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While the events of a two-dimensional Minkowski space-time M(1,1)
are sufficiently well represented by ordinary Complex Numbers, when dealing
with the events of the four-dimensional Minkowski space-time M4EM(1,3)
one has of course to look for hypercomplex numbers or, more generally, for
the elements of a Clifford Algebra. For instance, the Dirac algebra is
known to be the Clifford Algebra constructed on M4 , and can therefore be
regarded as the natural a]gebra] for M4 From this point of view, the Dirac
vectors Yij are nothing but a basis of unit vectors for Minkowski space-
-time, such that Yo 2=+ 13 Y; 2=-1; and y Y, =0 for u#v (that is to
say, they are four pseudo-orthonormal vectors). Let us moreover recall
that the Pauli algebra is a subalgebra of Dirac's: It is enough to choose
a time-direction Y, in the Dirac algebra in order to single out the Pauli
subalgebra, in the sense that for every Dirac vector x in M4

Xy = xHo =t + Xo. + yg + 20
o u X y z

, (1)

where . =1 and 01 are the ordinary Pauli matr1ces (i= 1,2,3)%‘

tally, we prefer to use the boldface type for 01 since in Pauli algebra they
are a basis for the three-dimensional space R3, we shall analogously set in
boldface all the Pauli vectors (e.g., f), but not the pseudo-vectors (or Pau-
1i “bivectors")! Notice that by eq.(1) the generic Dirac vector x has been
decomposed into a temporal part (a Pauli scalar, t) plus a spatial part (a
Pauli vector, x13i), and thus represented in the Pauli algebra. It should
moreover be mentioned that we are exploiting the Clifford Algebras in terms

of "multivectors", and in particular by Hestenes' language, which suits space-
-time quite well. Let us recall, at last, that the Clifford product Xy, is
the sum of the internal product XY, and the wedge product>(Ayo.

Inciden-

In the present formalism, the ordinary electromagnetic field F*Y s
described by the Dirac "bivector" F whose expansion in the bivector basis is



_pHY, . -
F=FTv 3 bw-mAm], (2)

where one should bear in mind that (when defining the Pauli algebra as a Dirac
subalgebra) the identification ;Yo = 3i occurs, so that the Dirac bi-
vectors Yo give origin to Pauli vectors and to Pauli bivectors Tig’

Yio = 9% Yik = %k -
As a consequence, we can decompose F in Pauli algebra either as F=F+H
(in which case H is a Pauli pseudo-vector), or a52:
=E+ifl, (3)

in which case E and # are Pauli vectors. Following eq.(3), let us identify
the ordinary magnetic field with the pseudo-vector ifi. This is equivalent
to write E=3(F-F%) and ifi=3(F+F%), with

F*=-F +if, (4)
the star operation being the space-inversion in Pauli algebra, i.e. the ope-
rator carrying g5+ =05 - The ordinary Maxwell equations will then read

AF =13, (5)

where ﬁszyuau is the square-root of the ordinary D'Alambertian operator,
and Jezzde“'yu is a Dirac vector (representing an electric charge 4-current)

whose representation in Pauli algebra is:
Je¥o = Pe ¥ je (6)

peEJe°Yo being the electric charge density (a Pauli scalar) and 3e£ JeAYo
the electric charge 3-current (a Pauli vector). By Clifford multiplication
on the left of eq.(5) by Y, one gets the Maxwell equations in the ordinary
differential form [remember that -v/\_1 Vx, so that e.g. fVﬁ\ —rotﬁ]

Vb + (30E+1‘v*,\ﬁ) + 1(aoﬁ+m‘) + iVeH = p, - 3y (7)

Let us pay attention to the pseudo-scalar unit of the Dirac algebra,

y. = YOAY1AY2AY3 = YOY1Y2Y3 » and observe that, from eq.(3),

5

’F\EY5F=1E-T-I>, (8)



-4 -

so that the multiplication by y_ corresponds to the fundamental "duality
exchange" F+E; E+ -H. For Maxwell equations from eq.(5) we obtain
E? = Y5Je , so that the roles of electric and magnetic fie]i get inter-
changed when we pass from the vector Je to the pseudo-vector J Eysde.
Let us recall, incidentally, that y5-+i when going from Dirac to Pauli al-
gebra.

