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ABSTRACT

The primary fields structure constants of the (A,D) minimal <1
series are computed explicitly. Various inperpretations of the fusion
algebras are discussed.
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1. The BPZ [1] c¢=1-6/[m(m+1)] <1 minimal series of local {(unitary) conformal
field theories constructed explicitly on the plane in [2] describe a field
content corresponding to the (A,A) modular invariants on the torus [3]. In [4]
we have built local (i.e. symmetric under permutation of the fields) euclidean
4-point functions which generate the (A,D) series. The structure constants of
the primary [ields can be read off from these functions, but we feel it is
worthwile presepting the results in a more explicit form.
For any m+l )» 6, even, the (Am-4’D:11) fusion algebra of Vir x Vir primary

2
fields has the general structure [4]

A = u-?aew’{, A x A =4  ,i,j=0,1 nod 2 (1a)
L2 v

)

where the subalgebra u4{ is a subalgebra of the (A ,A ) scalar algebra

m-1 ™

A (@ \a=Z=5,, n- odd} (1b)
A DA

° A nmn

I
with real structure constants Dr] computed in [2], while

A =, | B, a_=a, 4= k=" (mod 2) (1c)

4 (" F i:_' =L

contains (m-1)/2 new scalar fields along with nonzero, integer spin s(f) :aAF—ASF—

fields (mod 2 s(F) depends only on k).In (1b,c) 1<n',k’¢m-1, 1¢n,k¢m and to

select the nonequivalent fields it is enough to take 1<n',k'<(m-1)/2 (see [1]).
The set pf scalars generates the whole algebra S . For m+l=6 mod 4 ((A,DLP+1 )

series in the notation of [3]) the scalars of dimension zxk._ﬂd double. The

o :
detailed fusion rules factorize to the A- and D-type su(2) fusion rules [5],

reflecting the factorization of the crossing matrix. However, the structure
constants (and hence the normalized fusion matrices of [6]) do not factorize
and so the problem does not reduce simply to that of the sd?Z)*case 170

For m »6, even, there is an analogous (D,A) fusion algebra.

Let q;e.ﬁ; , A=(n'n) ,4% € Jgf, 6=(C,E)=[(k'k).(k' m+l-k)]. The structure

constants are extracted from the leading singular behaviour of a pair of

functions
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suppressing the contribution of the descendent fields. Here x=(x',x2kﬁ2)z=x4+£xf

He choose

A
1 s | s(F)
=1, D.. = (-1) (3)
FF FF
consistently with the choice of the normalization of the 2-point function
A A -24 ,MF ins(F)
CWilx YOUx Yo =d . T E d =e d = 1. (4)
PR T e e ey L wF

The reason for this choice will become clear below.
The relative constant of (2a) and (2b) is fixed by locality and assuming

(3) we have, using the explicit expressions in [4]:

s
IS A s(F) R VI
CEx VPIx )@(x )¢(x )= (-1) J (A,C,A,C;Z) J (A,C,A,CZ)
A 1 ¢ 2 5 3 & 4 r F =
F
ol A (5)
' B J_T+S(C) a'n n'n
= Hz 04z, %) Z(-l) S,{a,b,c)S , (a,b,c) I (a,b,c;2) I,  {a,b,c;Z)
Gy R jJ “‘""'"{J‘ v T J
i
e o ~Wl - (B 48 - A)
where I, (z) =1,.(z) / N,. & 2 € F [1+0(z)] are the normalized
W A St s 2% 20, -20
contour integrals defined in [2], z = 2, 2, / z2,2.; “2‘.}‘ ,dl‘)=[z(1-z}] Z ._2“'

o = :u-(—:d—: f = =4 _‘-'
:!| d_; = o(n",dl 20(0 .{klk'dz dklmed—lt

/
= m2d, =[m/(m+1)]/z , F = (p'p), p=k-n+2j-1, p' = k"-n'+2j-1 , o) = ol ([ - 22y ).

y asb=2« o, c=2o( o, E:z«_;l: .

