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1. INTRODUCTION

The subject of Tachyons, even if still speculative, may deserve
some attention for reasons that can be divided into a few categories,
two of which we want preliminarly to mention right now: (i) the larger
scheme that one tries to build up in order to incorporate space-like
objects in the relativistic theories can allow a better understanding
of many aspects of the ordinary relativistic physics, even if Tachyons
would not exist in our cosmos as "asymptotically free" objects; (ii)
Superluminal classical objects can have a role in elementary particle
interactions (and perhaps even in astrophysics); and it might be
tempting to verify how far one can go in reproducing the quantum-like
behaviour at a classical level just by taking account of the possible
gxistence of faster—than-light classical particles.

This article is divided in two parts, the first one having noth-
ing to do with tachyons. In fact, to prepare the ground, in Part I
(Sect. 2) we shall merely show that Special — even without tachyons —
can be given a form such to describe both particles and anti-particles.
The plan of Part II is confined only to a "model-theory" of Tachyons

in two dimensions, for the reasons stated in Sect. 3.
PART I : PARTICLES AND ANTIPARTICLES IN SPECIAL RELATIVITY (SR)

2. SPECIAL RELATIVITY WITH ORTHO- AND ANTI-CHRONOUS LORENTZ TRANS-
FORMATIONS.

In this Part I we shall forget about Tachyons.

From the ordinary postulates of Special Relativity (SR) it fol-
lows that in such a theory — which refers to the class of Mechanical
and Electromagnetic Phenomena — the class of reference-frames equiva-
lent to a given inertial frame is obtained by means of transformations

L (Lorentz Transformations, LT) which satisfy the following sufficient

requirements: (i) to be linear:



xﬂi=Ls x ; (1)

(ii) to preserve space—isotropy (with respect to electromagnetic and
mechanical phenomena); (iii) to form a group; (iv) to leave the quadrat-—

ic form invariant:
N dxfax” = n', dx'ax'? (2)
HV aB ’

From condition (i), if we confine ourselves to sub-luminal speeds, it
follows that in eq.(2):
t = 3 —_ - — =
naB diag(+1, -1, -1, -1) nuv. (3)
. 2 o .2

Egs. (1)-(3) imply that det L = 1; (I.o) > 1. The set of all sub-
luminal (Lorentz) transformations satisfying all our conditions con-
sists —as is well-known — of four pieces, which form a noncompact, non-
connected group (the Full Lorentz Group). Wishing to confine ourselves
to space-time "rotations'" only, i.e. to the case det L =+1, we are

left with the two pieces:

wh 1% >4l detL =41 (4a)
+ o = =
wh et -1 derr=-1 (4b)

which give origin to the group of the proper (orthochronous and anti-

chronous) transformations

_ .t ¥ ot ¥
.c+ =L U £, = {L+}U{L+} (5)

and to the subgroup of the (ordinary) proper ortochronous transforma-

tions

et = (6)

1



both of which being, incidentally, invariant subgroups of the Full Lo-

rentz Group. For reasons to be seen later on, let us rewrite £+ as
follows

2
£, -cttez : z@ = (/i) ={+1, -1} (5')

+ ’

We shall skip in the following, for simplicity's sake, the  sub-
script + in the transformations Lt_, Lt_. Given a transformation L |,

. = _ ot .
another transformation L €E£+ always exists such that

it ot viter )

and vice-versa. Such a one-to-one correspondence allows us to write

formally
¥ 4
L' =-C . '
+ + (7)
It follows in particular that the central elements of £+ are: C =
= (+1L, -1).

Usually, even the piece (4b) is discarded. Our present aim is to
show —on the contrary — that a physical meaning can be attributed
also to the transformations (4b). Confining ourselves here to the ac-
tive point of view (cf. Recami and Rodrigues(l) and references there-
in), we wish precisely to show that the theory of SR, once based
on the whole proper Lorentz group (5) and not only on its orthochronous
part, will describe a Minkowski space-time populated by both matter

and antimatter.
2.1. The Stiickelberg-Feymman "switching principle"” in SR.

Besides the usual postulates of SR (Principle of Relativity, and
Light-Speed Invariance), let us assume —as commonly admitted, e.g. for

. (3)

the reasons in Garuccio et alfg), Mignani and Recami ~— the follow-

ing:



Assumption - ((negative-energy objects travelling forward in time do
not exist)) . We shall give this Assumption, later on, the status of a
fundamental postulate.

Let us therefore start from a positive-energy particle P travel-
ling forward in time. As wellknown, any orthochronous LT (43) trans—
forms it into another particle still endowed with positive energy and
motion forward in time. On the contrary, any antichronous (=non-ortho-
chronous) LT (4b) will change sign — among the others — to the time-
components of all the four—vectors associated with P.  Any L¢ will
transform T into a particle P' endowed in particular with mnegative

energy and motion backwards in time. (Fig. 1).

In other words, SR together with the natural Assumption  above
implies that a particle going backwards in time (Gadel(a)) (Fig. 1)
corresponds in the four-momentum space, Fig. 2, to a particle carrying
negative energy; and, vice-versa, that changing the energy sign in one
space corresponds to changing the sign of time in the dual space. It
is then easy to see that these two paradoxical occurrences (""negative

energy" and "motion backwards in time") give rise to a phenomenon that



metric(+ ———) C=z 1

E = t)/pPe m?

any observer will describe in a quite orthodox way, when they are —as
they actually are — simultaneous (Recami(5’6) ané refs. therein).

Notice, namely, that: (i) every observer (amacro-object) explores
space-time, Fig. 1, in the positive t-direction, so that we shall meet
B as the first and A as the last event; (ii) emission of positive quan-
tity is equivalent to absorption of negative quantity, as (=) . (=) =
= (+) - (+); and so on.

Let us now suppose (Fig. 3) that a particle P' with mnegative
energy (and e.g. charge —e) moving backwards in time is emitted by A
at time t. and absorbed by B at time t, < t,.  Then, it follows

1 2 1
that at time t, the object A "looses'" negastive energy and charge, i.

e. gains posit%ve energy and charge. And that at time t2 < t1 the ob-
ject B "gains'" negative energy and charge, i.e. looses positive energy
and charge. The physical phenomenon here described is nothing but the
exchange from B to A of a particle Q with positive energy, charge +e,
and going forward in time. Notice that Q has, however, charges oppo-
site to P'; this means that in a sense the present "switching proce-

dure" (previously called "RIP") effects a 'charge conjugation" C, among



4
Z
X X X,
(x)  (xm
y
[t]>t2]
<
P);_Q;E<O;Tj_p_<0

(
(t,,xl)@; ———————
(

0); +q;E>0;7;p>0

ph

AN
CT (ph)=

Fig.3(b) (

’c\ﬁ\?(ph)z

Fig.

