electric and magnetic matter represented by the triples (me.¢,y) and (mg,g,6) so as in
§3 and §4, respectively. The most general symmetric tensor that we can write to

represent matter is then[20]

13



M = MHV 41 @S Y

= -m, jds 8(x = ¥(s)) Y ®5 Y, -mg jds' 8(x - 6(s") O, ®5 G, (46)

In components, writing xH(y(s))=zH(s);xH(c(s"))=yH(s"), we have

gz dzv . dyt dyr
M= m, [ds 8(xe- 2 S 9Z o fag 5(xem yoy DRI e

Incidentally, it is Je= stS(x )Yy s Im= stS(x — 6(s")0y

wherefrom it follows 0-Je= 0-J =0.
Now, comparing eq (44) with eq (40) and recalling eqs (43), it is immediately
seen that

meZ; = pe E;+ @ xB); imgy;=—pmBi+ ¥xE)  @47)
which are the correct equations of the motion of electric and magnetic charges.

DIRAC QUANTIZATION CONDITION: In studying the motion of an electric
charge in the field of a monopole (neglecting radiative effects), the kinetic energy of the
charge is conserved. Taking in what follows xH as the relative coordinates and m as the

reduced mass, we can adopt as quantum Hamiltonian the quantity }E:Z—ln—]p2 ,p=dr/ds
where s—Y(s)=(x0(s),x! (s)) with the ordinary postulates [c=h=1]

[xi x1=0; [xi pjl = i8jj (48a)

[pi pjl = ig;xB¥ (48b)

The quantization rules given by eqs (48) are satisfactory, since, e.g., the angular
momentum T =T x?— eg_r)/41t does commute with %, and [J; Jj] =igjjkJk.
Moreover, from the Ehrenfest relation _r)=i[?,:‘l{] , it follows the Lorentz-force

expression

._r.)=—;-(_;')x B —ﬁx_;'))



We would like to stress here that the Jacobi identity is violated for the pj's, since

T _ . [pi[pppli=¢ V.B (49)

ciclic

so that the conjugated momenta p; do not close a Lie algebra under the commutator
product whenever V-B#0 (i.e., when monopoles are present). Incidentally let us recall

that V. B =0 corresponds also to a violation of Bianchi's identity in the standard U(1)
theory of electromagnetism as PFB (§4). This has as a consequence that a PFB for
electromagnetism with our monopoles can be implemented only by making resource to
“spliced” U(1)x U(1) bundles: as we shall show explicity in §7.

Eq (49) does imply that the momenta p; (conjugated to the coordinates  x;)
cannot play the role of canonical momenta in any (local) Lagrangian whatsover. In fact,
if such a Lagrangian existed, then the Jacobi equation would be automatically
satisfied®). This then justifies the well known fact that there does not exist using the
classical tensor calculus a Lagrangian which yield simultaneously the field equations
and the equations of motion of charged particles and magnetic monopoles(10],

Happily enough, this is not a problem when we use the Clifford formalism,
since knowing the field equations does already mean knowing also the equations of
motion of electric and magnetic charges.

We now show that eq (48) implies the Dirac quantization condition. Indeed, if
the operators U(_a)) = cxp[i?- ?], with ?, any euclidian vector (?e R3), have to
yield a projective representation of the translation group in the Hilbert space of our
charge-monopole system, the associative law, in particular, must be satisfied

[U(D)U(B) JU(P) =U(@) [U(BHU(S) ] (50)
Explicit calculations, using eqs (48) and (49), then yield:

[U@UCB) JUE) = °PU@) UBHUE)T  (50)
where @ is the magnetic field flux crossing the surface of the tetrahedron individuated

by the three vectors ?,’5’,?. The compatibility of eq. (49) and eq. (50) requires
e®d=2nn. If one monopole only is localized inside the tetrahedron, then:

(*) Note that a canonical momentum, as the one present in eq (12), makes no sense here, because now
we have two potentials o and * o

15



£ -% nez (51)

Note that eq. (51) implies that T)?%, which means that(even in the case when the

electric charge and the monopole are bosons)they can be in an half-integral spin state.

GENERALIZATION OF MANDELSTAM APPROACHII8]; Let ¢(x,I') be the

Mandestam path dependent wave function[!9) for a charged particle in an ordinary

electromagnetic field Fe=da=da . If ¢(x) is the usual wave function of the particle and
X

Ai= —e |ais the classical interaction action, we have
r

$xT)= g()exp( [ ~iea) (52)
r

where I' is the arbitrary path from eo—x . If we choose two paths I"and I differing

only for a finite part, we get (using Stokes theorem)

X

o(x,I") = d(x,Dexp( £ _iedo) (53)

where S is an arbitrary surface such that 9S=I"-T.
How to generalize eq (53) for the case when the charge e interacts with the
electromagnetic potential  w=a — *a'? Let us introduce the following

Interaction postulate (IP): The introduction of an electric charge e, represented
by the path dependent wave-function ¢(x,I") , with the generalized electromagnetic field

F =0dw is given by

ox,I™) = o(x,Nexp( IS -ieF) (54)

We now show that the IP implies the Dirac quantization condition, being then

compatible with the commutation relations given by egs. (48).
If eq. (54) is to be independent of the surface S, so that dS=I""-T" , we must

have

exp( js-ie(da - *da?) =1 (55)
0

where Sq is a closed surface. By Stokes theorem we can write eq (54) as
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exp( jvie*ada') =1 (56)

Supposing, now, that we have one monopole inside V and that Jm=(g8(7)),0,0,0),
and taking into account that E] o'=-(dé+6d)a'=-6da'=J, , we have

exp( [ ie*m) = exp(—eg)=1 = %:% neZ (57)
\

6.LAGRANGIAN FORMALISM:

It is well knownl[4.10,12] that there does not exist a local lagrangian which gives
simultaneously the equation of motion of electric charges and magnetic monopoles, as
well as the field equations of the generalized electromagnetic field. The recent claim by
Fryberger(13] that this is possible within the Clifford algebra formalism is non-sequitur
as we now show.

We start by considering the classical action A€=2.C+4;C for the interaction of

a charged particle with the electromagnetic field o=0y, dxt. We have
b

A=2C+2C =- | (meds - ec, dxh) (58)
a

Now, the variation of %€ can be written in two independent ways:

8, AC = — J @ =-e [do=-5 [Fe)dxiadxy (592)
s S s
b b
8, 2C=—¢ J' 8x (aydxk) = —¢ f (Fe),ydxh 8xV (59b)
a a
while the variation of 2.C is
b
8, A4L= [meduy Sx# (60)
a

where 04 indicates that T, the equilibrium path of integration from a to b has been
changed into I"" by an arbitrary infinitesimal function 8xM, such that &xH(a)=8xM(b)=
=0 . Moreover dS=I"-T; etc...

Comparison of egs (59 a) and (59 b)suggested to Fryberger(13] the following

identification (doHV=dxHAdxV):
b

z jsdcuv o [ amsx 61)
a
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He interpreted eq.(61) as having the following geometrical meaning: the surface S,
spanning the loop formed by I' and I''; has an infinitesimal width, 6xM, thus reducing

the surface integral to a line integral.
The IP suggests the possible existence of a generalized action 2=2.+4;, since

eq (54) suggests that
Sf=-e | F == | (Fo-yFm) 62)
S

where F = 0w =0a — y5da' = Fe — 5 Fpy.