The constants

("'(alb!c) A’ﬁ'(a,b,c)
S, (abye) = |[-ddomoaaan - e =8, (bya,d) (6a)
JJ {‘ (a|c|b) /lj. (a,cpb) n'tf‘J’ ﬂ*{-i
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reproduce the Dotsenko - Fateev (DF) structure constants

2 = 2 2 s F 2
S.,. la,a,e) = (D ) . B (Bgayd) =D )} . (6b)
JJ AC J nit AC



Here g, (a,b,c) = 5]'(a.b,c)§3'(a’.b',0'3 are Lhe expansion coefficients
JJ
‘2 — - . FEEX
computed in [2]; a'=-ax_ , etc., d = Zag(2d;—ogi. d=2+4(2« ~,), c-¢ =d-d =1
mod 2, d'-c' =0 mod 2, d'-c' =0 mod 2. The coefficients ¥ (u.byc) do not

change if some of the parameters a,b,c change by an integer.

Comparing (5) with (2) and accounting for (4) we obtain

) =S.(a,a,c) S, (a,a,d) . (7a)
AC JJ J n+i-y

All considerations up to here can be repeated without essential changes for
the general minimal series, where m is replaced by p/(gq-p), p,q - coprime
integers, q - even. For the main series (q=p+l1) a direct but tedious check

shows that for values of the parameters consistent with the chiral fusion rules

A

»F
the r.h.s. of (7a) is positive and hence the constants DA&? are real. We obtain
z 8 P 2 2
A F -HF
(D'.) =D D _ =(D .) (7b)
A AC A AC

F F
since the DF constants DAC and D _ can be chosen to be of the same sign.
AC

From the locality of the 3-point functions one obtains various relations

=
for their normalization coefflficients d , which in our integer spin case are
AL

svmmelric for even permutations ol the triple (F,A,C). For the slructure

- s
constants D =d " /d (cf.(41)) these relations read
AC R N
b B s(F)+s(C), £ s(F)+s(C) . & #¢ s(Cl. A s(F)a.
D .=(-1) . =(-1) D, =D ~, =(-1) D,.=(-1) D ﬁ-(B)
AL CA FA AF FC ik 5

We have further information about the sign of ﬁg, from the explicit

expression for DA D obtained from the 4-point function (2b) (or

A Cé
equivalently from the (xq,xl) - (xL.x#) channel of (5))

» A E(F)+5(C) NI
WO E ) IPx, =2 (-1) J(A,A,C,C;2) J(A,A,C,C52) (9
Y R e = £
s(C) 5. e
(=(-1) 2 J(C,A,A,C;1-Z) J(C,A,A,C31-2) ),
F F F
A m=1
s(F) + - for m+1=6 mod 4
e(F) = mod 2 ” (10a)

~ mat
s(F+1)+1 + T*- for m+1=8 mod 4



(Hurv F+1 is a notation for (p' ptl)'. The conformal blocks in (9) are realized
by the DF contour integrals analogously to (5); 1-Z denotes (zs,z o & .zﬁ).) In
2 1

Lhe special case when @% is a scalar , 6=(C,C), we get

AF

D ;.= (=1) D s (10b)

cc ce

The two (A,D) series -for m+1=8 mod 4 ((A’D%P*1)) and m+1=6 mod 4 ((A'Dap+z))'

are treated here on equal footing. In particular, the fusion rules (cf. la) for

both cases are

A N
¢ x¢ _ =@ _
G SE) (F'5F ) € VR, s Fa)
1 4 2 2 [A 4
A A (11)
@ o T, L
{F ] (F ,F ) ¢ (F_,F,)
1 4 ) T L c

where the r.h.s. is described according to the standard chiral (left) fusion
rules. The mapping <(F) =F for F = (k'k) , k=:gj mod 2 (cf.lc) can be
extended in the case m+1=8 mod 4 to o (P)=P, if P =(k'k), k - odd. Then it
provides an automorphism of the chiral fusion rules [8] of the corresponding

» A
(A,A) fusicn algebra. Yet the scalar fields ¢ , , F=(F, F), cannot be
&

identilied with their DF counterparts, as is clear from (7,10,11). As we shall
see below, the case m+1=6 mod 4, which corresponds to diagonalizable modular
invariants in [3], admits also other interpreltations than the one considered up

Lo now.