! B )(tz,xz)

[t<t1]

>
(+q);E>0;T;p0>0

3(a)

A > B
(+A);v >0
(t,x) (2!, x")
= (—q);E>O;_T>;p<O —
N B
(+1);v <0
~1,x) (—2! x")
P
4 L_Q);EfO;T;p<O 5
(+1);v>0
(t,x) (', x")
-
5 (—q);E=>0;T;p>0 Z
(—=A);v=>0

the others. Notice also that "charge", here and in the following, means

any additive charge; so that our

etc., are more general than the ordinary omes (Recami and Mignani

hereafter called Review I; Recami(8

definitions

y.

of

Incidentally, such a

charge conjugation,

(7)

switching



procedure has been shown to be equivalent to applying the chirality

(9,

operation Y5 (Recami and Ziino
2.2, Matter and Antimatter from SR

A close inspection shows the application of any antichronous
. ¥ . . .
transformation 1L , together with the switching procedure, to trans-

form P into an object

P (8)

Q

which is indeed the antiparticle of P. We are saying that the concept
of antimatter is a purely relativistic one, and that, on the basis of

the double sign in [c = 1]

Ezi/;2+m§ y (9)

the existence of antiparticles could have been predicted from 1905,
exactly with the properties they actually exibited when later discov-
ered, provided that recourse to the "switching procedure” had been
made. We therefore maintain that the points of the lower hyperboloid
sheet in Fig. 2 — since they corresponds not only to negative energy
but also to motion backwards in time — represent the kinematical states
of the antiparticle P (of the particle P represented by the upper
hyperboloid sheet). Let us explicitly observe that the switching pro-
cedure exchanges the roles of sources and detector, so that (Fig. 1)
any observer will describe B to be the source and A the detector of
the antiparticle P.

Let us stress that the switching procedure not only can, but must
be performed, since any observer can do nothing but explore space—time
along the positive time-direction. That procedure is merely the trans-
lation into a purely relativistic language of the Stuckelberg-Feyn-
man(lo) "Switching principle"”. Together with our Assumption above, it

can take the form of a "Third Postulate'": ((Negative -energy objects



travelling forward in time do not exist; any negative-energy object P
trayelling backwards in time can and must be described as its anti-
object P going the opposite way in space (but endowed with positive

energy and motion forward in time)?? . Cf. e.g. Caldirola and Recamfgj)

. (6)

Recami and references therein.
2.3. Further remarks

a) Let us go back to Fig. 1. In SR, when based only on the two
ordinary postulates, nothing prevents a priori the event A from in-
fluencing the event B. Just to forbid such a possibility we introduced
our Assumption together with the Stuckelberg-Feynman "Switching proced-
ure". As a consequence, not only we eliminate any particle-motion back-
wards in time, but we also "predict" and naturally explain within SR

the existence of antimatter.

b) The Third Postulate, moreover, helps solving the paradoxes con-
nected with the fact that all relativistic equations admit, besides
standard "retarded" solutions, also "advanced" solutions: The latter
will simply represent antiparticles travelling the opposite way (Mig-
nani and Recami(lz)). For instance, if Maxwell equations admit solu-
tions in terms of outgoing (polarized) photons of helicity A=+1, then
they will admit also solutions in terms of incoming (polarized) pho-
tons of helicity A=-1; the actual intervention of one or the other

solution in a physical problem depending only on the initial condi-

tions.

c) Egs. (7), (8) tell us that, in the case considered, any Iw has
the same kinematical effect than its "dual" transformation 'i¢ just
defined through eq. (7), except for the fact that it moreover  trans—
forms P inEo its)antiparticle P. Eqs. (7), (7') then lead (Mignani
. (13,15

and Recami ) to write

PT=CPT , (10)

"

-1



where the symmetry operations P, T are to be understood in the
"strong sense": For instance, T = reversal of the time-components of
all fourvectors associated with the considered phenomenon (namely, in-
version of the time and energy axes). We shall come back to this point.
The discrete operations P,T have the ordinary meaning. When the part-
icle considered in the beginning can be regarded as an extended ob-
ject, Pav$id and Recami(l6) have shown the "strong" operations P, T
to be equivalent to the space, time reflections acting on the space-
time both external and internal to the particle world—-tube.
Once accepted eq. (10), then eq.(7') can be written

NR —_— 4 _ 4 "
L. = @DL = (CPT)£+ . 7"

. ' . . =+
In particular, the total-inversion L =-1 transforms the process

a+b>c+d into the process d + ¢ + b + a without any change in

the velocities.

d) All the ordinary relativistic laws (of Mechanics and Electro-
magnetism) are actually already covariant under the whole proper group
£,, eq.(5), since they are CPT-symmetric besides being covariant under

1.

L .
+

e) A few quantities that happened (cf. Sect. 5.17 in the follow-
ing) to be Lorentz—invariant under the transformations lﬁfffi, are no
more invariant under the transformations L € £+. We have already seen
this to be true for the sign of the additive charges, e.g. for the
sign of the electric charge e of a particle P. The ordinary derivation
of the electric-charge invariance is obtained by evaluating the in-
tegral flux of a current through a surface which, under L, does move,
changing the angle formed with the current. Under L+ € £i the surface
“rotates" so much with respect to the current (cf. also Figs. 6,12 1in
the following) that the current enters is through the opposite face;as

a consequence, the integrated flux (i.e. the charge) changes sign.



PART II : BRADYONS AND TACHYONS IN SR
3. PRELIMINARIES ABOUT TACHYONS

Let us now take on the issue of Tachyons (T).

Tachyons, or space-like particles, are already known to exist as
internal, intermediate states or exchanged objects. Can they also exist
as "asymptotically free" objects?

We shall see that the particular — and unreplaceable — role in SR
of the light-speed ¢ in vacuum is due to its Znvariance (namely, to the
experimental fact that c does mnot depend on the velocity of the
source), and not to its being or not the maximal speed (Recami and Mo-
dica(17)).

Since a priori we know nothing about Ts, the safest way to build
up a theory for them is trying to generslize the ordinary theories
(starting with the classical relativistic one, only later on passing
to the quantum field theory) through "minimal extensions", i.e. by per-—
forming modifications as small as possible. Only afer possessing a
theoretical model we shall be able to start experiments: Let us remem—
ber that, not only good experiments are required before getting sen-—

(18’19)), but also a good theoretical background

sible ideas (Galilei
is required before sensible experiments can be performed.

The first step consists therefore in facing the problem of extend-
ing SR to Tachyons. In so doing, some authors limited themselves to
consider objects both subluminal and Superluminal, always referred how-
ever to subluminal observers (''weak approach'"). Other authors attempt-
ed on the contrary to generalize SR by introducing both subluminal ob-
servers (s) and Superluminal observers (S), and then by extending the
Principle of Relativity ("strong approach™). This second approach is
theoretically more worth of consideration (tachyonms, e.g., get real
proper-masses), but is meets of course the greatest obstacles. In fact,
the extension of the Relativity Principle to Superluminal inertial fra-

mes seems to be straighforward only in the pseudo-Euclidean space-

times M(n,n) having the same number n of space-axes and of time-axes.



For instance, when facing the problem of generalizing the Lorentz
transformations to Superluminal frames in four dimensions one meets
no-go theorems as Gorini's et al. (Gorini(zo) and refs. therein) ,
stating no such extensions exist which satisfy all the following pro-
perties: (i) to refer to the four-dimensional Minskowski space-time
M4 = M(1,3); (ii) to be real; (iii) to be linear; (iv) to preserve the
space isotropy; (v) to preserve the light-speed invariance; (vi) to
possess the prescribed group-theoretical properties.

We shall therefore start by sketching the simple, instructive
and very promising "model-theory" in two dimensiomns (n=1).

Let us first revisit, however, the postulates of the ordinary SR.

4, THE POSTULATES OF SR REVISITED

Let us adhere to the ordinary postulates of SR. A suitable choice
of Postulates is the following one (Review I; Maccarrone and Re-

cami(21’22) and refs. therein):

1) First Postulate — Principle of Relativity: ((The physical laws

of Electromagnetism and Mechanics are covariant (= invariant in form)
when going from an inertial frame £ to another frame moving with

5>
constant velocity u relative to f£)7.

2) Second Postulate -"Space and time are homogeneous and space is

isotropic". For future convenience,let us give this Postulate the fomm:

((The space-time accessible to any inertial observer is four-dimension-
al. To each inertial observer the 3-dimensional Space appears as homo-
geneous and isotropic, and the l-dimensional Time appears as  homo-

geneous)) .

