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ABSTRACT

Recent attempts in which torsion in the extra dimensions of a multidimensional
unified theory is seen as a compactifying agent introduce spin condensates with no
energy-momentum counterpart. While this is legitimate from the quantum viewpoint, it has
no classical limit. We work out a Kaluza-Klein multidimensional extension of an
Einstein-Cartan theory with a totally antisymmetric torsion on the spacetime as well as on
the internal dimensions, providing a classical background in which more general
compactification mechanisms could be analysed. The dimensional reduction of the field
equation gives an Einstein-Cartan-Yang-Mills theory. A sufficient condition for the
dimensional reduction of a multidimensional model in the presence of torsion is specified.

1. INTRODUCTION

In this paper we work out a simple model of Kaluza-Klein theories with nonvanishing
and totally antisymmetric torsion on all the dimensions of a multidimensional extended

spacetime, here a principal fibre bundle (UD,n,U G), where G is a compact and semisimple

4’
Lie group (here and afterwards we denote with Un an n-dimensional metrical space with
metric tensor y and metricity condition vy = 0; in our notations Vn is a Un with vanishing

torsion). We derive and discuss the field equations of this model.



The usual 5-dimensional Kaluza-Klein theory (KK) was born in the 19205(1)

(2)

, furtherly
developed by Einstein, Bergmann, Jordan and Thiry and, after some formally and
dimensionally generalized theories of KK type in the 1960s, the latter became physically
interesting when the first real applications for Yang-Mills fields were known. In the
present geometrical language of fibre bundles we can consider KK as the prototype of the
modern Multidimensional Unified Theories (MUTs) in their standard Version(3'4), where
(VD,n,V4,G) is the D-dimensional extended spacetime (G is a nonabelian structural group).
In these theories the "extra" dimensions are invisible because they are compactified in
very little volumes with a typical radius r ~ 10_32 cm.

The standards version of MUTs leads to problems due to the multidimensionality of the
internal space G: they concern the appearing of a non-vanishing and very large
cosmological constant (in a theory with a Kaluza-Klein or a Jordan-Thiry metric) and the
absence of a Minkowskian solution for the ordinary 4-dimensional vacuum (in a theory with
a Jordan-Thiry metric). A formal solution of these problems (in a Jordan-Thiry framework)
consists in introducing a nonvanishing and completely antisymmetric torsion on the

(5)

internal space G , where torsion is linked to spin density as established by the

. . R 6 .
Einstein-Cartan theory (EC) with a first order action prlnc1ple( ); this approach leads
also to a spontaneous compactification of the "extra" dimensions. Now we want to discuss

the physical meaning and relevance of this formal solution.

2. AN ANALYSIS OF K-K THEORIES WITH VERTICAL TORSION

The physical "translation" of the introduction of a nonvanishing torsion in a
metrical theory with a first order action principle is the insertion of a matter field in
the theory. In particular in our context a totally antisymmetric torsion on G is
algebraically correlated to the spin density of a Dirac field(7), more precisely to a pure
spin condensate completely antisymmetric in the internal coordinates, as showed in eq. (1)
below. Therefore our discussion about the physical meaning of the Orzalesi-Pauri model(s)
must examine the possibility of answering the following question: what is physically and
how can exist a pure spin condensate (on the internal space)?

Our notations about indices of tensorial quantities defined on a D-dimensional
manifold (principal fibre bundle) are: capital Latin indices refer to the whole manifold
(that is to say M, N, ... =1, ..., D), Greek ones refer to the usual 4 dimensions of
spacetime (u, v, ... =1, ..., 4) and small Latin ones refer to the remaining N = D-4
dimensions (i, j, ... =5, ..., D).

It must be stressed that in the Orzalesi-Pauri scheme, extending the standard version

(8,9)

of MUTs, a quantum viewpoint can enter in a natural way . Indeed in this context, if S

] = k.
is the torsion tensor defined by eq.(14), one deals with the expectation value sij in the

quantum-mechanical vacuum (g-vacuum), that is on the background needed for quantization.