2. We can interpret the conformal invariant function in (5) as the correlation

G-

2 A 2 ; : . J ' 2
and , accordingly, the function in (4) as the 2-point function <
e, P W, 28 , P ¢ £

'nb_r

with apriori different normalizations. The DF correlations admit a similar
interpretation. Here * denotes the hermitian conjugation with respect to the
euclidean sesquilinear form (,), which we assume to realize our fields

averages. From the hermiticity of the form and locality of 2- and 3-point
o
—_ T (i

functions one has d =dys, D _=D,¢ » (we use now a unified notation to

c
AL AL AQ A

cover all cases). Starting with the DF -case, the Osterwalder - Schrader (0S)



(reflection) positivity (equivalently, Wightman positivity in M;)of the 2-point

functions requires dﬁ..kﬂr - real , positive (and 2~ >0 which is ensured in the
)

] g
main series). Hence the choice dA.A=1=DA.,A is possible, irrespectively of the

choice for dA i This is also consistent with the explicit expression for the

L —

4-point functions, since what has to be identified with IE:B D;G is indeed

positive for the main series. Now we can choose d . =d =1 and hence D; =DF

AR AR AB

-
;Dh'e“ which inp’lies that all DF fields for the main series can be considered

—

X
to be real (hermitian) ¢ =¢ . In our case we can choose d-_
A A

:. ”
F F

~ L f; .-;: n%‘ .ﬁé
as in (4), hence pF. are real, given by (7a) and D _ = DP; =D .,=D 2z . This
AC AC AT A C AC

implies that we can identify I:P;;_= Jv; and hence to consider all scalar fields,
as well as the field E"\@E:‘ , irreducible under Of(f},l), as real fields. Since
in our case all a, A >0 the choice of the sign in (4) ensures the 0S -
positivity of the 2-point functions for these fields . This is equivalent to
the positivity of the Wightman function counterparts of (4), which can be

eusily checked looking at the Fourier transform

W(p) = =il S(p, ,=ip°+8) = Slp, ,-ip"~C)]
(12a)

' o o T e b g diemies
S SR Blp) &-p_ ) (-p, )

-lJ M (d-s)  (d+s)
d=a+a, p: =p: -pj ; 3 (p',p") is the Fourier transform of the euclidean
2-point function in (4). (See also [9] for explicit formulae and a discussion
of reflection positivity in the framework of the conformal theories.) To check
the 0S - positivity of the 4-point functions and hence, to recover-unitarity of
the main minimal series, onc needs more information than is available at
present. Ccnsider for simplicity the case when in (5) the field 056 is a
scalar. The 0S - positivity condition for the 4-point function

~ " »~ ~
8 % Aax Cax, sA3x sC) 2.8(x% 0% A% JA$% €) in (5) reads
f 2 4 ) 2 1 J ¥

H dx, dx, fle xf,sxl) S(x'.A;xL.C;xJ,A;xH,C ) f(xJ ,x,) >0 (12b)



where f(x,y), 3\={.\‘,:\‘ ) e Ruis a suitable test lunction, which vanishes with
all its derivatives unless x°,y° >0, x#}';&i:(x(,-xa). The condition (12b)
reduces to the 0S - positivity of the 2-point functions, if all structure
constants , including those resulting from the (spin) combinations of the

descendent (quasi-primary) fields, are real.

l\' m+f

A 4l
3. Recalling that for m+l=6 mod 4 both Wy and L{?A v A=(A,A), A=(k' —-),
belong to the fu'sion algebra, we define the fields

A

+ 1,051 for m+l = 10 mod 8 (13a)

rel

i "
$ = —(cpnqﬂ) , ® =L(Y-i¢) for m+l = 6 mod 8 (13b)
T A A

Then £@:@A> =£<10‘ﬁ~ ‘PA'?,(@: é:FC‘PAQP- Now (7), which holds for both
(A,D) series, gets modified for m+1=6 mod 4. Indeed, using (8,10) (for A=B and
a proper choice of sign for A#B) one obtains that the products @ X (fatand
(;_5 (f( 6 (f) contain only even {including zero) spin primary fields, while
(ﬁ cﬁand g X @ contain odd spin Flelds along with scalar fields. The scalar