To proceed with our analysis, we are going to use below (in the remaining part of this
section) the Clifford bundle C(tM) instead of C(t*M) . In other words, we are going
to use multivectors instead of multiforms. Obviously there is a canonical isomorphism
(see Appendix A) between multivectors and multiforms, and in the following we
represent the multivector corresponding to a given multiform by the same letter . Letting
cu[u=0,1,2,3] be an orthonormal basis of T,M and eH=mHVe, the reciprocal basis,
the Dirac operator when acting on multivectors is then d=eHd/dxH . The fundamental
pseudo-scalar is now es=ege;e,e3 .By using multivectors, eq (59 a) reads

8, A€ =— Jsa.dx=—c jSF.do (592")

where a=oy(x)et, dx=dxMe; anddo = (dxHadxV)epey .
In refl8] we considered the following generalized action

b

4 =— [ (0.dx + esa’.dx) (63)
a

which is non-conventional, since it is the sum of scalar and pseudo-scalar terms.
Fryberger considers,instead of 4; , the action

b

;= j <oa.dx + esa'.dx > (64)
a

where the brackets mean the scalar part.
Now the variation of 2; is

b b
Sxﬂi= - J’ (Fe)u\,d)dl oxvV — e I Cs(Fm)uvdxp’ dxVv (65)
a a



It is quite obvious that the second term on the right hand side of eq (65) cannot
be combined with 84 , that does not contains a pseudo-scalar part.Now, Fryberger

writes the sequence of “identities”

b
[ esEmyyaxedxy @& 2 jses(Fm)m,dqudxv (66)
a
b
Fryberger [ *Fm = | (*Fm),ydxh 8xv (66")
S a

While eq (66) is correct, it does not imply however eq (66"), since eq. (66) forwards a

pseudo-scalar and eq (66") a scalar.
The situation is even more confusing in refl13], since that author uses %; instead

of 4; and in that case the term eso-dx make obviously no contribution to
Ox 4;.

Having discussed the fact that we cannot write a generalized action even in the
Clifford formalism that yield the equations of motion, we only mention here that it is
possible to write an action 4=4+4; which yields the generalized Maxwell equations
OF=J +¥T=].

This can be done by writing

Z=-7[<FF>d¥x - [<Jo>d% ©7)
and varying independently a and o'; or by making use of A=4r+3; :
= J' d4x (- LEF T @) = ap+4; (68)

and treating w=0+y,0' as the canonical coordinate (and deriving formally with respect

to ® and dw = F,when doing the variation). Such a procedure, even if not totally
justified, gives the correct generalized Maxwell equations,as has been proved in reff8].

To conclude,let us observe that in the ordinary field theories the Lagrangians are
postulatalin such a way to yield the field and motion equation and conservation laws.
On the contrary, all these things are automatically obtained by our Clifford bundle
formalism, once the field equation are known; so that in our more economical approach
it is redundant to look for Lagrangians.
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7.SPLICED BUNDLE FORMULATION OF THE THEORY OF THE
GENERALIZED MONOPOLES WITHOUT STRING[14]

In what follows we shall present an extension of the theory of electrodynamics
with monopoles using a generalized potential in an arbitrary gauge theory. We
emphasize once more that in our theory space-time have no holes.

The mathematical structure we shall use in our gauge theory with monopoles is
the spliced bundle m;,:P o P-»M with group GxG (see Appendix C) obtained from two

identical PFB each one describying an ordinary gauge theory.(n:P—M with group G
and base the space-time). We also observe that in what follows M may be a general

Lorentzian manifold with non zero curvature.

In our theory we associate the gauge potential with a connection ® in
m;12:P o P = M i.e., given a choice of the gauge in the PFB, Ty: nilz(U)—)UxGxG
with the associated local section 6;:U—P o P ,we define mu=cf} o the gauge potential

associated with the chosen gauge.
We observe that there exist (see Appendix C) two connections @; and w2 in

7:P—M such that o=n1*®,®n2*w,. It is fundamentally different to use, for describing
the gauge potential ,
@: aconnection 0=n1*w,®n2*w,. e Al(Po P, ol ) in the spliced bundle, or
(b): two connections ©,,(,€ AI(P,e-) in the original PFB of the theory without
monopoles.
Let us consider first the case (a): Let then TU:n'llz(U )-Ux(GxG)and Ty:

1ti12(V) — VxGxG be two gaugesin ;,: P o P-M and such that UnV#{, and
let be 6;:U—P o P and oy :V—-P o P the associated local sections.
The transference functions gyy:UNV—GXG are such that gyv(x)=(€Duv®).(EJuvX)
with xe UNV. Since

o = 1l*0®n2*w, (69)

takes its values in é@é, the gauge transformation between the gauge potentials wy
and @y can be written as the two relations

(@))v = (ghuv)ldguv + (@uv) (@ugluv . i=1,2. (70)
In the case of standard electrodynamics, we can write

(@)y = (o)y+idxuv ; @)Jv=(@)y+ idyyv (71)
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with  (g))yvy(x) = exp ixyy and (gx)yy(x)=exp iygy,and xyv.yyv:UNV-R.
In that way a gauge transformation of wyje A’(U,é@é,)) corresponds to two
independent gauge transformations of (®,)y and (wp)ye A](U,G).

In the case (b) we have two connections ®; and @, in the PFB m:P—M with
group G. Let Tyy:m-1(U)—UXG and Ty:n-1(V)—=VxG be two gauges an let UNVzD .
Let moreover o(;:U—P and 6y:V—P be the associated local sections. The transition
function now is gyy:UNV—G, and we have

@)y = (guv) 'dguv + (guv)  @)yguy . i=1.2.
In the case of standard electrodynamics we have
(@)y = ()y + idxyy ; xuy: UNV-HR

These relations show that both potentials (®;)y and (w2)y change by effects of the
same gauge transformation in case (b). This makes clear the difference between (a) and
(b). In what follows we adopt the choice (a).

To show the necessity of such a choice, let us consider first the case of
electrodynamics wirh monopoles described by two potentials: one related to the electric
charges and the other to the magnetic charges as we did in § 5.

Notice that,in the case of standard electrodynm}\ﬁcs without monopoles, itis G=U(1)
and the gauge potential takes its valued in iR=G,i.e., (0y)y=-iApdxHe A1(U,iR) .
The gauge field is then

i(Q))y = 3FydxtadxVe AX(U,R) (72)

Observe that the field is invariant under the gauge transformation
((l)l)U—) (0)1)U + ldx (73)

This information is interpreted geometrically as a choice of gauge, or local
trivialization, and the associated transition functionis g= exp ix : UNV-G.
As we already know (§ 2), we can write
i(Q)y = § (Foudx0adxk + Fidxladxm)
= (Exdx0adxk + By *(dx%Adxk)) ; k1lm=12,3 (74)



22

and, since (*)2 = -1 when applied to 2-forms, the Hodge star operator changes T into
~B and B into E. Let us now consider the electrodynamics with charges and
monopoles. The field generated only by electric charges can be described by the usual

potential
(Q)y = d(wy)y (75a)

The field generated by the magnetic charges is a dual field:
*(Q)y = *d(w2)y (75b)
The total field generated by electric and magnetic charges will be given by
—-iFy = (Qu + *(Q)yu (76)

In this way one of the potential describes the field generated by electric, and the

other the field generated by magnetic charges.
We observe that, if we make two independent gauge transformations

(@)y——(@)y +idx ; (@)y—(w)y +idy

the field Fyy does not change. If we interpret the above transformations as changes in the
local trivialization of a PFB, we must use a spliced bundle (due to the independence of
X and y). Once we justified our choice (a), we now go on with the theory.