At last, Tet us introduce the Dirac vector A (electromagnetic poten-
tial) such that] F=3A = 2<A + BAA, and therefore

A =10; BAA=F ,

which yield the standard definitions E=- aoA -V, Fl*=—1'_v*/\7x = Uk s
provided that Ayo==A-yo-+l\Ayo =¢+Ah. The ordinary Maxwell equations
(5) assume the form

B2A=J,5 BA=0. (9)

But ordinary Maxwell equations are not fully satisfactory and symme-
trical enough, as wellknown. For instance, it is trivial to realize that
in the r.h.s. of eq.(7) there are lacking a pseudo-scalar density -1pm
and a pseudo-vectorial (=bivectorial) current id . Such two quantities
form a girac pseudo-vector Y5Jm = ys(pm + jm)Yo = Y5Yo(pm"jh)' By asso-
ciating~ those terms, as usual, with magnetic monopole currents, the comple-
ted Maxwell equations write in the Dirac algebra :

3F = T; [J EJe+y5Jm] (10)
withmdmyozpm+jm; Jeyospe+3e; while, in Pauli's, the r.h.s. of eq.(7)
takesathe form p -3, + 1(pm-§m). Notice that 3+J=0 since +J = 3+J, -
- Ysﬂ-dm.

We have to Took, now, for a new potential A such that
F=23R . (11)

Preliminarly, given the "second" current Jm , it will be possible [?f. eqs.(9)]
to find out a "second" potential B such that j°B = Jm ; A*B =03 so that
we are surely allowed to write down the "completed"” Maxwell equations in the
form

22A=J; BR=0 (12)

by setting:



R = . T = ]
A=A+ YSB BRI S Ky (12")

Notice that also B and Jm are Dirac vectors (whilst YSB and Y5Jm are Dirac
pseudo-vectors, i.e. Dirac trivectors). It is easy to realize that the ge-
neric duality transformation exp(y ¢) corresponds to a rotation by ¢

in the space M4()ﬂ4 , with ﬁ4szy My, since from egs.(10) one gets

E[exp(Y5¢)F] = [EXD(Y5¢)](Je-+Y5Jm) = Jgcosd - Jysing + v, (

Notice, moreover, that by eq.(2) and the expansion ﬂ¥=ﬂsyv (where, as we
saw before, ﬁQEEAv'+Y5Bv)’ we can infer from eq.(11) that

Jes1n¢ + Jmcos¢).

Flo= 0A, - 8A, - afg% (13)

€
uv HVpo

which are nothing but the Cabibbo-Ferrari re]ations3. The derivation of
eq.(13) stands on the important fact that the space of Dirac bivectors is
(globally) invariant under the action of Ve - Actually, y_ acts in Dirac
algebra as the Hodge star operator]: in particular, y5y“/\y\)= %ewpoyp,\yo.

2 .
*# we are used to associate

A last comment: in Minkowski space-time
Je with a current of (electrically charged) particles endowed with a Dirac-
-vector velocity and whose world-line events are Dirac vectors. Then, egs.
(10),(12) suggest associating Y5Jm with a current of (magnetically charged)
monopoles, endowed now with a Dirac-pseudovector velocity and whose world-
-events are Dirac pseudovectors; so that magnetic poles are expected to
populate a second Minkowski spacs ﬁ45y5M4 orthogonal to M4 (quantity Y5
operating a 90° rotation in M4()M4). However, in our 3-dimensional space
Ry we are able to detect both Pauli vectors and pseudo-vectors (e.g., both
T and iﬁ): instructed by such a circumstance, we may be 1ed4 to identify
M4w1'thf‘7l4 » and the operation Y5 would thus transform vectors of M4 into
pseudovectors of the same M4 (even if, actually, monopoles have not yet

been detected).

Lagrangian formalism: Let us define in Dirac algebra the "tilde" ope-

rator as follows:
Dr‘Ed'lAdZA"'Adr; DY‘EdY‘A"'AdZ"d‘] s

so that, e.g., F =-F and ﬁa:de"Yst . It is then natural to assume as
interaction Lagrangian-density:



in which there explicitly appear the crossed interactions between Je and B,
and between Jm and A, It is essential to notice that Lint is invariant
under the gauge symmetry A - A-+5xA ; B~ B-+$XB ,» that is to say

A=A+ 3% ,
quantities Xg s Xp being Dirac scalars and ¥ = Xp + Y Xg (in fact, -Jd=0).
More precisely, let us choose the field (total) Lagrangian-density

L= -3FF + 3K = 3F<F + 3R , (15)

where the potential A and its derivative 93 A p]ay the role of generalized
coordinate and generalized velocity, respect1ve1y Notice that also the
total Lagrangian-density, eq.(15), is gauge invariant.