Then, since
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S,.. = S-,. = .. = — . . = —T..
ijk [ijk] S[ljk] o3 T[1jk] o3 lek (L

(S is the modified torsion tensor defined by eq.(15), GD is the D-dimensional
gravitational constant defined later on in terms of Newton's constant and 1 is the spin
density tensor defined by eq.(40)) and
ijk [ijk] - [i 3 k]
I St T S Z A ' (2)
where y is a Dirac field, the reguirement that gijk # 0 is equivalent to the requirement
that <$ . w>o # 0. In substance in this quantum view the existence of a wcl’ a

classical solution of the field equations, is not required; in fact here we assume simply

TMN=<O|TMN|O>=O, (3)
S P <0 [ S F I 0>=0 (if at least one among
MN MN !
M,N,P=1,...,4), (4)
= k k
=<0 . 0 >
5.5 ls; ;" lo>70, (5)

where TMN is the energy-momentum tensor of a Dirac field(s),

Ty ~ Ty ¥ =% vy Yy ¥, (6)

and EMN is its expectation value in the g-vacuum. In this quantum framework the previous
question can therefore be easily answered: a pure spin condensate on G exist when
egs. (3-5) are valid; physically this means in particular that we require the vanishing of
the expectation value EMN in the g-vacuum and not the vanishing of the energy-momentum
tensor TMN: this fact has a great physical importance, as we will verify at once
afterwards.

In this communication we want to explore how the scheme put forward by Orzalesi and
Pauri should be modified in order to have a classical counterpart. It seems indeed
legitimate to test how far the success of a classical description in MUTs can arrive. The
previous question must then be considered in a classical framework. From this viewpoint,

the field equations require a wcl as their solution. In this new situation the model with

purely vertical torsion requires

TMN=O . (7)

SMNP = 0 (if at least one among M,N,P =1,...,4) , (8)
K0, (9)
1]

instead of egs.(3-5). But the conditions (7-9) are physically inconsistent, because this



means requiring the existence of "matter" carrying spin but not energy and momentum.
Moreover classically one does not see how § can be confined only in some dimensions of an
extended spacetime. Thus in a classical framework the Orzalesi-Pauri scheme leads to an
unphysical situation: classically a pure spin condensate has no physical reality.

Finally we must remark that here (as in refs.(8)) we "take seriously" the existence
of the internal dimensions and then, in a classical view, the model with purely vertical
torsion must be rejected on the ground of previous physical considerations. The situation
may seem different if one considers the internal space only like a useful formal artifice;
in this way, however, condition (9) appears like a formal one on an abstract space, only
suitable for solving problems arising within the standard formulation of MUTs, and it is
not testable, even in principle. So this way of proceeding does not lead to an increase of
knowledge and, in conclusion, it seems contrary to a scientific logic.

Thus hereafter we do not consider spaces with teleparallelism, that is to say spaces
with vanishing curvature and nonvanishing torsion, but we work out an extension of MUTs
introducing nonvanishing T and T F in

MN MN

U . =0, xU (10)

with a Kaluza-Klein type metric having signature D-2. We want to emphasize that our
procedure follows an "ansatz logic": we will not speculate about the dynamical origin of

compactification.

3. THE GEOMETRY OF THE MODEL

Our notations and conventions about the differential geometry of spaces with torsion

(10)

are generally those of Schouten
(6)

, because they are the most commonly used in treatments

about EC (we will compare the field equations of our model with those of EC). Now we

present these conventions and at the same time their link with the more intrinsic language
(11)

one can use in a Koszul approach to differential geometry .

. . . D
In a given basis (a D-bein {gM} Mol

covariant derivative of a basic vector in terms of its components either as

) of a D-dimensional manifold UD we can define the

P
= 11
Ve & T Tmn % ()
~M
or as
V e =T _Fe . (12)

ST 'wm Sp
gﬂ

We want to stress that eq.(ll) represents a left covariant derivative, that is to say the
first index of the connection coefficients denotes the differentiating vector, while (12)

is a right covariant derivative, in the same way. Of course in spaces with torsion



parallel transport is determined by which of two types of covariant derivatives one
chooses; we decide to use always left covariant derivatives hereafter. Moreover we deal in

general with anholonomic bases: so

P
N] = c e_ ; (13)

[e w Sp

"'M’ <3

P . . . . . .
cMN is the object of anholonomity, which "measures" how much a basis differs from a

coordinate one. Then we define torsion as

1
S(eyrey) =3 Vo, ey~ V. eyt [gM, gN]) =

M'~N SM~N Exn M
(14)

1 P P P P

=3 Ty ~Taw Y ) % = Sww Sp o
Now the modified torsion tensor EMNP is definible as
~ P P P 0]
= + H 1

SMN SMN 2 GEM SN]Q ; (15)

it reduces to SMNP when torsion is totally antisymmetric. Finally we can define the

contorsion tensor as

P P P P P
Emw = 5w " Smvt Sy ="K (16)

. . . . g P
Now it is not difficult to prove that our connection T can be expressed as