“illt‘.‘ﬁl in l.he 11n=t case includes @ and Q._S ( d; ), respectively, with

structure constants modified by a factor (_ ' . . The correlation
functions admit a diagonal form, reminiscent of the diagonal modular invariants
of [3], wilth the lactor 2 appearing in front of the contribution of the [ields é-
or (f} ( ) Since {D = (D )l for s(A}=O=s(B). in computing the correlation

~

functions of the f1elds (13) we postulate that <lﬂ (F ¢‘ ’P) =<¢ ¢ ¢ ¢>.
iB A B A

According to the interpretation in [B,10] one can identify each of these
diagonal Lerms, accomodaling representations F, F, I?, and i‘twith the same (mod 4)
dimensions A ,4 , as the product of the conformal blocks of an extended chiral
algebra. The fusion rules of the resulting (extended) (A,D) series diagonalize.
Clearly, using the basis with the linear combinations in (13), instead of the

initial scalar fields , already changes the homogeneous fusion algebra (la).

Accordingly tLhe formulae for the structure constants (7) change due to



cancellations and appearance of the lactors (2, 1/|P2_, which can be easily
traced ; llﬁ modifies the constants for a triple containing just one of the
fields in (13). (Modifications also appear due to the factors -1, %X i, in the
definition (13).)

Let us give an example. T-ke m+l=6. Denoting @( = @(3, r=1,2 and

identifying [45) =<§ , we have
I-=r [a

¥

2 @

L r .1t

ven SO
” -
1S3 HH
*
1] "

i + @+ @+ @) (14)
4 " (s 1 rs

n

= :
- ¥ 6} =L .
@ X (.P(11 Z 6{ . ___(‘x (‘0‘;‘| - ér-' , etc

L&
The sums in (14) run by two from lr‘ —rL]+1 to r4+ra_—1, t.e. have one or

~ N
two different terms. If the fields ¢, ©., LO{«S are treated as descendants of
s

r1
lér'. the fusion rules (14) recover exactly the neutral fusion subalgebra of the
1

23~ model of [11]. Indeed, the field @1 can be identified with the product of
(v) _*

iy . — A L . e
the parafermionic fields ¢/ (z) W (z), @1— G (z) @ (z), while @L—U_;— %.1}' s

= U;*, and & =1, ¢ =U= ¢(“(see [11] for notation).
11 21 L",”f

The interprelation of the even (A,D) series discussed here extends to
non-unitary series as well, however, the [lields C_Bﬁand @: will be independent,
not hermitian conjugated [ields.

The sel 91“ local correlation functions constructed in [4] is sufficient to
recover the spin combinations listed in the (A,D) modular invariants and to
provide a field interpretation described by the set of fusion rules in (1,11)
(or, equivalently, by the fusion algebra generated when passing to the linear
combinations in (13)). A guestion arises are these functions the only local
functions, yielding the (A,D) content. Recent results [10,7] (for the
su?Z)-case} suggest that there might be more possibilities. Consider the
simplest example in [10] when m+l1 = 14. The combinations (5,9) and (9,5) (k'=1)
which appear in the product Ltzx t;ﬂ;.: (or t_ﬁ* X é*; could be also obtained by

E4
effectively doubling the scalar (5,5). Indeed, it can be checked explicitly
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that there is a crossing invariant (under, say xfa &g) and monodromy invariant
around z, =0 and %J =0, nondiagonal 4-point function, which replaces the DF
diagonal combination <(5,5)(5,5)(5,5)(5,5)>. It yields (9,5) and (5,9) and
reproduces the same modification by 1/(§'of the structure constants as in [7].
However, we were not able to find a field interpretation, say, considering it
as n correlation of two (or more) different (5,3) fields, to be consistenl with
all locality (symmetry) constraints. Note that (5,9), (9,5), have odd spin, so
that the produc{ B, EL‘ of left and right braid transformations (see below) is
- <)

