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Abstract - In substitution for Dirac monopoles with string , we
have recently introduced "monopoles without string " on the basis of a
generalized potential, the sum of a vector A and a pseudovector YSB po—
tential. By making recourse to the (graded) Clifford algebra , which just
allows adding together tensors of different rank (e.g., scalars
+ pseudoscalars + vectors + pseudovectors +...), in a previous
paper we succeeded in constructing a lagrangian and hamiltonian
formalism for interacting monopoles that can be regarded as sa-
tisfactory”from various points of view. In the present note,
after having completed that formalism, we put forth a purely
geometrical interpretation of it within the Kahler algebra on

differential forms, essential ingredients being the natural intro-

duction of a "generalized curvature" and the Hodge decomposi-
tion. We thus pave the way for the extension of our "monopoles
without string" to non-abelian gauge groups. The analogies of

this approach with supersymmetric theories are apparent.
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MAGNETIC MONOPOLES WITHOUT STRINGS BY KAHLER-CLIFFORD ALGEBRA: GEOMETRICAL
INTERPRETATION OF A SATISFACIORY FORMALISM.

by Adolfo MAIA Jr., Erasmo RECAMI, Waldyr A.RODRIGUES Jr. and Marcio A.F.ROSA

It is wellknown that, when describing the eléctromagnetic
field Y produced by a Dirac monopole [l] in terms of one poten
tial A" only, such a potential has to be singular along an ar-
bitrary line starting from the monopole and going to infinity.
This "string" has been considered -——since longEZJ;— as unphys-
ical, since the singularity in A" does not correspond to any
singularity in Y,

Moreover, in the context of the ordinary U(1) gauge theory of
electromagnetism, the string may be regarded as originating from
the fact that the monopole charges are to be identified[}] with
the Chern numbers characterizing the principal U(1) bundles over
the base-space R’xS2. And R?xS? is homeomorphic just to R"-{1linel.
This circumstance sheds light on another unphysical feature of
the Dirac monopoles, i.e. on the fact that the topology of the
base-space is modified by the presence of magnetic charges[3,4]‘
And such a topology has to become even more exotic when generali-
zed[S] Diraé monopoles are present. .

A way out has been looked for by many authors[2,6] via the in-
troduction of a second potential BH. But they did not completely
succeed in dispensing with an exotic base-space, whenever they
wanted to stick to the ordinary vector-tensor algebra. However
(just on the basis of both a vector potential A and a pseudovec—
tor potential YSB),we recently constructed[ﬁ] a rather satisfac-
tory formalism for magnetic monopoles without string (i.e., 1li-
ving in the ordinary Minkowski base-space R"), by making recourse
to Clifford algebra: that is to say, to a (graded) algebra suf-
ficiently powerful to allow adding together tensors of different
rank (scalars, pseudoscalars, vectors, pseudoVectors, etc.). In
ref.[B], for example, both the electric and the magnetic current
are vectorial, whilst in our approach they are represented by a
vectorial and a pseudovectorial current, respectively (and, never-

theless, we can add them together[7]). Our formalism can be con-



sidered satisfactory for the reasons we shall see below. Some

analogous results have been got in refs.[9,10].

From Clifford to Kahler. In this paper we want, first-of all,
to pass from the Cclifford language, used 1in ref.[?], to the lan-
guage of differential forms, which is the popular one in fiber
bundle and gauge theories[li]. This will pave the way, inciden-

tally, for a generalization of our "monopoles without string " to

non-abelian gauge groups.
The new language will allow approaching the question of a sui-

table formalism for interacting monopoles from a purely geometrical
point of view. The algebraic structure is now the Kahler-Dirac-
-Atiyah (or simply Kahler) one[}Z], since Kihler algebra —acting
on the differential forms— is isomorphic to Clifford's —acting,
as known, on the “multivectors"[lB]——. More precisely, Kahler al
gebra is isomorphic[}4,15] to the "space—time#1 (Clifford) algebra"
Notice that we ar= always confining ourselves to the (16-

IR
1,3° .
—~dimensional) algebras A built on the four-dimensional space-time

M*; in such a way that
A=A ON OO, (1)

where, as is known, Ak is the (4fk)—dimensional space of the k-
—forms (or of the Clifford k—vectors[}3]). In other words, A°
and A* are the one-dimensional spaces of the scalars (0-forms) and
pseudoscalars (4-forms), respectively; A! and A? the four-dimen-
sional.spaces of the vectors (l-forms) and pseudovectors (3-forms) ,
respectively; and A2 is the six-dimensional space of the space-
—time bivectors (2-forms).