Let us observe that the spliced bundle of two copies of the PFB ©t:P—M has
each point pe P o P associated with two points of P over the same fiber. This permits
us to understand that a gauge transofrmation in 7,,:P 0 P -5M corresponds to two
gauge transformations in n:P—M. Indeed, 6;:U—P o P corresponds to
oly=nlo oy:U—P and also to 62y=n2 o ¢ (;:U—P . In this way we can associate to a
given connection ® in P two gauge potentials Oy;=6y!*® and wy=02y*w . Observe
that

oy = (tlo Op)*® = of) (1*w) = o) (T *0® 0) (772)

and



@y = (12 op)*o = oy*(n2*w) = oy* (0On2*w) (77b)

where @y and @y correspond to gauge potentials associated with the 1-forms
nl*0®0 and 0®n2*w, which are possible extensions of  to the spliced bundle.
This shows that, given two connections ®; and @, in w:P—M, we can associate with
them two distinct connections w=n!*@, ®n2*®w, and G=n!*w, ®n2*w; in m:P
oP —M . We show in Appendix C that, given a connection ® on the spliced bundle,
we have two connections ; and «, well defined on the original fiber bundles.

We see now that, when both PFB are equal, the connections ®; and ®; can
generate another connection @ on the spliced bundle. We call @ the connection dual to
o .

Observe that we have two curvatures Q® = D® @ and Q® = D® @ associated
to the connections @ and @ . These curvatures must, by the Bianchi identities, satisfy
D®y=0 and D® @=0 . Before we analyse these identities, we must understand some
of the properties of the horizontal forms in a spliced bundle.

If Te AK(P,0P,, é 1@(92) with the adjoint representation G1xG2— 6163(9 ,
then:

(2) we can write T=nl*tj+n2*1, with Tie AP G)) and e AK(P: &y ,where

we use the adjoint representations Ad: G;—G;, i=1,2;
(b) DOr=R1*DOI7+n2%¥DW2T; ; for @=nl*w+n2*w; ; (78)
(c) Let %12 Xk(PloPg,G\l@dz)axﬂ'k(Plon,éleaé\z)be the Hodge operator for
horizontal forms in PjoP, (n=dimension of M),and ¥1: A X (P , | D-Ak@E dD
+2:Ak@P, ,GA?)—)T“'k(Pz,é}) be the Hodge operators for horizontal forms in the original
PFB. Then 12T = nl1*GF 1 T1)®n2* (%2 ).

We employ the relations (a), (b) and (c) in the following way. Returning to the
curvature Q9 A2(P10P5,G,80,) we can write QO=r1*Q,®n2*Q,, where
Q,,Q,e AK(P,0) are well defined. We now prove that,if w=n!*w;®n?*w, , we have
Q, =Q®1 =D®1w; and Q,=Q%92 =D ©,.

Indeed:

QO =dw + -;- [0 ©] =d@!*0,® 2w, ) +%— [r!*0;®12%w, nl*0,®&n2*w,]

=x1* D01, ® 12* DN2w, = 11* QU1 & n2* Qo2 .

Moreover, we have Q8 = g1*Qo,®n2* Q0.



In this way, the Bianchi identities D®Q®=0 and D® Q& =0 according
to (b) are equivalent, and correspond to D®;w,=D®2w,=0 , which are the Bianchi
identities associated to ®; and w; in &: P>M. In electrodynamics, these equations
imply that d(2)y;=0 and d(Q,)y=0, which physically mean that both the magnetic
field of electric origin and the electric field of magnetic origin have null divergences.

In what follows we are going to generalize the gauge principle[15] for a gauge

theory with our monopoles.
Letbe =n:P o PoM a spliced bundle with group GxG and let be

GxG—GL(V) a representation of GxG . We remember that the space of 1-jets of the
mappings from Pto Vis:

J(PoP,V)={(p,v,0) lpePo P,veV and G:TpP o P is linear)

We call a Lagrangian the mapping L:J(P o P,V)—>R such that,for all (p,v,0)eJ(P o
P,V) and ge GxG, we have

L(pg,g'1v,g"10 o Rg.1%)=L(p,v.0)

If L(p,g!v,g-0)=L(p,v,0) then L is said to be GXG -invariant, and in what follows
we suppose L to have this property.

Now given a Lagrangian L: J(P oP ,V)—>R , let Cbe the space of the connections
in P o P . Define the action density by

L:C(P,V)XC— C=M) (79)

where C=(M) are the set of the C* functions on M.
We have

L(¥,w)x) = L(p,¥(p),D¥(p)) (80)

where xeM, pe t1(x) and the generalized wave function (matter field) describing the
electric and the magnetic particlesis Ye A°(PoP,V)=C®P o P,V).
Then Lis not only well defined but is also gauge invariant in the sense that,for all fe
GA(P o P), we have, L(f¥P,f* w)=£(¥,0). GA (P o P) is the gauge algebra of the
spliced bundle; more precisely,it is the space C(Po P,é@é) with the adjoint
representation GxGaGL(ﬁ@é) ; 8>Adg.

If we impose that LO(¥) is stationary with respect to ¥, we obtain the Euler-
Lagrange equations[13], We show now that, if we add an appropriate term S(®) to
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LO(Y), obtaining then the total action (£+S)(¥,), this density will generate not only
the Euler-Lagrange equations for ¥ but also the non-homogeneous field equations.
More precisely, these results follow once we impose that (£+S) (¥,w) is stationary
with respect to the pair (¥,w) .We will see that the non-homogeneous equations
obtained in this way correspond in the case of electrodynamics to Maxwell equations
with monopoles, like in § 5.

We define the autoaction by

S@) = bk (FF); T=Q0+70B; Fy=of 7 @1

where
fik,: AX(P o P, 6@8)x Ak(P o P, G®6) » R

is the metric for horizontal forms in ( Gob ) (with the adjoint representation). We
observe that kj; is the Killing-Cartan metric in (é@é ) and that kj2(A19A2,B16B2)=
k(A1.B1)+k(A2.B2) , where k is the Killing-Cartan metric in é (see Appendix B).

Let us observe that, as S(w) is F-equivariant, it is gauge invariant as required for the
autoaction term{15), Let us observe also that, had we constructed the autoaction term as
%ﬁklz (Q®,Q), there would be no interaction between charges and monopoles. Indeed,

take the case of electrodynamics where Qm=n1'm1®n2‘m2'thcn Q,and Q,

correspond to the fields generated by charges and monopoles:

Rk, (Q0,Q0) = hk QY Q8H+ Rk (QF, QF) (82)

and there are not, in this expression, interaction terms between the fields Q; and Q,.

For S(w), instead, we have
~ L k(7 0) = L k@, 08 - LEk(QP, o) -fk( O , *aF) (83)

where the interaction term appears explicitly.
Before we apply the variational principle to the total action, let us remember the

definition of the current in terms of the Lagrangian
d
HTL( ¥, 0+ 0)| 0= hk,,(JO(¥), 0)

Voe Al (PoP, 8®8 ). In this case JoW)e Al (P o P,6®E ),and we can write
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JO¥)= — n1*];@n2*], ; so that we can asociate J; and Jze_Kl(P,ﬁ) to the “electric”

and “magnetic” currents, respectively.
Effecting the variation at t=0 (c=n!*0,®n2*c,) we get

d%— L (£ + S)(¥+tt,0+tT)U

= {JL(‘I’+tT,O))].1 +d%- L S(W,o0+t1)u

_d 1
=5 3 hk( lelj+t61, meﬂcl)u
U
d

_4 1 ©2
o > hk( Q U+t°2’ Q(D%Jﬂcz)u

c—

d 1 —
-d@ f 5 ﬁk( Q“S+t0’1’ —% 982+t°2)l»1
U

We have at t=0 for the four first terms in eq (84):

d _ w  OL oL
o {’L(‘I’Ht,o))u = f(a oon Sl

d LL(‘I’,OJ+tT)u= {) hk;o(JOCF), 1)1

dt

d 1

& [ Fasfon aofonn—- {_ Ak(“1Q%, 011
U

d 1

dt f Fik( QU%HO2, QOTHOY) == — L Ak@2Q%2, 0,1
18)

Moreover:

£ fik( QOMHOLFQU2HOY)
_ % fik( QOI+O15Q02) +%ﬁk( QOLFQ2+0?)

and, at t=0, we have %Qm‘*‘“:D‘D ol15] .Then

(84)
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%ﬁk( QUIHOLF QUZHO?)