3) Third Postulate - Principle of Retarded Causality: ({Positive-

energy objects travelling backwards in time do not exist; and any
negative-energy particle P travelling backwards in time can and must
be described as its antiparticle P, endowed with positive energy and
motion forward in time (but going the opposite way in space) }) . See

Sects. 2.1, 2.2.



The First Postulate is inspired to the consideration that all
inertial frames should be equivalent (for a careful definition of
(6)

)3

"equivalence" see e.g. Recami notice that this Postulate does not

impose any constraint on the relative speed u = FI] of the two in-
ertial observers, so that a priori - < u < 4+, The Second Postulate
is justified by the fact that from it the conservation laws of energy,
momentum and angular-momentum follow, which are well verified by ex-
perience (at least in our "local" space-time region); let us add the
following comments: (i) The words homogeneous, isotropic refer to
space—-time properties assumed —as always — with respect to the elec-
tromagnetic and mechanical phenomena; (ii) Such properties of space-
time are supposed by this Postulate to be covariant within the class
of the inertial frames; this means that SR assumes the vacuum (i.e.
space) to be "at rest" with respect to every inertial frame. The Third
Postulate is inspired to the requirement that for each  observer the
"causes" chronologically preced their own "effects" (for the definition

.(11)).

of causes and effects see e.g. Caldirola and Recami Let us re-
call that in Sect. 2 the initial statement of the Third Postulate has
been shown to be equivalent —as it follows from Postulates 1) and 2 —
to the more natural Assumption that ({ negative—energy objects travel-

ling forward in time do not exist)) .
4,1, Existence of an invariant speed

Let us initially skip the Third Postulate.
Since 1910 it has been shown (Ignatowski(ZB), Frank and Rothe(za)

(25), Lalan(26), Severi(27), Agodi(zs) (29)) that  the

b

Hahn , Di Jorio

postulate of the light-speed invariance is not strictly necessary, in
the sense that ourPostulates 1) and 2) Zmply the existence of an in-

variant speed (not of a maximal speed, however). In fact, from the

first two Postulates it follows (Rindler(30), Berzi and Gorini(31{ Go-

rini and Zecca(32) and refs. therein, Lugiato and Gorini(33)) that one

and only one quantity w2 —having the physical dimensions of the

square of a speed — must exist, which has the same value according to



all inertial frames:
w = invariant, (13)

If one assumes Ww = ®©, as done in Galilean Relativity, then one
would get Galilei-Newton physics; in such a case the invariant speed
is the infinite one: « @ v = «, where we symbolically indicated by &
the operation of speed composition.

If one assumes the invariant speed to be finite and real, then one
gets immediately Einstein's Relativity and physics. Experience has ac-
tually shown us the speed c¢ of light in vacuum to be the (finite)
invariant speed: ¢ ® v = c. In this case, of course, the infinite speed
is no more invariant: © @ v = V # ©, It means that in SR the operation
® is not the operation + of arithmetics. ‘

Let us notice once more that the unique role in SR of the light-
speed ¢ in vacuum rests on its being invariant and not the maximal one

(34) (17)

(see e.g. Shankara , Recami and Modica ); if tachyons —in part-
icular infinite-speed tachyons — exist, they could not take over the
role of light in SR (i.e. they could not be used by different observers
to compare the sizes of their space and time units, etc.), just in the
same way agsbradyons cannot replace photons. The speed ¢ turns out to

be a limiting speed; but any limit can possess a priori two sides

) 4

€| | Pl

(Fig. 4).
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4.2. The Problem of Lorentz Transformations.

Of course ome can substitute the light-speed invariance Postulate
for the assumption of space—time homogeneity and space isotropy (see
the Second Postulate).

In any case, from the first two Postulates it follows that the
transformations connecting two generic inertial frames £, f', a pri-

ori with == < |u[ < 4>,

_ AV
dx' = G]dev (14)

\
in
must (cf. Sect. 2):

(i) transform inertial motion into inertial motion;
(i1) form a group G;
(iii) preserve space isotropy;
(iv) leave the quadratic form invariant, except for its sign (Rin-
dler 3> (36)):

, Landau and Lifshitz

dxl'ldx'u =+ dxudxu ) (15)

Notice that eq.(l5) imposes — among the others — the light-speed to be

(37)). Eq.(15) holds for any quantity dxu (position,

'invariant (Jammer
momentum, velocity, acceleration, current, etc.) that be a G-fourvec-
tor, i.e., that behaves as a fourvector under the transformations be-
longing to €. If we explicitly confine ourselves to slower—than-light
relative speeds, u2 < c% then we have to skip in eq.(15) the sign minus,
and we are left with eq.(2) of Sect.2. In this case, in fact, one can
start from the identity transformation G = 1, which requires the sign
plus, and then retain such a sign for continuity reasomns.

On the contrary, the sign minus will play an important role when
we are ready to go beyond the light-cone discontinuity. In such a pers-
pective, let us preliminary clarify — on a formal ground — what follows

(Maccarrone and Recami(21’22)).



4.3, Orthogonal and Antiorthogonal Transformations: Digression

4.,2.1. Let us consider a space having, in a certain initial base, the

. V o o o, s
metric gu , so that for vectors dx and tensors M B it 1s

dxa = gaB de 3 MQB = gaYgBGM

Y§
When passing to another base, one writes

u Y a ay.
d ' = 1 d t . M! =c!
X g xv 3 8 g M.YB

In the two bases, the scalar products are defined

B H

dx_dx* = dx ga dx, ; dx'dx'™ = dx'g'uvdx'
o o B u H

V

E

respectively.

Let ug call A the transformation from the first to the second

base, in the sense that

u

dx'M = A P
P

dx ,
that is to say
dx“=(A'1)“p ax'® .

Now, if we Zmpose that

dxadxa = + dxﬁdx'u, (assumption) (16)
we get
v,V
=g' A" A 3 17
gaB & v a B ( )

however, if we Zmpose that



dxudxa=-dx£ldx'u , (assumption) (16")

we get that

MV
8yg = BntalB” a7

4.3.2. Let us consider the case (16)-(17), i.e.

dxadxa = dxﬁdx’u, (assumption) (16)

and let us look for the properties of transformations A which yield

| - .
8y = By (assumption) (18)
It must be
Ho,V . U
= : .e. = A 7
gaB guv A aA g i.e gaB A(1 8 (17)
wherefrom
Yo - Yo ,H _ MY = (aTyYH
= A" A _=A""A = (A A . 19
& Byp " B o ub uB @) uB (19)

At this point, if we impose that in the initial base

By = Ny (assumption) (20)

then eq.(19) yields

Yy _ ,, T yu _ uk, T.Y o_sk Ty 0 _ Ty ,k
8lg= (a)Ma g = g (A g Ap=0 (A) A= (A A,

uB

that is to say

ATy =1 . (21)



- 18 -

4.3.3. Now, in the case (16')-(17'), i.e.

dxadxa:---dxl:dx'u , (assumption) (16")

when
= ot AM Y
Bug = "By Aol g a7

let us investigate which are the properties of transformations A that

yield

g! =—-g¢g . (assumption) (18")

In the particular case, again, when

v nUV s (assumption) (20)

it must be

= - (- HopV
i.e. transformations A must still be orthogonal:

ahHa = 1. (21)

In conclusion, transformations A when orthogonal operate in such

a way that
. s o _ 1M v
either: (1) dxadx -deudx and guv + nUV’ (22a)
or: (i1) dx ax% = —dx' ax'" and g! =-n (22b)
o u Hv Hv —

4.3.4., On the contrary, let us now require that

dxadxa = —dxl'de'u (assumption) (16')



when

H '
\)AocA (7"

e ot
gOLB g]-l B’

and simultaneously let us look for the transformations A such that

[ 1 8
guv +guv . (assumption) (18)

In this case, when in particular assumption (20) holds, guv = npv , we

get that transformations A must be anti-orthogonal:

ah@) = - 1. (23)

4.3.5. The same result (23) is easily obtained when assumptions (16)

and (18') hold, together with condition (20).