A dictionary is already available from Clifford to Kahler alge-
bra[l4%16]. Let us first recall that, out of the vector space of

the differential forms (over the real field), one obtains: (1)

the exterior (or Grassmann—Cértan) algebra, by adding the antisym-
metric wedge-product (A); (ii) the Hodge algebra, by adding also
the symmetric inner-product (+); (iii) the Kihler algebra, by ad-
ding moreover a clifford product (V) [Iﬂ, which —in the simple case
when o, or B, is a 1-form— reduces to aVB = a*B +alApB. Notice that, if
o is a i-form and B a j-form, then a-B is a |i-j|-form and ahB is a (i+j)-form.
Such a dictionary is easily obtained by associating the basis

[dxu} of the algebra of differential forms with the basis {Yu} of



the space-time Clifford algebra. As a consequence, the Hodge
star operator (#) , acting on the forms, corresponds to Clifford's

ys duality operator[7} and the dictionary essentially reduces to:

CLIFFORD KAHLER " DICTIONARY"
vE —> «£ ; = Y, % * (2)
JE =g-f + JAf —» (A+8)VE; —> # =d+s , (3)

where f is a Cclifford number (or a sum of different-degree forms:
i.e., an element of KAhler algebra), and the vector derivative .|
is the Dirac Operator[7] (3 zy“au , when acting on Clifford num-
bers, or in particular on Dirac matrices). In Kihler algebra,

d is the exterior derivative and 6 =*d* is the Hodge co—-deriva

tive; with reference to eq. (1), let us observe for future conve-

nience that d transforms for instance one-forms fle A! into

two-forms f 6 A%, while § transforms for instance three-forms

f é A? into two—forms f E A%2. Notice, moreover, that in tenso-
rlal language the eq. (3) corresponds to nothing but the decompo-—
sition of the vector derivative into divergence and curl; so that
daf ~ZAf ~yot £, and 6f = Jf =div £. At last, both # and (d+§)
are the square—root[7 13, 14] of the D'Alambertian operator[j; and
g2 =62 =

Generalized potential and field: a satisfactory formalism. Be-
foreHgOLng on, let us recall from our previous work[j 1@] in Clif

ford (space-time) algebra that the "completed" Maxwell equations

wrote

J ; with J = Jg + Yst . (4)

AF

where the space-time "bivector" F——Fuquv"lFuvY Ny, is the sum
of the Pauli vector E and of the Pauli pseudovector Y, H- and J
is the sum of a space-time vector Ja and a space-time pseudovec—

tor ( ="trivector") stm. Or, alternatively [?2 E[]]:

4?°A = J; #A=0, with A=A+ YB. (4')
For an exploitation of the role of the pseﬁdoscalar unit Y =

AY Ay AY =Y Y,Y,Y, ,and the edification of a lagranglan

and hamlltonlan formallsm for interacting monopoles, we just re-

fer to [7].



Here we want to add the following. Our lagrangian and hamilto
nian formalism for electromagnetism with monopoles is satisfacto-
ry since: (a) we derived the correct field equations (4) from a
lagrangian[?] in which also the crossed interactions between J,
and B, and between J_ and A, do explicitly appear, without -viola-
ting the gauge symmetries (in other words, in our theory a unique
type of photon does exist, consistently with the fact that the
unique physical field is F); (b) our hamiltonian forwards, among
others, the correct expressions for the field energy-density, the
Poynting vector, etc. Oour approach, however, cannot overcome the
"no-go theorems" by Rosenbaum et al.[8]; for instance, Rohrlich[ﬁ]
showed that a single lagrangian can yield both the field equations
and the charge motion-equations gng[G] in the trivial case when
J, is proportional to Jg (that is,—Je°(Y5Jm)=JeAJm = 0). Neverthe
less, in our theory we need applying the variational principle just
once, since our single lagrangian[7] implies even the correct coupl
ings of the currents with the field. In the sense that the field
equations (4) igglx, if s¥ E%EYUF, that: BUS“ = Je-F-+Jm°(ysF),
where SH-Yv =g"V is the field energy-momentum tensor. As we shall
show elsewhere, by projecting into the Pauli algebra and calling
KeEF-Je=—Je-F and KmE(YSF) -Jm =—Jm- (YSF) , one does consequently find

the expected expressions for the forces (in particular the Lorentz

forces) acting on a charge and a monopole:
' - > > >
Ke = peE + JGXH (5a)

K = -p H + J xE (5b)

Generalized connection and curvature. As is wellknown, given

(R*,g), quantity g being the Minkowski metric with signature -2, the

potentials are connections in principal fiber bundles and the asso-

ciated field is the connection curvature. In the ordinary langua-
ge of differential forms the field F is a 2-form derived from the

potential A (a 1-form); for instance in the electromagnetic U(1)
theory:
F =dA . . (6)

However, the Hodge decomposition theorem[l9] assures us that

more generally, if F¢€ A2 is a 2-form, then there always exist a



i-form A, a 3-form B = «B and a harmonic 2-form C (with dc =6C =0
€—> [)C =0) such that F can be uniquely decomposed into

F=dA+ 6B +C =dA + 8B + C . (7)

[In the particular U(1l) case of electromagnetism, the principal
fiber bundle[3,ll] is w: P»R", with P =R*xU(1); and, if C is the
space of the connections in P, then the elements of C assume va-
Jues in the (commutative) Lie algebra of U(1)].