=hk( D@1g, ,*Q®2H02) + hk( Q®! 5 Dw2g,)

= hk( §91(*Q®2)c,) + hk( §92(%Q®1),0,)

and we obtain for the last term in eq (84)

% hk( Q©1+t01, 7 QW2+102)

0]

= ' (hk( 891(%* Q®2).g,) + hk( 892(+*Q%1),0,))1

0]

Now, summing all the terms obtained and taking into account that t, ¢; and
o2 are all independent, and also that

hk,,(JO(¥),0) = - hk(J,,0;) + hk(J5,07) , (85)
we get the equations

amaag—t‘f') + % (86)

3P1Q91 + §YN(FQY2) = -], 87

52002 4§27 QA1) = J, (88)

Eq (86) corresponds to the Euler-Lagrange equation, which gives the equation of the
generalized field describing the motion in P o P of charges and monopoles. We are not
going to investigate in this paper the nature of L9 (‘F) .

Eqs (87) and (88) can be written, putting Q=Q®) + ¥Q®  as
8°1Q =7, (89)

§92% Q) =J, < D02 Q=_*], (90)

which are the non-homogeneous equations of the theory.
In the case of electrodynamcics these equations reduce to



5Q = -1, ©1a)

dQ = — *J, (91b)

which we recognize as the Maxwell equations for the electromagnetic field Q=Q®1 +
*Q®) generated by electric and magnetic charges. We have for Q@1 and Q®2 the

equations:

0Q 0 ='J1 ’ 0Q02 = —Jz (92)
since dQ@1 = dQ®=0. Also, since Q@1=dw;, Q®=dw,  we have

(Joi=3; ; [Joa= 1 (93)
where D = —(d&+6d).

8.CONCLUSIONS

We presented in this paper a theory of magnetic monopoles without strings. In
order to show the crucial difference between our theory and the usual presentations of
the subject , we described briefly the string theory by Dirac and the topological
monopole theory, where the monopole appears associated with a change in the topology
of the world manifold (§ 2,3,4).

In order to express conveniently our theory of the generalized potential, we use
the Clifford bundle formalism described in Appendix A. In our approach, we show that
Maxwell equations imply the correct coupling of the electromagnetic field to electric
charges and magnetic monopoles; i.e. we deduce the form of the generalized Lorentz
force (§ 5). From that we deduce the motion equations of charges and monopoles.
Moreover we derive, from the quantum version of the theory the Dirac quantization
condition in two different ways.

In § 6 we discussed the impossibility of constructing a local Lagrangian which
gives simultaneously the motion equations of particles and monopoles and the field
equations. We arrive at the conclusion that, contrary to recent claims(13], even in the
Clifford bundle formalism this is not possible.

Finally in § 7 we present a generalization of our theory in § 6 to generalized monopoles
associated with an arbitrary gauge group G. In other words, we succeed in giving to
our theory a principal fiber bundle structure: a spliced bundle with group GxG. We
obtain the equation of the generalized field in our theory using in the spliced bundle a
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generalization of the Principle of the Stationary Action. We postulate the existence of a
Lagrangian density L®(¥) for the generalized field, that describes in the spliced
bundle the “electric” and “magnetic” matter; but we do not use explicitly any Lagrangian
to deduce the equations of the generalized matter field. Indeed, LO(¥) is used only to
produce the currents. The question of the existence of £9(¥) and its form in this
formalism will be investigated in another paper.

To conclude, we observe that the approach here developed shows explicity an
interesting interplay of several different branches of modern mathematics, which
conspire together in order to shed new light on various physical problems.

APPENDIX A

A 1. SOME ALGEBRAS AND THEIR RELATIONS

In Aj,A2 and A3z we follow the presentation of Grafl16],
Let V be an-dimensional vector space. In this subsection we introduce some algebras
that will be usefull to derive the equations of motion for electrical and magnetical
charges in the field of magnetic monopoles and electric charges.
The tensor algebra T(V) over R is the R-vector space of the direct sum of the powers
®PV together with the usual tensor product ® of its elements. Then we have:

T(V)=(® 7 @V, ®) (A.1.1)

is Z-graded: (®PV)®(®IV)c@®PHAV and infinite-dimensional if n>1.As V is
finite-dimensional we can identify V with its image ®1V in T(V) and we also define
®0V=R .

On T(V) there are two important involutive morphisms (both being linear
automorphisms of @p:o ®PV:

(i) the main automorphism o
a(A®B) = a(A)®a(B) , A,B e T(V) (A.1.2)
a(A)=Aif Ae®V and a(A) =—Aif Ac®'V:  (A.1.3)
(ii)the main anti-automorphism J,

B(A®B) = B(A)RB(B); A,B e T(V) (A.14)
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B(A)=A if Ae®’V+®'V. (A.1.5)

The exterior Algebra A(V) over the R-vector space V can be defined as the quotient
algebra T(V)/J of T(V) over the two sided ideal JT(V) generated by the element

with the form a®a, where aeV.

As usual, we denote the exterior multiplication by the sign A. Since J is
homogeneous in the Z-graduation of T(V), also A(V)is Z-graded: A(V)=AP(V),
with  AP(V)AAY(V)CAPHA(V) . As before, we make the identifications AI(V)=V
and AO(V)=R.

The subspaces AP(V) are (;)—dimcnsional and A(V)is 2M-dimensional. For the
elements Ae AP(V) and Be A4(V), the exterior product is commutative or

anticommutative:

AAB=(-1)PABA A (A.1.6)

The morphisms o and B of T(V) pass to the quotient A(V) . Denoting them by the
same symbols o and B, we have:

a(AAB) = a(A)Ao(B) (A.1.7)
ABe T(V)
B(AAB) = B(A)AB(B) (A.1.8)
If Ae AP(V) = a(A) = (-1)PA and B(A) = (~1)p(-22A (A.1.9)

We define as Grassman-Algebra A(V,Q) the pair (A(V),Q), consisting of the exterior
algebra A(V) together with the inner product (, )Q:A(V)x A(V)—R induced in
A(V) by a quadratic form Q over V as follows:

-If AeAP(V) and BeAd(V) with p#q,then (A,B)Q=0;

-If A=ajAaazA...Aap and B=bj Abza...Ab, with ajbij € A1(V), then (A,B)q =
det (B(aj,bj)) , where B is the bilinear form associated to Q by

2B(x,y) = Q(x +y) —Q(x)-Q(y); (A.1.10)

- The case of general a,be A(V) can then be reduced, due to the linearity,to (i) and (ii ).

The Clifford Algebra C(V,Q) of the real vector space V with quadratic form Q is
defined as the quotient algebra T(V)/J', where the two-sided ideal J' is generated
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by elements of the form a®a-Q(a).] with ae V. As before, we can identify V
with its image in C(V,Q). Denoting the Clifford-multiplication by a simple
justaposition, for a, be V we have

ab +ba = 2B(a,b) (A.1.11)

with the bilinear form B defined in (A.1.10).

The ideal J',being inhomogeneous of even degree in T(V), induces a Zy
gradation of the Clifford Algebra, C(V,Q)=C+(V,Q) & C-(V,Q), where C*(V,Q) is
the image of the elements of even degree in T(V). Since a(J")=J', the morphisms «
and B induce morphisms (designated by the same symbols) in C(V,Q); Forall A B e
Cv.Q:

o(AB) = a(A)a(B) (A.1.12)
A,Be T(V)
B(AB) = B(A)B(B) (A.1.13)

o(A)=B(A)=A forAe R;- a(A)=Pf(A)=A forAeV (A.1.149)
In particular, for Ae C+(V,Q)itis a(A)=A, and for aeC(V,Q) itis «(A)=-A.