MN
P ° P P
PMN = PMN - KMN ? (17)
where
° p 1 PQ
== + - +
Iy =27 CyTmg ¥ 2uMwg ~ 29"my
1 P PQ R PQ R
= + +
*olegw Y TurSno TY YnrSMg ! (28D
is the Levi-Civita connection (hereafter we use the symbol over quantities built in

(<]
terms of I' and with vanishing torsion). Moreover we define the Riemann tensor R as

R (e ,e)e =(V V -V V +V e
~ "<M'~N’ <P SyEn Sy Sm [e, ey ~P
R R R
=V (.. e) -~V (I' e} +c V e_=
en NP~R &y MP~R MN gR~P
0 R 0 R. Q Q
L2y Ty1e * Tinle| TmIR' * °my TepI%0 = RBuvp  Sg (19)

and so the Ricci tensor is

P P R P R P
Ry = Romy = 2@rpTwin * Truiw|Te1r) * oM Try ¢ (20)



. 3 1
where square brackets have the usual commutative meaning: for instance A B .=< B
. tu|w|®p1 = 2 ParBp
PN M)'

Let us come to the formulation of our model. Its geometry is the same one described
in refs.(4), except that for 3 points: l)here we deal with an extended spacetime with
torsion; 2) we always consider left covariant derivatives; 3) as a consequence of point
(2) and our definitions of torsion and contorsion, also the decomposition formulae (17-20)
are unlike the analogous ones in refs.(4). Our extended spacetime is a principal fibre

bundle (UD,n,U4,G) with a rule of horizontality (bundle connection) and G is a compact and

semisimple Lie group; then a basis of vector fields on UD is

~ * . 1
{yu,yi}, uw=1,...,4, i=5,...,D, 1)

~

w?ere Yu are the horizontal liftings of the fields Yu, which constitute a basis on U4, and
Yi are the fundamental fields of the Lie algebra)E(UD), induced by a basis of N left i
invariant vector fields Yi of the Lie algebra L(G). (We remark that V’pEUD the fields Yi
are tangent to the fibre of x=m(p) and therefore they are vertical). The commutation rules

relating to the basis (21) are

A A k* _Fk*

[Yu’yv] cuv yk Hv Yk (22)
~ *
[yu,yi] =0 , (23)
* * k * k *
= = . 24
Ly ¥yl =0y % = £33 (24)
Now the requirement for the Kaluza constraint on the D-dimensional metric y, that is
Ly=0 (i=5,...,D), (25)
V.
~i
the y-ortogonality condition and the successive restriction to a Killing-Cartan
bi-invariant vertical metric (for which £, fr...9) lead to work with a y of
ijk [ijx]
Jordan-Thiry type, that is (x€U4)
0
guv(X)
c - . 26
Y YMN(x) (26)
0 ¢ (x) 5ij

~ *
here and afterwards the symbol ~ denotes quantities referring to the lifted system (yu,yi)
= (au,ai) = BM.

Now, in an analogous way, we can consider a Kaluza constraint on the D-dimensional

R
ion; i = we request
contorsion; so, if KMNP YPRKMN ’ qu

K =0 (i =5,...,D), (27)



This condition leads immediately to the following decomposition formulae for the

components of KMNP(x€U4, veG)

K = K X
uvp u\)p( ) (28a)
K .=h_ (x) D.P(y) , (28b)
A% uvp 3
p q
K . =h' D. D 28
w3k upq(X) 3 (y) D .~ (y) . (28c)
= h" b q r
Kig1 = Ppqre® D5° (¥) D 5(y) D7 (y) (284)
where DiJ are the elements of the adjoint representation matrix(4). In particular it is
MNP

important to remark that in this way terms square in the contorsion of the type K K

depend only on xeU,, being constant on the fibre of x 'Vpew~l(x)sUD, because

4’
* MNP

V. (Ko K) =0 ¥ MNP =1,...,D

VWi=5,...,0, (29)

(4)

as we can see by a straightforward calculation using the fundamental relation
v, D, =f£f,. D (30)

and the bi~invariance of the vertical metric.