In conclusion, transformations A when anti-orthogonal  operate

in such a way that

either: (i) dxadxa =-—dx1'de'u and gﬂv =+ (245)

1AV

' —a g
v Ny (24b)

or: (ii) dxadxa =+dxl'1dx'u and g
4.3.6. For passing from sub~- to Super-luminal frames we shall have(see
the following) to adopt antiorthogonal transformations. Then, our con-
clusions (22) and (24) show that we will have to impose a sign-change
either in the quadratic form (20'), or in the metric (22'), but not
— of course — in both: otherwise one would get, as known, an ordinary
and not a Superluminal transformation (cf. e.g. Mignani and Recam538%,
We expounded here such considerations, even if elementary, since they

(39)y

. . . ld .
arose some misunderstandings (e.g., in Kowalczynski We choose

to assume always (unless differently stated in explicit way):

Bly = F By (25)

Let us add the following comments. One could remember the theo—

rems of Riemannian geometry (theorems so often used in General Relativity),



which state the quadratic form to be positive-definite and

the guv-signature to be invariant, and therefore wonder how
it can be possible for our anti-orthogonal transformations to act in a
different way. The fact is that the pseudo-Euclidean (Minkowski) space
—~time is not a particular Riemannian manifold, but rather a particu-

lar Lorentzian (i.e., pseudo—Riemannian) manifold. The space - time

itself of General Relativity (GR) is pseudo-Riemannian and not Rieman-
nian (only space is Riemannian in GR): see e.g. Sachs and Wu(40)). In
other words, the antiorthogonal transformations do not belong to the
ordinary group of the so-called "arbitrary" coordinate-transformations

usually adopted in GR, as outlined e.g. by M¢11er(41). This has been

(39). However, by  intro-

Ty
overlooked, by authors as e.g. Kowalczynski
ducing suitable scale-invariant coordinates (e.g. dilation - covariant
"light—cone coordinates"), both sub- and Super—luminal 'Lorentz trans-

)

formations" can be formally written (Maccarrone et aZ.(42 in such a
way to preserve the quadratic form, its sign included (see Sect. 5.8).
Throughout this paper we shall adopt (when convenient) natural

units [c = 1].

5. A MODEL-THEORY FOR TACHYONS: AN "EXTENDED RELATIVITY" (ER) IN TWO
DIMENSIONS.

Till now we have not taken account of tachyons. Let us finally
take them into consideration, starting from a model-theory, i.e. from

(21,22)

"Extended Relativity" (ER) <Maccarrone and Recami Maccarrone

7,'(42) Z$43)

et a Barut et a , Review I) in two dimensiomns.

b

5.1. A Duality Principle.

We got from experience that the invariant speed is w=c. Once an
inertial frame s, is chosen, the invariant character of the light-
speed allows an exhaustive partition of the set {;}, of all inertial
frames f (cf. Sec. 4), into the two disjoint, complementary  subsets
{s}, {S} of the frames having speeds |u|<c and |U| >c relative to

5 respectively. In the following, for simplicity, we shall consider



ourselves as 'the observer so". At the present time we neglect the

luminal frames (u= U = 0) as "unphysical'. The TFirst Postulate re-
quires frames s and S to be equivalent (for such an extension of
the criterion of "equivalence" see Caldirola and Recami(ll),Recami(6)),
and in particular observers S —if they exist — to have at their
disposal the same physical objects (rods, clocks, nucleons, electrons,
mesons,...) than observers s. Using the language of multidimensional
space-times for future convenience, we can say the first two Postulates
to require that even observers S must be able to fill their space
(as seen by themselves) with a "lattice-work" of meter-sticks and syn-
chronized clocks (Taylor and Wheeler(44)). It follows that objects
must exist which are at rest relatively to S and faster-than- light
relatively to frames s; this, together with the fact that luxons '3
show the same speed to any observers s or S, implies that the ob-
jects which are braydons B(S) with respect to a frame S must appear

as tachyons T(s) with respect to any frame s, and vice-versa:

B(S) = T(S) ; T(8) = B(s) ; &(S) = 2(s). (26)
The statement that the terms B,T,s,S do not have an absolute, but
only a relative meaning, and eq.(26), constitute the so-called duality
principle (Olkhovsky and Recami(45), Recami and Mignani(46’47), Mig-

nani et aZﬁAS)

49)

, Antippa( , Mignani and Recami(so)).

This means that the relative speed of two frames s,, s, (or Sl’
SZ) will always be smaller than c; and the relative speed between two
frames s, S will be always larger than c. Moreover, the above ex-
haustive partition is invariant when s, is made to vary inside {s}
(or inside {S}), whilst the subsets {s}, {S} get on the contrary in-
terchanged when we pass from s, € {s} to a frame So € {s}.

The main problem is finding out how objects that are subluminal
w.r.t. (= with respect to) observers S appear to observers s (i.e.
to us). It is, therefore, finding out the (Superluminal) Lorentz trans-—

formations — if they exist — connecting the observatioms by S with the

observations by s.



5.2. Sub- and Super-Luminal Lorentz Transformations: Preliminaries.

We neglect space-time translations, i.e. consider only restrict-
ed Lorentz transformations. All frames are supposed to have the same
event a their origin. Let us also recall that in the chronotopical
space Bs are characterized by time-like, 4&s by light-like, and Ts
by space-like world-lines.

The ordinary, subluminal Lorentz transformations (LT) from s1 to

s,, or from S, to S are known to preserve the four-vector type. Af-

s
tzr Sect. 5.1,1on thi contrary, it is clear that the "Superluminal Lo-
rentz transformations" (SLT) from s to S, or from S to s, must trans-—
form time-like into space-like quantities, and vice-versa. With the
assumption (25) it follows that in eq.(15) the plus sign has to hold

for LT's and the minus sign for SLTs:

as'? = + as” [9_2 S 1] (15)

“e

therefore, in "Extended Relativity" (ER), with the assumption (25), the

quadratic form

ds? = ax ax”
1

is a scalar under LTs, but is a pseudo-scalar under SLTs. In the pre-

sent case, we shall write that LTs are such that

2
ac? —ax'? = @ - [ul < 1] (27a)
while for SLTs it must be
dt'2 - dx'2 = - (dt2 - dx2) . [u2 > 1] (27Db)

5.3. Energy—Momentum Space.

Since tachyons are just usual particles w.r.t. their own rest



frames f, where the fs are Superluminal w.r.t. us, they will pos-
sess real rest-masses m (Recami and Mignani(46{ Leiter(s) (SZ)L

From eq.(27b) applied to the energy-momentum vector pu, one derives

, Parker
for free tachyons the ralation
E" -p = - m2 <0 [m real] (28)
X o ? )

provided that pu is so defined to be a G—vector (see the following);

so that one has (cf. Figs. 5):

b)

Figs. 5

c)



2
+m > 0 for braydons (time-like case) (29a)
P pu == O for luxons (light-like case) (29b)

2
-m < 0 for tachyons (space-like case) (29c)