In the case when the potentials are only those generated by the currents
J themselves, we can make recourse to the Euler-Lagrange (EL) equations for
the Lagrangian (15):

3 —2 - 2ipL=0. (16)
H 3(a, ) oR

It is immediate to see that they yield the (completely symmetrical) Maxwell

equations; 1in fact, since

ﬁ- oL

= -F‘YLl s

eqs.(16) yield au(-Fyu)=U', that is to say AF=J, or

PE=T . (12")

We therefore succeeded in defining a Lagrangian (leading to the "completed"
Maxwell equations) in which both electric and magnetic charges do interact
with both potentials A and B. It should be observed that L is not a scalar,
but the sum of a Dirac scalar and a Dirac pseudoscalar; nevertheless we were
able to extendsthevariational principle to our approach: notice that eq.(16)
js just an "extremum condition" (in the sense that it requires the Lagrangian



to vanish under the action of the EL differential operator, OEL) .

Hamiltonian formalism: To pass to the field Hamiltonian-density, for

"didactic" purposes let us temporarily adopt the customary tensorial lan-
guage, by taking advantage of the relation
- 1

. w HVpo
}F-F = 2[F A S N (17)

We may follow, now, the ordinary formalism of classical field-theory. Our
EL equations (16) yield

oL v
9. 0 A —=— - sVL| =0,
"[”a(a\,ﬁa) . ]

which lead us to assume as energy-momentum tensor the conserved quantity

™z 2 . g (18)
2(3 A,)

that simply generalizes the standard expression H==BFV - L (remember that

our "generalized coordinates" are A and aﬁK).
By following Landau's procedure6, we can construct at this point the
symmetrical tensor

Ve T - g FHRY (18')

sometimes called the Belinfante tensor, that we adopt as (symmetrical) Ge-
neralized Hami]tonian6’7. For instance, the role of the "old" Hamiltonian

—representing the energy-density— is played by

H=0% =3 (B2 + f2)- 3R (19)

where the first addendum is the energy-density of the field, and the second
one is that of the interaction. .

It should be observed, moreover, that the components e’ yield the
Pointing vector

= ExW, (20)

while the further components yield other conserved quantities.

Let us explicitly notice that in eq.(19) the field energy-density is
the correct one. As to the interaction energy-density (cf. eq.(15)), it
contains scalar (Je-A and Jm-B) and pseudoscalar parts (Je-YSB and
stm-A), since the magnetic current ysdm and the "second potential" YSB are



just pseudoscalars.
Finally, let us briefly mention how eqs.(17)+(20) would Took like
in Clifford Algebra. Equation (18) would write

TU\) - PUV\) - gu\)L , (2]2)
where:
pH = 8L -FyH; (21b)
(5 &)
u
VW =9 = yVeBR = 3(yVER - BRYY), (21¢c)

and we took advantage of the fact that ZA=F is a Dirac bivector. There-

fore:
™ = shey? - VI [y + R (P F] (22)

where we set
2s¥ = IYMF = - Ry (23)

so that S“-yv is nothing but the Belinfante tensor. One can pass (in
the case J=0) from T"V to e"V=sHyY by neglecting®®’ in the r.h.s. of
eq.(22) the square-bracket (i.e., the zero-divergence part). Observe at
last that SM has the form of a probability current (if we identify F =)
for the field photons4.

In conclusion, by Clifford Algebras we produced a (gauge invariant)
Lagrangian formalism for electromagnetism with electric and magnetic
charges, both interacting with both the potentials A and B; and a consis-
tent Hamiltonian formalism, which naturally yields correct results.

The authors are grateful to L.R.Baldini and M.V.Tenério for kind col-
laboration, and to S.Doria, V.L.Figueiredo, E.Giannetto, G.D.Maccarrone,
A.Maia, R.Mignani, M.Novello, V.T.Zanchin and particularly S. Lo Nigro
and J.Tiomno for discussions.
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FOOTNOTES

#+1 Or, rather, the Pauli matrices are a representation of the 3} =YiYg - In
fact, the set 31 under Clifford multiplication satisfies the same algebra

as the Pauli matrices.

#2 Attention should be paid, however, to the fact that our Minkowski space-
-time —when regarded as the base of our "Clifford bundle"— has nothing to
do with the subspaces M4 and ﬂ4 contained in our fibers ]I‘I‘VCI’3 (even if
the latter are isomorphic to the former).