A.2.STRUCTURE OF THE CLIFFORD ALGEBRA

In this sub-section we study the structure of the Clifford Algebras and their
relations with the Grassmann Algebras.

First, for any element X of the dual vector space V* let us define the
contraction of an element of T(V) with Xe V* as the (V*,T(V)) -bilinear map V*x
T(V)—>T(V) of degree —1 with

Xi1=0

a=X(), ifae VCT(V)

(a®b)=(Xla)®b + a(a) ® (XIJb) ;a,be V
(In particular, X 1X| will annihilate any element of T(V)).

Since XIJ=J and XJJ'=J, the contraction also passes to the quotients
A(V) and C(V,Q) and to A(V,Q), and we have:
if A,BeA(V) or A(V,Q)

X1(A AB) =( XJA) A B + a(A) A A (XJB) : (A.2.1)

And
XJ(A B) =(XJA) B+oa(A) A (XIB) ,if A ,BeC(V,Q (A.2.2)

with
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Xla=0 ifacR c A(V) , AV,Q), C(V,Q (A.2.3)

Now, for aeV, define the Q-adjoint to ae Vc T(V),A(V), (V,Q), C(V,Q) to
be the element de V* such that forany aeV c A(V,Q) and be A(V,Q) their

product avb is defined as

avb =aAb+ilb (A.2.5)

Then
ava =Q(a) (A.2.6)

By the theorem on the universality of Clifford Algebras[21], the v-Algebra generated by
this relation on the elements of A(V,Q) is the Clifford-Algebra C(V,Q) with the
Clifford product (designated by mere justaposition) replaced by v.

Conversely, if for a Clifford-Algebra C(V,Q) we define a A product of
aeVc C(V,Q) with Be C(V,Q) as

aaB=aB+4ilB , (A.2.7)

then we get

aAa=0 (A.2.8)
which is the defining relation of the exterior algebra. Since in the Clifford-Algebra
aa=Q(a) , this exterior algebra can be made a Grassmann-Algebra.

This correspondence of Clifford and Grassmann-Algebras does not depend on
Q being non-degenerated or not. In particular, if Q=0, the Q-adjoint vanishes and
C(V,0)=A(V,0)=A(V).

Another important observation is that the Grasmann-Algebra A(V,Q) and the
Clifford-Algebra C(V,Q) are isomorphic as vector spaces over R . Then, the
generators of A(V,Q) are the generators of C(V,Q) and vice-versa.

Then if fej...,en) isa basis of V, the set of the p-vectors,

p=0,1.2,...,n:

{ eg= 1,61 ..., €q ,€1A€L2, CIALT ceureennnens , E1A€2AE3,..., E1AC)....... A€q }
generates A(V,Q) and also C(V,Q) . Both are 2" -dimensional algebras. Any element
Ae A(V,Q or C(V,Q) can be written as

A=S Ap= 3 (A)p, where Ap=(A), € AP(V) (A.2.9)
p=0  po



So we have that, over the direct sum @AP(V) of the linear spaces AP(V), we can impose
the structure of a Grassmann Algebra by means of A and Q, as well as the structure of
a Clifford Algebra; and each of the two products can be reduced to the other, as seen

above.
For general elements, Clifford and exterior product are related as follows:
CLPOD2 iy o
AB = Zp ———h 7., hipip aP(ejy ) ... ejpl A)A(ej] oo Jejp] B)  (A.2.10)

where hik:=B(y! ,¥%); e; is the dual basis to the basis yie A1(V) ; and the product of the
elements inside the brackets in (A.2.11) is the Clifford -product.
The formulas (A.2.10) and (A.2.11) for the special cases that a or b e Al(V)

reduce to:
ay =aAy +aly (A.2.12)

b =bAa($) — bl () (A.2.13)

A.3.SOME VECTOR BUNDLES RELATED TO THE COTANGENT
BUNDLE
Since all the algebraic structures considered above possess a R-linear structure

inherited form the vector space V, for their generalization to manifolds we will use the
formalism of the vector bundles (with additional algebraic structures). Here M will be a
real n-dimensional C*-manifold. Moreover, bundles, cross sections and maps will be
C*. Quantity T denotes the Tangent Bundle associated to M .
The basic bundle for our constructions will be the Cotangent Bundle t*M of the
manifold M. Moreover , cross sections ce Sec (t*M ) will be called I-form fields.
Given a cross secion he Sec(T*M x t*M ),let be he Sec(tM x Tt ) such that,h, Hlk-Sk
In each fiber 7-1(x), quantity h, will be a quadratic form over the cotangent space
T,*M.Let us denote the pair (t*M,h) a Riemannian (or Lorentzian) vector bundle.

We denote the vector-bundle, whose fibers AT,*M are the exterior algebras over
V=T,*M, the Cartan-bundle of exterior differential forms on M. As is well known,

on a Cartan-bundle the exterior derivative d can be uniquely characterized by the
following conditions:

d(A+B)= dA +dB

d(AAB)=dA AB +a(A) AdB

d2=0
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xJ (df) = X(f)
forany A,Be Sec At*M, fe A0t*M and Xe Sec M.

In particular, d will be homogeneous of degree +1 inthe Z-gradation of the
ring of cross sections of AT"M = (@AP T*M,A).
The pair (At*M,h ), where each fiber (AT, *M,h, ) is a Grassmann Algebra, will be

called Hodge-bundle on M with metric h.
If for any xe M, quantity hy is nondegenerate, in addition to d there is the

divergence & , which is the formally h-adjoint operator of d, defined [7] by:
Swp = (-1)P ¥ d*ay (A3.1)
where the operator * (Hodge star operator) is defined as the linear isomorphism:
* APT*M SAPT*M , 0o * ¢

oA*o=(c,0)1
for all p-forms ©,p € Sec APt*M , where W is the volume n-form

Tl =nl‘ﬂ1i1....in dxil.A ... dxin. = VIhl dx!A ...A dxn (A.3.3)

If {61,62,...,0n} is a orthonormal basis, then | can be written as:
p=01A...A00
Because d2 =382=0, the laplacian for differential forms []=—d8+8d) can

be written also as a square

D =(d - §)2 (A34)

A vector bundle is called a Clifford-bundle C(t*M,h ) if each fiber is a Clifford-
algebra C(T*xM,h x) . We can prove that C(t*M,k ) is a vector bundle associate to
the PFB Pg(1,3) (t*M), i.e., C(t*M,h )=Po@1,3) (*M)x01,3) R1,3 .

If h is non-degenerate, there is a particular differential operator o called the

Dirac-operator odd in the Zj-gradation of C(T*xMhy) defined as follows:
For any t*e Sec t*Mc Sec C(t*M,h) and any te Sec tM, consider the

bilinear tensorial map of type (1,1) given by

V= t*Viy (A.3.5)
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where v is any element of Sec C(t*M,h) and V, is the covariant derivative of v,
considered as element of the tensor-bundle, in the direction of t.Because VJ'cJ',V,
passes to the quotient bundle C(t*M ,h). Then @ is defined as the tensorial trace of

the map:
0 =Tr (t*V) (A3.6.)
In terms of a local basis {yi} of 1-form fields and its dual basis {ej} of

vector fields, we can also write

0 = 7iVe; (A.3.7)
In particular, taking a local coordiante basis {dxH*} we have

d = dxkV, (A.3.8)

The Dirac Operator can be reformulated as follows. Take any local

neighbourhood UcM with coordinate basis {dxH} . Then in U, the quantity
d=dxMV|, can be written when acting on ye sec (AP t* M,h) as:

dy =dxt A (Vy ) +3y, 1 (Voy) (A3.9)

We get for ¥ =y, i, dxilA ..A dxin.
dxt A (Vypy) = pl'—,V[p, Vi....ip JdXHA A dxin. = dys

1 . .
O J(Vpy) = WV;; Wiy, i JAX12A A dxID. = Sy

As the forms at the right-hand sides of the two last formulas are independent of

any basis, we get
d=d-9§ (A.3.10)

A4.THE GEOMETRIC CALCULUS OF THE CLIFFORD-ALGEBRA

In this section we show how to do some calcululations in the Clifford-Algebra
C(V,Q). This is particularly important in order to obtain the results of §5 and §6.