Bgs. (27) - (29) tell us that the roles of space and time and of
energy and momentum get interchanged when passing from bradyons
to tachyons (See Sect. 5.6). Notice that in the present case
(eqs. (29)) it is u = 0,1. Notice also that tachyons slow down
when their energy increases and accelerate when their energy de-

creases. In particular, divergent energies are needed to slow
down the tachyons' speed towards its (lower) limit c. On the contrary,
when the tachyons' speed tends to infinity, their energy tends to zero;
in ER, therefore, energy can be transmitted only at finite velocity.
From Figs. 5a,c it is apparent that a braydon may have zero momentum
(and minimal energy m cz), and a tachyon may have zero energy (and
minimal momentum'lnoc); however Bs cannot exist at zero energy, and
tachyons cannot exist at zero momentum (w.r.t. the observers to whom
they appear as tachyons!). Incidentally, since transcedent (=infinite-
-speed) tachyons do not transport energy but do transport momentum
Ono c), they allow getting thr rigid body behaviour even in SR (Bi-
laniuk and Sudarshan(SB), Review\I, Castorina and Recami(SA)).In part-
icular, in elementary particle physics, they might a priori be wuseful
for interpreting in the suitable reference frames the di%fractive
. (55)

scatterings, elastic scatterings, etc. (Maccarrone and Recaml and

refs. therein).
5.4. Generalized Lorentz Transformations (GLT): Preliminaries

Eqs. (27a,b), together with requirements (i)-(iii) of Sect. 4.2,

finally imply the LTs to be orthogonal and the SLTs to be anti-ortho—
(42)
Z.

gonal (Maccarrone et a and refs. therein):



GG=+1 (subluminal case: u2 <1); (30a)
. 2
Ge=-1 (Superluminal case: u~ > 1), (30b)

as anticipated at the end of Sect. 4.3. Both sub- and Super-luminal
Lorentz transformations (let us call them "Generalized Lorentz trans-—
formationst GLT) result to be unimodular. In the two-dimensional case,
however, the SLTs can a priori be special or not; to given them a
form coherent with the four-dimensional case (cf. also Sects.5.5,5.6),
one is led to adopt SLTs with negative trace: det SLT2 =-1. In four
dimensions, however, all the GLTs will result to be unimodular and

special:
det G =+ 1, VGEG . (31)
5.5. The Fundamental Theorem of (Bidimensional) ER.

We have now to write down the SLTs, satisfying the conditions (i)-

~(iv) of Sect. 4.2 with the sign minus in eq.(15), still however with
(56)), and show that

gﬂv gpv (cf. Sect.4.3, and Maccarrone and Recami
the GLTs actually from a (new) group &. Let us remind explicitly that
an essential ingredient of the present procedure is the assumption

U

that the space-time interval dx is a (chronotopical) vector even

with respect to &: see eq. (14).

Any SLT from a sub- to a Super-luminal frame, s S', will be
identical with a suitable (ordinary) LT — let us call it the "dual"
transformation — except for the fact that it must change time-like into
space-like vectors, and vice-versa, according to eqs.(27b) and (25).

Alternatively, one could say that a SLT is identical with its

dual subluminal LT, provided that we impose the primed observer S' to

use the opposite metric-signature gﬁv =8y however without changing
the signs into the definitions of time-like and space-like quantities!
(Mignani and Recami(38), Shah(57)).

It follows that a generic SLT, corresponding to a Superluminal



velocity U, will be formally expressed by the product of the dual LT

corresponding to the subluminal velocity u = 1/U, by the matrix

S = 32 = 1, where 1 is the two-dimensional identity:

SLT(U) = * S « LT(u) (32)
[u = %-; u < ¢ 3 U >c ]
S=i1 . (33)

Transformation S = 32 € ¢ plays the role of the "transcendent SLT"
since for u > 0 one gets SLT(U + ) = * il. The double sign in eq.

(32) is required by condition (ii) of Sect. 4.2; in fact, given a part-

icular subluminal Lorentz transformation L(u) and the SLT = +iL(u) ,
one gets

HL(] GLT @] 2 HLW] HL(-w] = -1 . (34)
However

HL(w)] FL7 W] 2 L] [HLw] =+ 1. (34b)

Eqs. (34) show that
HL] ™t = ~it ) = ~iL(-v).

5.6. Explicit Form of the Superluminal Lorentz Transformations (SLT) in

Two Dimensions.

In conclusion, the Superluminal Lorentz transformations +iL(u)
form a group & together with botkh the orthochronous and the antichro-
nous subluminal LTs of Sect. 2: see Fig, 6. Namely, if Z(n) is the
discrete group of the n-th roots of unity, then the new groups & of

GLTs can be formally written down as
I«;=z(4) @.ci 5 (35)
y
Lz ={/T}={+1, -1, +i, -i} , (36)



4

Fig. 6

t L. .
where £+ represents here the bidimensional proper orthochronous Lo-

rentz group. Eq. (35) should be compared with eq.(5'). It is

GEC= -GEE, YGEG ;
(37)
CGEG= SGEE, YGEGC .

The appearance of imaginary units into eqs.(33)-(36) is only form—

al, as it can be guessed from the fact that the transcendent operation

Sy

(3 g) goes into (2 é> through a "congruence" (Maccarrone



,e'f aZ.(l’Z) )

i o0 0 1
=M > M. (38)
0 i 1 0

Actually, the GLTs given by eq.(32)-(33), or (35)-(36), simply repre-
sent (Review I, p. 232-233) all the space-time pseudo-rotations for
0<ac< 360°: see Fig. 7. To show this, let us write down explicitly

the SLTs in the following formal way

[~ -
dt! = + 1 dt - udx :
V1- u2 Superluminal case
9 2 ., (39)
u
dx' = + 1 dx - udt . —
- 1 - u2
. . o \/ \/ 2 . .12
Notice that a priori 82—1 = +iV1-B" , since (* i) = -1. More-
2 2
over, we shall always understand that 1-8 for B >1 represents
the upper half-plane solution.
The two—dimensional space-time M(1,1) = (t,x) can be regarded as
a complex-plane; so that the imaginary unit
. = 1.
is exp[-z—l‘lT] (40)

operates there as a 90° pseudo-rotation. The same can be said, of
course, for the operation 32; in accord with eq.(38). Moreover, with
regard the axes x', t', x, t, both observers S.» S' will agree in
the case of a SLT that: E'E_}_( ;3' =t. It follows that egs.(39) can be

immediately rewritten:



—
det = + dx - udt
V 2
1-u
J Superluminal case (39"
2
u <1
dx'= + dt - udx )
1 —uz

where the roles of the space and the time coordinates appear inter-
changed, but the imaginary units disappeared.
Let us now take advantage of a very important symmetry  property

of the ordinary Lorentz boosts, expresse by the identities

—
dx —udt = - dt - Udx :
-\/l-u bUz -1

< [U = 1/u] (41)
dt —udx _ dx - Udt

bUz—l

1S

Eqs.(39') eventually write

_ dt-Udx

dt! =3 > H

vo-1 S luminal case

2 uperluminal ¢ (39")
2
U >1

dx' =3 dx2 Udt ,

U -1

which can be assumed as the canonical form of the SLTs in two dimen-
sions. Let us observe that eqs.(39') or (39") yield for the speed of

s w.r.t. S':
o



<1:; U >1
_ dx' v ;
x=o=>ﬁ=_<—l=:v, (42)
t U= 1/u

where u, U are the speeds of the two dual frames s, S'. This con-
firms that eqs.(39), (39") do actually refer to Superluminal relative
motion. Even for eqs.(39) one could have derived that the G-vectorial
velocity ot = dxu/d'rO (see the following) changes under trabsforma-

S b
H

tion (39) in such a way that u - ujugoso that from ulJup=+1

1 tH

it follows uliu =-1 (that is to say, bradyonic speeds are transform-

ed into tachyonic speeds).
The group & of the GLTs in two dimensions can be finally written

(Fig. 6):

¢ =M vt u esetru sty (351

S=s, = <§’ é) (36")

Notice that the transcendent SLT, S, when applied to the motion of a

particle’just interchanges the values of energy and impulse, as well

as of time and space: Cf. also Sects.5.2, 5.3 (Review I; see also Vy-
. (58)
sin ).