Hereafter we consider the simplifying condition of a totally antisymmetric torsion
which is nonvanishing on all the dimensions of UD (then KMNP = - SMNP in eq.(16)). If we
remember that the only nonvanishing coefficients CMNP are cuv and cij , then from
egs. (17-18) and (22~-28) we can make explicit the geometry of our model (with Kaluza

constraints): so we obtain (in the lifted system)

~ [ 4 4
pPp= p el @ (31a)
uv uv uv
~ k ~kx 1 _ k 2 k
= - = = - K 31b

I‘uv P\)u 2 FU\) " r ( )
-~ l k A

p_ L. pv _K P 31
~ 1 k ~

p-L.pv _K P 31d
G, =29 Fyy ¢ 8~ % (31d)
A ~ k
ru]i( - %(\lulnq,) sli‘ - Ky (31e)
LS =2 ok, S (316)
I‘iu = 2(‘Luln¢) 61 Kiu ’

p (319)
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e _ L1 pu . P
L. == \'4 .. - K.,
I"Jl =g (~u¢) 613 51 {31h)
~k ~k 1 k ~ k
.. = - T.. == £f., +K_, i
I‘lJ I‘J 5 fJl 51 (311)
where the superscript(4) denotes quantities defined in the 4 usual dimensions, and
FaN A
~ 0(4) A p(4) " A k N [e] [+
R =R K K - = V(v In -
uv uv v uv % uv 2 N u @
N ° 1
-3 N Al
n ( Vvln P (vln ¢ > ¢ o "
kP g MO _ o0 iy e Ik D, (32)
Av up pV W iv W
l /O\ -~ ~ A A k
R.==vVv (¢ ) -vr P-ygx =+
w2 p LT p M %
N e 1,°
+~ P (Ving - (Ve F . -
4 woop ? -3 ¢ upl
> A4) - S S k]
-k % -2, % J-x.."x (33)
A up i e jio Tk
- 1 Aay Ak 12 p u
. ==8, .+ VK, +VK, £ -—¢ F F _
ij 4'1ij Wil kji 2 ? uj  pi
N A A A
1 ° ou 1 N hd °u
-=§..V V + - =)6.. (V v -
2°i5 u ¢ (2 4)613 ( u4))( 1n¢)
A
NS ue ~ 0 ~ ko ~ 1,k
- =XK,.” V - K . ; - . . - . .
2715 uln¢ uj Klp 2Kuj Kix Kkj Kll ! (34)
where
A 2 A ;\
il P " P P R °R P R P
= + - -
VP BMN 81:' BMN FPR By PPM BRN PPN Byr (35)
- P : P P R o R P SR P
= 3 r T -T =
P BMN P BMN + PR BMN PM BRN PN BMR
s "~ R P ~ R P
P
=V + 36
P MN * KPM BRN KPN BMR (36)
and Gi' = ~ fikl fjlk (it is our Killing-Cartan vertical metric). Therefore the scalar R
(which, of course, equals R) is
l A A
- °(4) 1 F i pu N.,= 7MY
= - — + - - NV V l +
R=R 2 ® Tou it utnd
N(1-N) 2 A - n ~ - -
H MN P (JT~-MUTs) MN P
-— Y v - = = - K . 37)
+ (V'1nd) ( 11lnt1>) Ky Ky R o Ky (

4



4. DIMENSTIONAL REDUCTION AND FIELD EQUATIONS

Fol}owing the example of EC we define()\D is the D-dimensional cosmological constant,

Y = det(YMN) )

3
c

A= —— \ (R -1 \/Iylde (38)

U
16 GD

as the action of the D-dimensional spacetime continuum,

A = — Lm(‘l’, oy, X, ax, S) dDX (39)

as the action of the matter field; we also use

. — § L
\/|Y| TPNM = ¢N/2 \/ |g] TPNM = _G—m—P_ (40)
K
to define the spin density tensor TPNM, and
=z 6 L
VIgl 8% - V2V g N oy — B (a1)
GYMN

[+
MN .
to define the symmetric energy-momentum tensor T ; finally the energy-momentum tensor of

our model is

MNP (42)

If we now apply the Kaluza constraints (on Y and K), in particular R = R(x) and so on,
° N N N
through a simple dimensional reduction, eq.(38) becomes (y=¢ g=¢ det(guv), VG =\dx < +

© and G = GD/VG)

3 .
C
4
Ag=——— (R-)\D) ¢N/2\/|g]ddex=
167G,
3
€ ° (4 N,-1 1 K _uvl
-—— |\ ®® - N ¢Fuv Fo T
167G
D
N(1-N) A A

gu /g Ou L]
-nNV Vu 1n¢ + (V" 1n¢$) (Vu 1n$) ~

4



_'IO..

A

MN . P, ,N/2 4
- K, KMN)¢' |g|dx. (43)
. . . . ¢ k _uvl .
We stress that in eq.(43) a Yang-Mills Lagrangian density appears (- ry Fuv F le); if

x€U4 and y€G, then F = F(x) and Fo- F(x,y): here the replacement of F in terms of F occurs

by application of

F oSy = F M0 07 Fy) (44)
and

=DiDj5.. , (45)

where DiJ are the elements of the usual adjoint representation matrix.