Here we follows Hestenes!17), that yields a geometric interpretation for the
elemens of the Clifford Algebra (and this is the reason why we designate this section by
Geometric Calculus).

We have seen (Sec.A.2) that the Grassmann Algebra is isomorphic, as vector
space, to a Clifford Algebra. Then, any AeC(V,Q) can be written (eq.(A.2.9)):
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A= rg,o (A) =(A)p+ (A + e +(A), (A4.1)

where (A); is the component of A in AT(V) . Due to the above decomposition, the

elements of C(V,Q) will be called multivectors, (or multiforms, depending on V).
If A=(A); forsome integer 0 <r<n, then we say that A is homogeneous

at the r-grade. In this case we will write A as Ae ATV .
The elements of ATV will be called, as usual, r-vectors. Now, we must introduce

the following products in C(V,Q):
The inner product of homogeneous multivectors s

Ar.Bs = (ATBS)I -8 if r,s> 0 (A.4.2 )
ArBg=0 ,if r=0 or s=0
The inner product of arbitrary multivectors is then defined by:

A*B =3 (A} B =3 AB)= Y, (A)(B)s (A.4.3)

The equivalence of the three expressions on the right side of (A.4.3) is an
obvious consequence of the distributivity of the Clifford product.
The outer product (or exterior produt) of homogeneous multivectors is
ArABs=(ArBg)r+s (A.4.4)
Note that, in contrast to the inner product, we have A;AA=AAA=AA; if A =

(7\1)06 R.
The outer product of arbitrary multivectors is defined by :

AAB= =% (AxAB= T AA (B)s= X, s (A)A (B)s (A.4.5)

Now, in the following, let's designate the anti-automorphismin C(V,Q) (Sec.
A.1) by +, and call it reversion.

We have, with A,Be C(V,Q):
(AB)t =B+A+ (A4.6)
(A+B)t=At+Bt (A47)
(At)o=(A) (A.4.8)
at=a ,ifa=(a) (A.4.9)

It follows immediately that the reversion of a Clifford-product of vectors is

(a;a5........ a)t =a...... a,a; (A.4.10)



Moreover, we have

(A*)r=(A )t =(-1)yC- DA ) (A4.11)

Using the above relations, we get also the relations:

(AB )= (-1)y@- DBt At ), (A.4.12)
(ArBs )r= (BstAr )y = (1)@ - DA(BsA; )y (A.4.13)
(ABC )s= (C*BAt) (A4.14)

Using (A.4.11) and (A.4.12), we find, for the inner and outer product defined

above, the following reordering rules:
Ar.Bs= (_l)T(S - l)Bs.Ar ,I <S§ (A.4.15)
ArABg= (1) BgAAr . (A.4.16)

The inner and outer product are defined obviously by means of the Clifford-

product in the Clifford Algebra.
Note that using (A.4.15) and (A.4.16) we can show easily the relations:

1
a.Ar = 2(aA;— (1F A) (A4.17)
arA, = %(aA, +(1FAm) (A.4.18)
and then
aAr = a..Ar + aAAr (A.4. 19)

For our applications, the following are important:
-The identity

I
(218g.0nnnndy) = kél (-Dk+la.ay(a;...a5...ap) (A.4.20)

where the 2} means that the kth vector is omitted from the product;

-The Fundamental Formula

m
ABs =(ABs )ir - 1 + (ArBs ir - sl42 +ee +.(ABs ), +s=k§O(ArBs Nr-sieok (A4.21)
where m=%(r+ s-Ir—sl).

Observations:
Obs. 1. Note that the equation (A.4.19)
Aar=a-Ar+anA;
is the same as the equation (A.2.5) when the outer product in the Clifford Algebra is
identified with the usual outer product and a-A=&JA,.
Obs. 2. Note that the Clifford inner product between multivectors with the same grade

is given by the Grassmann inner product, that is:
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ArBr= (ArvBr)Q-

But observe that, although (, )q is defined only for elements with the same
grade, the Clifford inner product (. ) is defined for any elements of the Algebra
C(V,Q).

Obs.3. Using the Clifford inner product we can introduce a very important
isomorphism for our calculus, between A(V) and A(V*), as follows:

Af(V¥) 30, = Ar € AY(V) 0 (g, a2....8r) = Art.(a1A a2A. .. AGy) (A.4.22)

for aj, a;...a,e V

We use this isomorphism in §6. It is necessary also in order to translate our
present approach into the one in references [8,9].
Obs. 4. If V is n-dimensional vector space with a metric tensor h with signature (p,q),
then the algebra C(V,Q), where Q(a)=h(a,a), is usually designated by Rpgq.
Obs .5. The Clifford Algebra R 3 (called Minkowski Algebra or Space Time Algebra)
of the forms {dxM } is isomorphic to H(2) quaternionic matrices. The Dirac complex
matrices Algebra {7y }, with 1y W+wp=2huv 1, is the algebra C(4)=Rg4,;.

We have the inclusion R¥4; =R;3, where R*4; is the even part of Ry,;.
For completeness, we note that R3; = R(4) is called the Majorana Algebra.
Obs. 6 We have the following relation between Y5=dx°...dx3 and the Hodge star
operator:

If fpe AP(V), with V=T,*M, then

*p=(DEP 1, (A4.23)

where the index t depends an the signature and on the grade of fp.

In the paticular case of Rj33 wehave *=-% for p=1,2,3 and * =95
for 0,4.

The product at the right hand side of (A.4.23) is the Clifford product.

A.5.THE PAULI ALGEBRA

The Pauli Algebra is defined as the even sub-algebra of the space-time algebra
Rj 3. Truly, it is the Clifford Algebra Rsg of the euclidean tridimensional space R3.
Then, we have the isomorphism R*; 3 =R3 . This isomorphism is given by the linear
extension of

Y% = Sk=Y%"Yo (A.5.1)

where Y,€R13 and vy istime-like (Yp*=1).

The Pauli Algebra Rz isisomorphicto C; (complex 2x2 matrices); and
this is the reason why physicits can use the representation of ¢;j in terms of the very

well known Pauli matrices
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The vectos ok satisfy the multiplication rule:

Gj-Oy = % (cjok+ ckoj) (A.5.2)
The products of O generate a tensorial basis for Rj, which is a vector-space
with dimension 23=8. Other elements of the basis are the bivectors Ok = oj/\ok=%
(0jok -0k0;j) and the pseudoscalar is I=06,0,03.
The element I commute with all the others elements and I?=-1.
From the isomorphism (A.5.1) it follows that:
Ojk = —Yjk (A.5.3)

and
I =ys (A.5.4)

We see that for each choice of the arbitrary time-like vector yp we obtain the
Pauli Algebra of %o by the isomorphism (A.5.1).
Given a vector peR; 3, it can be represented by:
PY=Po+ P (A.5.5)
where
Po=pYo and B = PAYo (A.5.6)
The Dirac operator d=y#d,, is a vector operator. We have then:

Yo0=0¢+V (A.5.7)

where
do=Y0-0 and V=ypA0 (A.5.8)

Obs.: If AeRj3, then

0A =0-A +0AA (A.5.9)
Quantity d-A is called divergence of A and 0AA is called curl of A.