5.7. Explicity Form of GLTs

The LTs and SLTs together, i.e. the GLTs, can be written of cour-
se in a form covariant under the whole group G;namely,in "G-covariant"

form, they can be written (Figs.7):
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Fig.7(a)
B det = + dt - udx .
Y |1—u2| I—Generalized case (43)
p L -0 < y € 4o
dx! = * dx - udt

/11 -

(

. . . (47 . .
or rather (Recami and Mignani )), in terms of the continuous parame-

ter o € [0,27m] ,
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Fig.7(b)

dt' = Qyo('dt - dx tgb) [_M < +°°:| o

0 <0 <27
dx' = Qyo(dx - dt tgo) ,

with

2 l-tg o 43b)
B COS ¢ _ . ( b
= ; 8= Q a= § ;3 6=+ % 3 b
u_th, ( COSOI Il_tg OI

-1/2
v, =+ (1 - tgfopT,

—



where the form (43a) of the GLTs explicitly shows how the signs in
front of t', x' succeed one another as functions of u, or rather of
0 (see also the figs. 2-4 and 6 in Review I).

Apart from Somigliana's early paper, only recently rediscovered
(Caldirola et a2559))’ the egs. (3?2%5(43) first appe?Z§§ in Olkhovsky

and Recami(6o), Recami and Mignani , Mignani et al, "/, and then
— independently — in a number od subsequent papers: see e.g. Antippa(49)
and Ramanujam and Namasivayam(61). Eqs. (39"), (39") have been shown
by Recami and Mignani(46) to be equivalent to the pioneering — even if
more complicated — equations by Parker(sz). Only in Mignani et aZE48),
however, it was first realized that eqs. (39)-(43) need their double
sign, necessary in order that any GLT admits an inverse transformation

(50))-

(see also Mignani and Recami

5.8. The GLTs by Discrete Scale Transformations.

If you want, you can regard eqs. (39')-(39") as entailing a ''re-
interpretation" of eqs. (39), —such a reinterpretation having mnoth-
ing to do, of course, with the Stlickelberg—Feynman "switching proce-
dure", also known as "reinterpretation principle" ("RIP").— Our inter-
pretation procedure, however, not only is straightforward (cf. egs.
(38), (40)), but has been also rendered automatic in terms of new,
scale-invariant "light-cone coordinates" (Maccarrone et aZS42)).

Let us first rewrite the GLTs in a more compact form, by the lan-
guage of the discrete (real or imaginary) scale transformations (Pavgig

and Recami(62), Pav§i§(63)):

2 2.2
ds'" =pdss ; p =%1 ; (15"

notice that, in eq. (36), Z(4) is nothing but the discrete group of the
dilations D :x' = px with p~ = % 1. Namely, let us introduce the

. W B ) ) (64)
new (discrete) dilation-invariant coordinates (Kastrup )

Moz kxP, [k=%1,#i] (44)



k being the intrinsic scale-factor of the considered object: and let
us observe that, under a dilation D, it is nﬂ = nu with nﬁSER'xﬂ,
while k' = p—lk. Braydons (antibraydons) correspond to k =#1 (k=-1),

whilst tachyons and antitachyons correspond to k = % i. It is inter—

esting that in the present formalism the quadratic form do~ = dnudnl‘l
is invariant, its sign included, under qll the GLTs:
'2 2 t
do'" =+ do , VG EG. (15"
4 .
1t

Moreover, under an orthochronous Lorentz transformation L € £+ s

TEIRY;
holds that nﬁ =L,n 3 k' = k.

It follows — when going back to
xu, k — that the generic GLT = G can be written in two dimensions

eq.(14), i.e. to the coordinates

(45)

5.9. The GLTs in the "Light-Cone Coordinates?! Automatic Interpretation.

It is known (Bjorken et aZE65)) that the ordinary subluminal (pro-

per, orthochrounous) boosts along x can be written in the generic
form:
dE' = qdE ; dr' = o df ; dy' = > dy ; dz' = —> dz ; [0< q<+]
|a |orf
<
-1
- 2
a a_ =ug; u <1,
o+ o

—

in terms of the light-cone coordinates (Fig. 8):

(46)



=t+x

wr
I
o~
l
>

~

Fig. 8

It is interesting that the orthochronous Lorentz boosts along x
just correspond to a dilation of the coordinates §&,Z (by the factors
respectively, with o any positive real number). In part-

o and a—l,

) - o+ -
icular for o *++° we have u =+ ¢ and for a > 0 we have u=»-(c ).
. R . J
It is apparent that o = e , where R 1is the 'rapidity".
The proper antichronous Lorentz boosts correspond to the negative

. . 2
real o values (which still yield u < 1).

Recalling definitions (44), let us eventually introduce the fol-

lowing scale-invariant "light-cone coordinates'":



Y = -n ;s VEDN + M 3 N s M . (47)

In terms of coordinates (47), all the two-dimensional GLTs (both sub-
and Superluminal) can be expressed in the synthetic form (Maccarrone

1542)):

et a

(48)

and all of them preserve the quadratic form, its sign included:

¢! = vy,
The point to be emphasized 1is that eqs.(48) in the Superluminal

case yield directly eq.(39"), i.e. they automatically include the "'re-
interpretation" of eqs.(39). Moreover, eqs.(48) yield
a-a
u = — H
a+ o
2
u §1;_I
j (49)
O<a<+°°J
2
a=pa ;3 p = *1;

i.e. also in the Superluminal case they forward the correct (faster-—

~than-1light) relative speed without any need of "reinterpretation'.

5.10. An Application

As an application of eqs.(39"), (43), let us consider a tachyon
having (real) proper-mass m and moving with speed V relatively to

us: then we shall observe the relativistic mass

m —im0 m 2
= = [vi>1 : m real]
2 2 2 ¢ ’
1/2 (1-v )1/2 w __1)1/ o

o = o)
(J1-v*])



and, more in general (in G-covariant form):

m

% = , e <v<tm] (50)
(Il_vzl)l/z

m =

so as anticipated in Fig. 4a.

For other applications, see e.g. Review I; for instance: (i) for
the generalized "velocity composition law" in two dimensions see eq.
(33) and Table I in Review I; (ii) for the generalization of the phe-

nomenon of Lorentz contraction/dilation see Fig. 8 of Review I.

5.11. Dual Frames (Or Objects)

Eqs.(32) and follows. show that a one-to-one correspondence

2
ves = (51)

v
can be set between subluminal frames (or objects) with speed v < ¢
and Superluminal frames (or objects) with speed V = c2/v > c¢. In such
a particular conformal mapping (Znversion) the speed c¢ 1is the "unit-
ed" one, and the speeds zero, infinite correspond to each other. Cf.
also Fig. 9, which illustrates the important equation (32). In fact
(Review 1) the relative speed of two "dual" frames s,S (frames dual
one to the other are characterized in Fig. 9 by AB Being orthogonal
to the u-axis) is Znfinite; the figure geometrically depicts, there-
fore, the circumstance that (s0 + 8) = (sO +~s)-(s > 8), i.e. the
fundamental theorem of the (bidimensional) "Extended Relativity":({ The
SLT : s, + S(U) is the product of the LT ts + s(u), where uz1l/U, by
the transcendent SLT )} : Cf. Sect. 5.5, eq.(32). (Mignani and Reca-
mi 9y,

Even in more dimensions, we shall call 'dual" two objects (or

frames) moving along the same line with speeds satisfying eq.(51):

(51")



H H

i.e. with infinite relative speed. Let us notice that, if p and P
are the energy-momentum vectors of the two objects, then the condition

of infinite relative speed writes in G-invariant way as

p PP =0 (51™)

5.12. The "Switching Principle'" for Tachyons.

The problem of the double sign in eq.(50) has been already taken
care of in Sect. 2 for the case of braydons (eq.(9)).