However we impose the Kaluza constraints at a later step, on the field equations: the

difference is substantial. So, by applying a Hilbert variational principle to Ag+m = Ag +
Am' we can impose:
6a +m 62 +m
—-Ag— = 0, —.\'g— = 0 , (46)
8y §s P
MN MN
obtaining in this way the following field equations:
~ s 81G -
1 D
- = Y = - =
RMN 5 YMN(R D) c4 TMN . (47a)
N ~ 81rGD N
= - = — . 47b
Smnp K 3 MNP (475)

We now isolate in (47a) the Riemannian terms, use (47b) to replace torsion in terms of

spin densities and carry out a dimensional reduction making use of conditions (26-27). By

: 1 °(G N
setting (R(gg =7 Gij' R( ) - Z)’

A A

N - N °
dy TMN(x,y) =T (x) and dy TMNP(x,y)

MN Ty (20 7

we find the three following equations:
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=S OF TE SV (V, 1n¢) + 7 (V, Ing) (V, 1ng) +
1 N -1 1 i _pX
+ = - A+ = - -
2 vl At 7t 2T Ty
A A A A
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p 4 p c4 v
811G
2 p(4) A(4) D1l op
+(——)° (1 T + 2
c3 ) Av up Tpv Tui *
S TR | 1 “"MN © P
+T T - =
iv u3 5 gUV TP TMN )
¢ oF° | __NF 9 1.0y .1 (9P ¢y F -
o ( uy) 5 Py Up In® + 5« $) woy * 7
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2 p A(a) p X
+ 2 T T T T J T T J
("‘_03 A PR 205wt t oty )
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°(G) 1 °(G) p H 3 Au
_1s G) _ 1 ¢2 1s v ¥
Ry =2 45 R =727 FuyFo;*3 735w b -
N~ - 3N + 4 2
u
i o T by 4
8 3
6 pu g
8 A N 4-1 ) k v
+ — P — - — -
2ij( bt 3 0 Ry F o -N p 1n®) +
8"c 4 cN - 3
i L. V. in$) +
c J 2 J
STTG N ~ -~ A - PS
2 - P2 r ko H t 11 k_14s
+ 3 ) M o 1 2 ix T kj il 2 ij
C

(48)

Ty; *
(49)

MN . P
TMN ) . (50)

As a first comment about these three field equations we observe that the limit of MUTs

with a JT metric (JT-MUTs) is obtained (compare with refs.(2,3)); moreover the EC combined

field equation is(6)



- ]2 -

e
2(4) 1 o o(4) _ °
w <3 v R =7 T *
c
g G A
— 2 T 4P r AP Ap
+(c3) =4 e v AT -2 Tuap T o Tapy F
1 A op gAp
5 gy (4 Tolp ¥ a7 +° Torp ) (51)
and therefore, considering Tuvp = T[uvp] in eq.(51), one can see easily that also the EC

limit of our model is the correct one.
We end by making some final remarks: first of all eg.(49) vouches the covariant
nonconservation of Yang-Mills fields; secondly we want to stress explicitly that the model

presented here maintains one of the basic properties of a physical theory, because the

metricity condition is still valid: in fact

Vo Yaw = 6P Ymn * KPMR Yrn * KPNR "Mr = ¥omw * Xoum = O (52)
Moreover, one must consider that, because of the algebraic structure of the field equation
(47b), the "torsionic interaction"™ is a contact one, that is torsion does not propagate
outside the spinning matter as a "torsionic wave"; so the terms I.T are nonvanishing only
inside the spinning matter. In spite of this, there exists an effect of matter spin on
outside spacetime, its influence on the metric tensor; in fact expliciting the left hands
of egs.(48) and (51) we obtain the same second order differential operator acting on guv
in the study of gravitational waves in general relativity: in comparison with Einstein's
theory of gravitation the difference is in the right hand side, the source. Now also a

o
change involving only T, with a constant T implies a change in the metric tensor that

uv’
propagates in the outside spacetime as ordinary gravitational waves.

5. CONCLUSIONS

In conclusion, we have worked out an explicit model in which torsion has spacetime
together with vertical components.

The model avoids the criticism made initially about the Orzalesi-Pauri model, i.e.
the fact that it requires in a classical framework presence of "matter" carrying spin but
not energy and momentum. From the formal point of view, we analysed the specific form the
Kaluza constraint on the torsion must assume in order that a dimensional reduction can be

carried out in a simple way.

The dynamics of the model (Egs. 48, 49, 50) requires further analysis and is under

investigation.
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