The Hodge decomposition naturally suggests assuming as genera-

lized connection

A=A+B=A++«B €ANON (8)

and as generalized curvature F = A the quantity

F = (d+8)A , (9)

which yields F = dA + §xB + d*B + O6A. If we want F to be still
a 2-form, then the last two addenda have to vanish, and we auto-

matically end up with the Lorentz gauge condition

dxB = 6A = 0 , (10)

which in tensorial language reads 8”%1== a“Aa =0 and in Clif-

ford language[7] J-A=0. We are thus left with
F = dA + §«xB . (9')

Théfgeometrical meaning of eq.(9') is particularly interes-
ting and transparent: with reference to eq.(l) it is evident
that a 2-form € A? can be obtained both by applying d to a 1-
—form A€A', and by applying & to a 3-form BZ#B €A, The field
equations, at last, are got by evaluating 4F, with Jd=d+6:

(d +68) (dA +6+B) = F°A +42%4B , [_2!2 ED]

which writes;

—

AF = J + »J, = J (11)
once[7,9] the 1-form F%A is called Jg and the 3-form F2(«B) is

called *Jm.
Equations (8:11) are nothing but the Maxwell equations with
monopoles, i.e. our eqs. (4)-(4'), now deduced within a purely

geometrical context, via a natural generalization of the defini-



tions of connection and of curvature; a generalization inspired
by the "correspondences" (2)-(3) and by the Hodge decomposition theo-

rem for differential forms.

Further remarks: (i) A rather interesting consequence of this

geometrical interpretation of our "completed" Maxwell equations

is that eq.(9) can be assumed as a new definition of "generalized

curvature" F, without imposing any longer the Lorentz gauge (10) .
Instead of requiring the curvature ( =the fleld) to be a 2-form,
we can let it be an element of the even part IRl 3 "IR3’0 of the
space-time algebra IR, 3i SO that FEAZOL"®N":

= A = (dA +6+B) + d*B + OA . (9bis)

In fact, even with such a generalized definition (i.e., without

imposing —1let us repeat— the Lorentz gauge) , the field equations

result to be the correct, ordinary ones:

728 = JF = ¥?A + F2xB = T + *Jp (11')

since d2A = d%«B = 8?A = 8°#B = 0. Equations (11') are equiva-
lent, of course, to the couple[2,18] of equations []A==Je; [IB =
=Jm.

(ii) For future convenience, let us notice that the Minkowski me-
tric g induces[Zd] a "dual" metric g' in the space of the dual

diffeféntial forms:
1 = 2
g (¢1,¢2)w ¢1/\*¢2 (12a)

where ¢l,¢26lAk and w is the volume element in R*. In the parti-

cular case when (bl =¢2 =¢€A1, then!

g' (x¢, %) = - g' (d,9) . (12b)

When, more generally, we deal with quantltles such as J +J -Je+ *J

g

€ AN'@N? and define g (Je-+Jm, Je +J ) =g (J J ) + g (J )

then we obtain that:
g' (I +J, J+J) =0

whenever J_=J_ =J.
e m



(iii) The introduction of our "monopoles without string" for the
more general case of non-abelian gauge groups will appear else-
where. Here let us emphasize once more that, for our aims, the

ordinary tensorial formalism is too poor, since —among others—

it does not satisfactorily distinguish between scalar and pseu-
doscalar quantities, as sometimes it is strictly required by phy-
sics. For instance, it is an essential characteristic of the
lagrangian density in eq. (1§) of ref.[7] to be the sum of a sca-

lar and a pseudoscalar part.[7,18]

(iv) At last, let us take advantage of the present opportunity
for pointing out some misprints appeared in the previous paper[7],
and that might make difficult for the interested reader to re-
derive those results of ours: (1) at page 234, column 2, line
18: the two expressions J-J ought rather to write FoJd; (2) at
page 235, egs.(14) and (15): all the three expressions E-X
should be written Soﬁ; (3) at page 235: the last term in the
r.h.s. of eq.(17) ought to be eliminated; (4) at page 236, col-
umn 1, line 22: "pseudoscalars" should be corrected into "pseu-
dovectors". Let us stress that the "ball-product" (o) is not a
new fundamental product, since in terms of the Clifford product

it defines AoB = %(AE + BA).

* * *

For.stimulating, useful discussions, the authors are grateful
to J.S.R.Chisholm, V.L.Figueredo, E.Giannetto, A.Insolia, G.D.
Maccarrone, F.Mercuri, R.Mignani, and particularly to E.Ferrari,

M.Francaviglia e A.Rigas.



#1

FOOTNOTES

By adopting Hestenes' notations (cf. the second one of refs.
[13]), we call "space-time algebra" the Clifford algebra

Ry 3 that we called "Dirac algebra” in ref.[7]. More correc
tly we shall reserve the name of Dirac algebra for IR4,l =

~ @©(4). Notice, incidentally, that the "Majorana algebra"

is quite different from 321'3 , so that two algebras

Ri3,1
[H{l 3 = H(2), and Ry, " H{(4)] can be naturally associated
14 14

with Minkowski space-time; and this can have a bearing on
physics (even for the mathematical problems with tachyons, for

instance). At last, the Pauli algebra is H23 0 = ©(2).
14

#2

Recall, however, that within Clifford algebra no special sym-

bol is associated with the Clifford product.
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