Inspection of Fig. 5c shows that, in the case of tachyons, it 1is
enough a (suitable) ordinary subluminal orthochronous Lorentz  trans-—

. + ., .
formation L to transform a positive-energy tachyon T 1into



a negative—energy tachyon T'. For simplicity 1let us here confine
ourselves, therefore, to transformations L = L¢€E£I , acting on free
tachyons.

On the other hand, it is wellknown in SR that the chronological
order along a space-like path is not £1-—invariant.

However, in the case of Ts it is even clearer than in the brad-
yon case that the same transformation L which inverts the energy-—
—-sign will also reverse the motion-direction in time (Review I, Reca-
mi(66) , Caldirola and Recami(67), see also Garuccio et alfz)).ln fact,
from TFig. 10 we can see that for going from a positive —energy state
-Ei to a negative—energy state _E% it 1is mnecessary to bypass the
"transcendent" state T (with V = «). From Fig. 1lla we see moreover
that, given in the initial frames s, @ tachyon T travelling e.g.
along the positive =x—-axis with speed Vo’ the "critical observer" (i.
e. the ordinary subluminal observer s = (tc,xc) seeing T with Znfi-
nite speed) is simply the one whose space-axis x 1is superimposed to
the world-line OT; its speed u, w.r.t. S s along the positive x-axis,
is evidently

2 2 o
u =c¢c/V ;3 uV =c¢ , ["eritical frame"]
c o c o

dual to the tachyon speed VO. Finally, from Fig. 10 and Fig. 11b we
conclude that any "trans-critical"” observer s' = (t',x'") such that
u'VO > c2 will see the tachyon T not only endowed with negative
energy, but also travelling backwards in time. Notice, incidentally,
that nothing of this kind happens when u\lo < 0, i.e. when the final
frame moves in the direction opposite to the tachyon's.

Therefore Ts display negative energies in the same frames in
which they would appear as 'going backwards in time", and vice-versa.
As a consequence, we can — and must — apply also to tachyons the Stu-
ckelberg-Feynman "switching procedure" exploited in Sects.2.1-2.3. As
a result, point A' (Fig. 5c) or point E&E (Fig. 10) do not refer to

a "negative-energy tachyon moving backwards in time", but rather to an

antitachyon T moving the opposite way (in space), forward in time,
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Fig. 10
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and with positive energy. Let us repeat that the "switching” mnever

comes into the play when the sign of u 1is opposite to the sign of Vo'

(68) (11))

(Review I, Recami , Caldirola and Recami



The "Switching Principle' has been first applied to tachyons by
1(69) (70))

; see also Gregory

Sudarshan and coworkers (Bilaniuk et a ;

Recently Schwartz(71) gave the switching procedure an interesting

formalization, in which —in a sense — it becomes "automatic".
5.13. Sources and Detectors. Causality.

After the consideration in the previous Sect.5.12, i.e. when we
apply our Third Postulate (Sect.4) also to tachyons, we are left with

no negative energies (Recami and Mignani(72)
(55,73)

) and with no motions back-
wards in time (Maccarrone and Recami and refs. therein).

Let us remind, however, that a tachyon T can be transformed into
an antitachyon T "going the.opposite way in space" even by (suitable)
ordinary subluminal Lorentz transformation L € £+. It is always essen-
tial, therefore, when dealing with a tachyon T, to take into proper
consideration also its source and detector,or at least to refer T to an
"interaction-region". Precisely, when a tachyon overcomes the diver-
gent speed, it passes from appearing e.g. as a tachyon T entering (leav-
ing) a certain interaction-region to appearing as the antitachyon T

(74)

leaving (entering) that interaction-region (Arons and Sudarshan ,

(74), Glﬁck(75), Baldo et aZS76), Camenzind(77bJﬁore

Dhar and Sudarshan
in general, the "trans—critical" transformations L € £+ (cf. the cap~-
tion of Fig. 11b) lead from a T emitted by A and absorbed by B to its
T emitted by B and absorbed by A (see Figs.l and 3b, and Review I).

The already mentioned fact (Sect.2.2) that the Stuckelberg - Feyn-
man-Sudarshan "switching" exchanges the roles of source and detector
(or, if you want, of "cause" and "effect'") led to a series of apparent
"causal paradoxes" which — even if easily solvable, at least in micro-
physics — gave rise to much perplexity in the literature.

We shall deal with the causal problem elsewhere. Let us here an-
ticipate that,— even if in ER the judgement about which is the "cause™
and which is the "effect", and even more about the very existence of a

"causal connection", is relative to the observer —, nevertheless in

microphysics the law of "retarded causality" (see our Third Postulate)



Fig.11(b)

remains covariant, since any observers will always see the cause to
precede its effect.

Actually, a sensible procedure to introduce Ts in Relativity is
postulating botk;(a) tachyon existence and (b) retarded causality, and
then trying to build up an ER in which the validity of both postulates
is enforced. Till now we have seen that such an attitude — which ex-
tends the procedure in Sect.2 to the case of tachyons—has already pro—
duced, among the others, the description within Relativity of both mat-

ter and antimatter (Ts and Ts, and Bs and Bs).
5.14. Braydons and Tachyons. Particles and Antiparticles.

Fig.6 shows, in the energy-momentum space, the existence of %wo

different "symmetries", which have nothing to do one with the other.



The symmetry particle/antiparticle is the mirror symmetry w.r.t.
the axis E = 0 (or, in more dimensions, to the hyperplane E = 0).

The symmetry braydon/tachyon is the mirror symmetry w.r.t. the bi-
sectors, i.e. to the two dimensional "light-cone".

In particular, when we confine ourselves to the proper orthochro-
nous subluminal transformations L+ € LI , the "matter" or "antimatter"
character is invariant for braydons (but not for tachyons).

We want at this point to put forth explicitly the following simple
but important argumentation. Let us consider the two Mmost-typical!
generalized frames: the frame at rest, s, = (t,x), and its dual Super-

(t',x') en-

luminal frame (cf.eq.(51) and Fig.9), i.e. the frame S;
dowed with infinite speed w.r.t. 5, The world-line of S! will .be of

course superimposed to the x-axis. With reference to Fig.7b, observer

S) will consider as time-axis t' our x-axis and as space-axis x' our

t-axis; and vice-versa for 5, W.T.t. S' . Due to the "extended princi-
ple of relativity" (Sect.4), observers S, S; have moreover to be equi-
valent.

In space—-time (Fig.l) we shall have braydons and tachyons going
both forward and backwards in time (even if for each observer — e.g. for
s, the particles travelling into the past have to bear negative ener-
gy, as required by our Third Postulate). The observer s, will of cour-
se intepret all —sub- and Superluminal— particles moving backwards in
his time t as antiparticles; and he will be left only with objects
going forward in time.