APPENDIX B

Bl. GENERAL GAUGE THEORY. THE PRINCIPAL FIBER BUNDLE

APPROACH.
Let (M,hV) be a Lorentzian manifold[!). Let n:P—M be a principal fiber

bundle PFB with group G (and Lie algebra é). The following conditions must hold :
@ Given ge G, there exists a mapping (diffeomorphism)
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Rg:P—P;p—Ry(p)=pg
() m:P—M isonto. If x=n(p)eM, the orbit of G through p,n-1(x)=n-1(gx)
=pg, g€ G is called the fibre over x=n(p).

In this way, given pen-1(x), there exists a diffeomorphism (non-canonical)
G- nlx); g— pg.

(i) P islocally trivial, i.e. for each xe M, there exist an open set UcM with
xeU and a diffeomorphism TU:n'l(U)—>UxG; Ty ) = (m(p).Su(p))
where Sy :m-1(U)->G  has the property  Sy(pg)=Sy(p)g, VgeG,Vpe n-1(U).

Ty is called a local trivialization (LT), or a choice of gauge.

We will need also the concept of transition function. Given the PFB n:P—-M
with group G and two LT, Tynl(U)»UXG and Ty (V) VG, we define
the transition from Tyto Ty asthe mapping gyyv:UNV—G where,

guv(®) = Su@)SuP)); x = n(p)e UNV (B1)
guv(x) is well defined since Sy(pg)(Sy(pe)~1=SygSy(Pg-1=Sy(Pge 1 (Svm)]
=Sy®)Sv(m)-1,and the following properties are true
guux) =e,VxeU; (i) guyx)=(yy ®))! VxeUnV
guvX)guwx)gwuyx) = e, Vxe UNnVnW

In order to link this abstract theory with the theory in §2, we need the concept of

a local section of a PFB m:P—M with group G, i.e. the mapping
M>U —-P; mo =Idy (B2)
where Idy is the identity in U.

It can be shown that there exists a natural correspondence between local sections
and local trivializations. To analyse the monopole theory, we shall need also the
following(6.3]

THEOREM: A PFB n:P—M with group G is trivial if and only if it has a continuous

(global) cross section.
A trivial PFB is one where P=MxG

We give now three equivalent definitions of a connection in a PFB. These three
definitions contain necessary ingredients for the formulation of our monopole theory as
a PFB theory.

(C1) A connection is a way to associate with peP asubspace HpcTpP such that:

Rg+( Hp) =Hpg (B3)
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The mapping p—Hp is C=. Hp is called the horizontal subspace and Vp is called
the vertical subspace,such that TpP =Hp ® Vp.

(C2) A connectionisa C>= 1-form w over P which takes values in é‘;, the Lie Algebra

of G, and such t}}\at:
(@) given AeG and A* a vector field defined over P by

A*=%(pexptA)|l=o = 0p(A*p)=A
A* is called the fundamental field ;
(b) given geG,itis wpg(Rg*X) = Adg-100p(x), VgeG, peP
We can write this equation as

Rgx (0) = Adg-100(®)
where o is called the connection 1-form.
It is important to observe that in general G appears in the physical theories as a

matrix group through its adjoint I{cprcsentation

G—-GL(G ); g—Adg.
In such a case, if Ae GL(e} ) and Be 6, we have

AdpB = %Ad A (exptB)p_o = % (A-1 (exptB)A)}o = A-1BA (BS)

Assuming then that G is a matrix group we have

(C3) A connection associates for each local trivialization (i.e., a lf:hoise of gauge)
TU:n‘l(U)—eUxG a 1-form wy over U, with values in G, with the following
compatibility condition: If gijy: UNV—G is the transition function from Ty to Ty we

impose
oy = (guy) !dgyv + (Buv) oy guv (B6)
which we sometimes write in a more compact notation as
oy = g-ldg +Adg1 0y (B6")

We now defien the local gauge potential. Given a connection over P, a local

section ©:U—P, the “pull-back”
oy =0y © B7)
is called the local gauge potential.

Now, given a connection 1-form ® overaPFB m:P—M withgroup G,
we can write each Xe TpP as X=XV +XH, where XV isvertical (i.e.,nx(XV)=0)
and XH is horizontal (i.e. ®(XH)=0).

If AKP,G) isthe setof all the k-forms over P with values in G , then if
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0e A(P,G) we define oH e AKP,G) by
oH(X,,.....Xy) = (p(X}*,....,XkH) (B8)
Notice that ¢H(X;, ... Xky=0 if one of the X; is vertical. Moreover, the exterior

covariant derivative D® of (peAk(P,E\S) is

Do = () e AKH(P,G) (B9)
We define now the curvature form of the connection e Al(P,a‘v) as
QO=DO @ eA2(P,5) (B10)
We can show that the curvatre satisfies the Cartan structural equation[2.3]
Q0 = DO o= do+ 7 [ 0,0] (B11)

The meaning of the commutator in eq (15) is as follows: Let @€ Al (P,ei) and
ye Al (P,e}) . Then [o@,yle Ai+j(P,€3), in such a way that
[0 W]1(X e X)) = ﬁio DOLOKs1y-Xo) ) WXogsy-Xoasj)]  (B12)
where oe Perm (1,2,...,i+j) and (-)9=t is the sign of the permutation.

The brackets in the r.h.s. of (16) are the Lie brackets in é\} and Xpe TpP, n=1,

.. S,

The curvature satisfies also certain integrability condition. called Bianchi identity

(which in the Physics literature are called the homogeneous field equations):
DO Q0 =0 B13)
Once we choose a local section oy;: U-P(UcM) , we have a gauge potential

wyy associated with the connection via the pull-back (C3).
Now, the pull-back of Q@ is called the force-field associated to wy; . We have

Qu=of Q@ (B14)
The Cartan structural equation is also validin U ,i.e. we have
Q= Dowy = doy + 5[ oyey]l (B15) -

It Ais important to obs'e(rve that, when (B6) is a matrix group, we have that, if

ee Ai(P,G) and WYeAJ(P,G), then

[9.¥] =AY - ()i Pag (B16)
where ¢ and ¥ are considered as matrices of forms with valuesin R, and @AY is
the usual matrix multiplication (where the elements of the matrices are multiplied via the
edge operator A). Then, when G is a matrix group, eq (B11) and eq (B15) can be
written

QO=dw + wA® B11Y)
Qu=doy+ wyany (B15")
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Eq.(10)givesthe rule for the transformation of the potential under a gauge
transformation. For the force field we have the following rule(7.15],
guv: UunVvV -G = Qv = Ad(gUV)']QU (B17)

and in the case when G is a matrix group we have
Qv = (guv)'Qu guv (B18)

B2. EQUIVARIANT HORIZONTAL FORMS

Let G— GL(V), g— gv for geG and ve V be as usual a representation of
G in a vector space V. By definition, an equivariant horizontal k-form (or horizontal k-

form, for short ) in P which assumes values in V satisfies the properties:

(hy) ¢ X1, Xg) =0 (B.19)
if at least one of the X; is vertical, i.e.,n*X; =0
(h)  Rgb=g1¢ ' (B.20)

Let us recall the space of the k-horizontal forms "AX(P,V)cAk(P,V) . Observe
that , although a connection ®e AI(P,G) has the property (hy) when we use the
adjoint representation Ad: G—GL(V) , it does not give zero when applied to vertical
vectors and then does not belong to Al (P,ﬁ). The difference between two connections
1= — e Al (P,é‘;) since satisfies (hp) and (hj). Indeed, ®; and co% map a
given vertical vector A*p on its (unique) generator A=0;(A¥)=m,(A*)=Ae G

Conversely, if 1e Al (p,&), also w+7T is a connection, and if we fix a connection
o we have a 1-1 correspondence between the elements of Al (p,é‘;) and the connections
in :P—M .In this way, if @ is a connection and 1€ Al (P,e}) ,then w+tt is acuve in
C ,(the space of connections) which is equal to ® in t=0.