2
not trivial, although B B = 1.
12 42

4, To prove the crossing invariance of the correlation (5) one has to exploit
the fact that a change by an integer of any of the parameters a,b,c of the

crossing matrix ck1}a,b,c) keeps its matrix elements invariant up to a
v

sign. (The parameter d = —a—b-c—Zdjn—2)+2(n’—2) is a function of a,b,c, so that
the charge conservation condition is maintained.) The exact form of these sign
factors has been fixed in [4b] using an identity ((A.13)) for the crossing
matrices. It results when connecting by analytic continuation the three
fundamental bases at z = 0,1, . As conjectured in [4b] this identity turns
ont to be egunivalent to the Yang - Baxter equation for the braid matrices
{ransforming the full euclidean chiral 4-point conformal blocks (see
[12]-(14]). Iu the Yang - Baxter equation lor the 4-point function in the

is diagonal

standard basis the braid matrix B‘a

5% iTE (200 +A., . (ake) ]
B, (E)(= (B (2) ) = e b
2 AC AC (15a)

-ial [&6 +a-4(A,C)]
=e A c 3
ala w z
where AL. (atc) = Al(a'+c’) + A, (a+c) - 20§-10(3"-1), A, =(j-1)[1+atct(j-2)e< |
'K 'l 1{ -

(see [2])). The nondiagonal braid matrix

AD lﬁ;[ﬂ +A‘A(A'C)‘A(A,B)}

B (¢) (=(B" (£)) )=e AW T o (c,b,a) of (c’,b',a') (15b)
= CB 3T "‘J-é A’J"f‘

is recovered by any of the two sides of the identity in [4b], when the phases



i

coming from the prefactors are taken into account.(More precisely, one has to
use the identity for o, ,=o o,
NS T
and T are expressed by (a,c;j'j) and (a,b;t't) using the formulae of [2] and

7,
o (a,b,c) = [y- (a,b,c)/ 4, (bya,c) ] zoé(a,b,C) (J.(a,b,c) =}).(c,b,a)) are
T v z JTt v v

/y which completely factorizes). Here J

the DF crossing matrices satisfying

b L
1]

o 1 : gi(a,b,c) ot (b,a,c) =1 . (16)

I3

Conversely, the crossing matrix can be expressed up to an overall phase
factor by the l.h.s. {(or r.h.s.) of the Yang - Baxter equation.
itz [a{d)-&a(a)-a(b)-2(c)]
e ot (a,b,c) =B (£) B (§) B (T) (17)
) 23 12

The braid -matrices defined in (15) satisfy automatically the conformal
condition of [14b]. For (15b) it follows from the second equality in flﬁ) and
it is explicit for (15a).

There has been given a general algorithm for the computation of the
matrices osk{a,b,c) in [2) and explicit expressions have been found for k=1
(or j=1) and the cases related to these by symmetries. Presumably , the
formulac for the 6j-symbols derived in the context of the quantum group 51%(2)
representations [153] (for QJJ =1) provide an explicit expression in the general
case. There is a full correspondence between the set of polynomial identities
of [6] for 220 and the set of identities for the quantum 6j - symbols, derived
in [15] from the corresponding relations for the quantum Clebsch - Gordan
coefficients. Note that (A.13) in [4b] can be also rewritten as

7 ®* e (r*7) R L (18)

¥ ca JK  BC KT €8 37

-an identity which can be derived in the framework of [6] and which has an

AQG
analogue in [15]. Here (F o D) L= L
i IT Nii'e)
symbols ;C A J ﬁ it 167
3D K

(c,b,a) corresponds to the 6j -
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* Because of the same reason we get, e.g., only even spins in the product (iAiéu
of two undistinguishable fields in disagreement with [7]. We Lhink the reason

for this and other disagreements, if we try to extend the results in [7] to the
minimal theories, is the unfounded basic argument in the proof in [7] about the
invariance of the braid and crossing (fusion) matrices.
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