Just the same will be done, in his own frame, by observer S] since
to him all —sub- or Superluminal— particles travelling backwards in
his time t'(i.e. moving along the negative x—-direction, according to
us) will appear endowed with negative energy. To see this, it is enough
to remember that the transcendent transformation S does exchange the
values of energy and momentum (cf. eq.(38), the final part of Sect.5.6,
and Review I). The same set of braydons and tachyons will be therefore
described by S! in terms of particles and antiparticles all moving
along its positive time-axis t',

But, even if axes t' and x coincide, the observer s, will see



bradyons and tachyons moving (of course) glong both the positive and
the negative x—axis! In other words, we have seen the following: The
fact S' sees only particles and atiparticles moving along its positive
t'-axis does not mean at all that s, sees only braydons and tachyons
travelling along his positive x-axis! This erroneous belief entered,
in connection with tachyons, in the (otherwise interesting) two-dimen-

(49), and later on contibuted to lead Antippa

sional approach by Antippa
and Everett to violate space-isotropy by conceiving that even in
four dimensions tachyons had to move just along a unique, privileged

direction —or "tachyon corridor'— .
5.15. Totally Inverted Frames.

We have seen that, when a tachyon T appears to overcome the infi-
nite speed (Figs.lla,b), we must apply our Third Postulate, i.e. the
"switching procedure". The same holds of course when the considered
"object" 1s a reference frame.

More in genmeral, we can regard the GLTs expressed by eqs. (35')-
-(36') from the passive, and no more from the active, point of view
(Recami and Rodrigues(l)). Instead of Fig.6, we get then what depicted
in Fig.1Z. For future convenience, let us use the language of multi-di-
mensional space-times. It is apparent that the four subsets of GLTs in
eq.(35") describe the transitions from the initial frame s, (e.g. with
right-handed space-axes) not only to all frames f? moving along X
with all possible speeds u = (-,+©), but also to the "totally in-
verted" frames i} = (—I)EF = Cﬁiﬁ.gg, moving as well along x with all
possible speeds u (cf. Figs.2-6 and 11 in.Review I). With reference
to Fig. 9, we can say loosely speaking that, if an ideal frame f could
undergo a whole trip along the axis (ecircle) of the speeds, then -—af-
ter having overtaken f(=) = fﬂU = ®) — it would come back to rest with
a left-handed set of space-axes and with particles transformed into

(1

antiparticles. For further details, see Recami and Rodrigues and

refs. therein.



xof << x(-o)

0<B<1

5.16. About CPT

Let us first remind (sect.5.5) that the product of two SLTs (which
is always a subluminal LT) can yield a transformation both orthochro-
nous, L‘r € -Ci, and antichronous, (—ﬂ)-L't = (PT) L)r = L‘Ir € -Cj_ (cf.Sect.
2.3). We can then give eq.(10) the following meaning within ER.

Let us consider in particular (cf.Figs. 7a,b) the antichronous
GLT(B = 1800) =-1=PT. In order to reach the value 6 = 180° start-
ing from 6 = 0 we must bypass the case 6 = 90° (see Fig.12), where

the switching procedure has to be applied (Third Postulate). Therefore:



GLT(0 = 180°) = -1 = PT = CPT . (53)

The "total inversion" - 1= PT = CPT 1is nothing but a particular "ro-
tation" in space-time, and we saw the GLTs to comsist in all the space-
~time "rotations" (Sect.5.6). In other words, we can write: CPTE€ @ ,
and the CPT-theorem may be regarded as a particular, explicit require-

ment of SR (as formulated in Sect.2), and a fortiori of ER (Mignani and
Recami(14’15) (9

cami(79)). Notice that, in our formalization, the operator CPT is lin-

. . . V.V
, and refs. therein, Recami and Ziino » Pavsic and Re-

ear and unitary.

5.17. Laws and Descriptions. Interactions and Objects.

AY
Given a certain phenomenon phk, the principle of relativity (First

1° O2 to find

that ph is ruled by the same physical laws, but it does not require at

Postulate) requires two diferent inertial observers O

all 0., O, to give the same description of p# (cf. e.g. Review I; p.

1’ "2
555 in Recami(6) (1)).

; P 715)Appendix,in Recami and Rodrigues

We have already seen in ER that, whilst the "Retarded Causality"
is a law (corollary of our Third Postulate), the assigment of the
an,,

and is to be considered a description-detail (so as, for instance,

"cause" and "effect" labels is relative to the observer (Camenzind

the observed colour of an object).

In ER one has to become acquainted with the fact that many descrip-
tion—details, which by chance were Lorentz-invarisnt in ordinary SR,
are no more invariant under the GLTs. For example, what already said
(see Sect.2.3, point e)) with regard to the possible non-invariance of
the sign of the additive charges under the transformations L€5£+ holds
a fortiort under the GLTs, i.e., in ER. Nevertheless, the total charge
of an isolated system will have of course to be constant during the
time—-evolution of the system —i.e. to be conserved — as seen by any
observer.

Let us refer to the explicit in (Fig.13) <?einberg(80), Baldo et

a15765, where the pictures (a), (b) are the different descriptions of



the same interaction given by two different (generalized) observers .
For instance, (a) and (b) can be regarded as the description, from two
ordinary subluminal frames 01, 02, of one and the same process involv-
ing the tachyons a, b (c can be a photon, e.g.). It is apparent that,
before the interaction, O1 sees omne tachyons while 02 see two tach-
yons. Therefore, the very number of particles —e.g. of tachyons, 1if
we consider only subluminal frames and LTs— observed at a certain time-
-instant is not Lorentz-invariant. However, the total number of part-
icles partecipating in the reaction either in the initial or in the
final state 78 Lorentz-invariant (due to our initial three Postulates).
In a sense, ER prompts us to deal in physics with interactiong rather
than with objects (in quantum-mechanical language, with  "amplitudes"

rather with "states"); (cf. e.g. Gluck(75), Baldo and Recami(gl)).

Long ago Baldo et aZS76’81) introduced however a __ vector-space
H = vaEkgz direct product of two vector-spaces 3{1 and t&éL , in such
a way that any Lorentz transformation wag_EPitary in the H-space even
in presence of tachyons. The spaces Eﬁﬁ.(iﬁﬁL) were defined as the
vector-spaces spanned by the states representing particles and anti-

-particles only in the initial (final) state.

+ \p b)
A\



5.18. SR with Tachyons in two Dimensions.

Further developments of the classical theory for tachyons in two
dimensions, after what precedes, can be easily extracted for example

from: Review I and refs. therein; Recami(6’82), Corben(83), Caldirola

and Recami(ll), Maccarrone and Recami(21’22), Maccarrone et aZSAZ)

We merely refer here to those papers, and references therein.

Here we shall only make the following (simple, but important) re-
mark . Let us consider two (brayonic) bodies A, B that —owing to mutu-
al attraction— for instance accelerate while approaching each other.
The situation in Fig.l4, where A 1is chosen as the reference-frame
s = (t,x) and, for simplicity, only a discrete change of velocity is
depicted. From a Superluminal frame they will be described either as
two (anti)tachyons that accelerate while receding one from the other
[ frame S' = (t',x')], or as two tachyons that decelerate while ap-
proaching each other [8" = (t",x'")]. Therefore, we expect that two
tachyons from the kinematical point of view will seem to suffer a
repulsion, if they attract each other in their own rest-frames (and in
other frames in which they are subluminal); we shall however see that
such a behaviour of tachyons may be still considered —from the dynam-

ical, energetical point of view— as due to an attraction.

To conclude, let us explicitly remark that the results of the
model-theory in two dimensions strongly prompt us to attempt building

up a similar theory (based as far as possible on the same Postulates)

also in more dimensions.
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