We can then characterizes K‘(P,e}) =T,C as the tangent space to C.We
also observe here that Q®e AZ(P,e}) with the adjoint representation.

We call horizontal functions or particle fields the maps ¥: P—V which
satisfy only (h2) (We "A%(P,V) = C(P,V)) . Such functions are associated to the
quantum fields of the particles.

The covariant derivative maps horizontal forms into horizontal forms, i.e.
D2 AK(P,V)— AK+1(P,V) . Indeed, D@¢=(dp)H gives zero on vertical vectors and
Ko = g1, K, DO = Ry(dp)H = (dRp)H = g 1D (Observe that the pull-back
commutes with the differential and that ]fgchangcs only the vertical component of the
vectors).

We can show!15] that for 1e AK(P,V) we have
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(h3) DOt = do+ wAT (B.21)
The symbol A in (h3) carries not only the usual exterior product but also the
action of G in V. Such an action comes from the representation of G in V,v—gv given
by
Av =gt- (( exptA).v)|=0 (B.22)
When V= f‘} with the adjoint representation, (h3) reduces to D@t=d1+[®,T] . When
T=Q9 thisis the Bianchi identity.

B3. METRICS AND THE HODGE STAR OPERATOR IN A PFB

Let n:P—M with group G be a PFB. For each pe P we can choose HycTpP such
that TpP=Hp@Vp . We observe that 7 IHp' Hp—»TM (x=(p))
is an isomorphism between Hp and T,M .

The metric h of the space-time M can then be transported to Hp, which then will
have a metric hp = np"' hy . We can also define a volume element [l associated with
the volume element W in Tx M. This permits us to define a Hodge star operator in
Hp.

*p:Ak(Hp,V) — AR- 1‘(Hp,V) (B.23)
where n=dim Hp=dim M.

Due to the partition TpP=Hp@Vp and due to the fact that horizontal forms give

zero when applied to vertical vectors, we can define
¥ AK@P,V) 5 An-k(P,V) (B.24)
For ¢e AX(P,V) and peP we define (*@)p as the unique extension of *pQ|yp toa

(n-k) form in P with values in V which gives zero when acting on vertical vectors. We
have for each local section oy.U—P

o) = *o() (¢) (B.25)
where *: AK(U,V)—-AMk(U,V) is the usual Hodge star operator * defined by the

metric and the volume element in M. (see eq (A.3.2))
Given * we can define a codifferential associated to a connection

5@ : AKP,V) »Ar-k@P,V) for horizontal forms by (compare with eq (A.3.1)):
80A, = (-1P*IDOFA, ,VApeKk(P,V) (B.26)

By using * we can also define a metric for the horizontal p-forms (p,‘I’eXk(P,R) by
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f: AK@,R)xAk(P,R)->R (B.27)
with @A¥y=h(¢,y)H, being {1 the volume element in Hp.
This metric can be extended also to horizontal forms cp,\yexk(P,V) which take
values in a vector space V with metric ﬁ .Let {Eq) beabasisof V,
hop = N(Eo,Ep) and write g=¢%Eq, Y=y Eq with ¢%yoe AX(P.R) .
We define
f hi: AKP,V)XAK(P, V)R
fh (9.0) = Zoph@%yPhop (B.28)
In the case in which V= G we always use h= h, the bi invariant Killing-Cartan metric
in G U15] and we have
i h: %P6 }AXP,G )R
forall e AKP,6 ).

APPENDIX C
SPLICED BUNDLES AND CONNECTIONS

Let m:P; —M and my:P;—M be two PFB with group Gy and G, and the
same base space M . We define the set P;0P,={(p;,p2)€ P1xP3! 71(p1)=n(p2)} and
observe that G x G, acts freely on the right of P;oP,, (P1-P2)(81.82)=(P181:P282) -

. It is easy to see that m32:P;0P,—M with 7,2(P1,P2)=T1 (P)=T2(P) is a PFB with
group G; xGa. We call such a PFB a spliced bundle associated to the two PFB
which enters the definition.

We can also introduce two other PFB, ml: P,oP,—P; (n!(py.p2)=py) Wwith
group G, and w2:P,0P,—P,(n2 (p1,pp) = p, whith group Gy

We have the structure of five PFB represented in Figure 1

Gy xG2

[
[ ]
G2»uonuP1 .O Pznnnno'Gl

rl

2
Gl.'....... Pl 7‘—{2 T P2.......O.Gz

n
Tl'i 2
M N
Fig. 1 - The spliced bundle PioP2 and other PFBs



We can showl[13] that, if 0,e AI(PI,&I) and w,€ A2(P2,éz) are connections
defined on the PFB ®{:P;>M and n,:P,—M, then
0 = tl*; ® 12*w, (C1)
is a connection on the PFB  m,,:P;0P,—M . We are going to show here that, if ®
is a connection on the spliced bundle, there are connections ®, and ®, on the original
PFB such that
o= nl"0,®&n?" o, (C2)
In order to prove our statement let us use the identifications IC\il=€31€DO,
62=O@€32 in 6316962, and consider the projections pi:G,®G,—Gij(i=1,2).Observe
that we can always write ®=pl(®) ®p2(w), and then, if we define ®; and w3
through the relations  mi*@; =pi(®) , i=1,2, we obtain @=n1*w, &', .
It remains to be proved that ®; and «©, are well defined and are connections. We
have, for w,for example, that
(@), Xy) = PH@p(Xp))
where pe P,0P;, m;(p) = pl,Xpe Tp(Plon) and (X)p = nl*(Xp)e Tp 1(P1 )

We must show that this definition does not depend on the choice of p and Xp . Indeed,
for p fixed, if Xp,X'pe Tp(P10P2) and nl*p(Xp)=1t1*p( X'p)=Xpl, then

Tl (Xp—X'p) =0 (C3)
and then Xp—X'p is a vertical vector in the PFB n!:P,0P,—P;. The group associated
to this PFB is G; and we can write

, d
Xp—X'p = at (p exptAj)=0 (C4)
for Ae 632. Making the identification A;=0®Aje 616962 we obtain that
WpXp-Xp =00 Az (CS5)

and then pl(@p(Xp-X'p)) =0 and pl(wp(Xp))=p'(p(X'p))
In the case w!(p)=nl(p)=p1, we have p'=pg; and X'p=Ry Xp ,and then
Tl X'p)= s (Xp)
Moreover
@p (Xp) =Ad(g y 10p (Xp) and pl(p Xp) )=pl(wp Xp))
It follows that ®, is well defined and we must now show that it is a connection.

The properties (i) and (ii) of the definition of a connection are clearly satisfied. We
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observe that, from the point of view of the PFB, =! :P1oP; 3R, acts s0 as Reeg,)

from the point of view of the spliced bundle:
@) (Rg *Xp)) = pl(co(R(gl,e)* Xp) =p! (Ad(g'e)_lco(Xp)) =
= Adg 1)_lpl((o(Xp)) = Ad(g,).; @(Xp,) (C6)
In this way it is proved that, for each connection ® on the spliced bundle
7,,.P,0P,—M , there are two connections ®; on P; and @, on P, such that
o= 1"w,en* 0,
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