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ABSTRACT

New series solutions of the Mathieu's differential equation are presented, as generalization of
Dougall's developments.

1.- INTRODUCTION

In a recent paper (Picca 1982) the author has shown that physical solutions of the angular equation
of the Schrédinger equation for the dipolar potential can be obtained by means of the Mathieu's diffe-
rential equation solutions.

The particular confluence condition to be satisfied by the physical solutions can be readily achiev
ed by using the approach to Mathieu's equation long ago suggested by Dougall (Dougall 1923, 1926)
which unfortunately has passed largely unnoticed.

The Dougall method relies upon particular functional relations between Bessel functions.

In attempting to solve the previously quoted angular equation, in the most general case, the author
has found that Mathieu's equation solution can be represented through formal series of hypergeometric
functions.

Since these results may be of interest for the scientific community, the relevant calculations are

reported in the present paper.



2.- AN INTEGRABLE DIFFERENTIAL EQUATION

It is well known that equation:

2
[tZ_d_z_ +(Pt2+Qt)%— +At2+Bt+C]y(t)=0 (D
dt t

by factorization:

y(t) = th}“t £(t) (2)

can be transformed in a similar equation:

[tz i25+ (P't2 + Q't) %+ A't2 + B't + C'] f(t)=0 (3)
where

P' =P +2A

Q =Q+2¢

A" = A+PA+ A2 (%)

B' =B + Pg + QA + 240
C' =C+ Qo +o(0-1).

Thanks to this special "covariance", equation (1) is integrable. In fact, if values of 4 and g are taken
so that:

A =A+PA+ A2 =0

(5)
C' =C+Qp+0(e-1)=0
that is:
2 =%(_Pf\/P2-4A )
— (6)
0= L0-Qtu-0?-uc)
equation (1) becomes:
d? d
t—+ (Pt + Q) Fri BYJ£(t)=0 )
dt
hence, by changing the independent variable:
=-Pt = - (P + Zl)t (8)

the confluent hypergeometric equation:

2 '
[gj—gz- +(Q'-§)%—E--%,—]f(§)=0 9

can be obtained.

When Q' = Q + 20 is not an integer, independent integrals of equation (9) are:



A
f(§)—1 l( +2 +0, Q+29;§)
1 20 (10)
)= ET 2 F (B2l qog,2-0-20; B
otherwise the following solution, which may have the logarithmic term, must be considered:
_ I'(1-Q-20) B+QA .
U(g)— ]"(B”' l_,_l_Q_Q) IFI(F):%"“‘Q’ Q+297§)+
P+2%
(1)
1'(Q+20-1 1-Q-2
o L39:20-D (1020 BQh1-q-g, 2-0-2058)
F a7 +0)
Hence integrals of equation (1) are
t
Y, (0= M8 F B0, Qi2g; (pr2) (12)
v_(1) = e*t:1-Q-2 £ ( ——9—+1-Q- 0, 2-Q-20; (P+2A)1) (13)
2 " I'P+2A
Y (02— Q20 ), L2 (14)
o B+QA4 B+QA 2
F(m_'_ 1 Q_Q) F(P+2 ) +Q)
respectively, where A and ¢ are given by (6).
Moreover, by
7 = % (15)
eq.(1) can be transformed into
[ﬂ ¢, (-P-(Q2n<L +4 ,B c] M) =0 e
et S+2, _
dn? gz Y
whose solutions are still given by eqs.(12),(13),(14) after making the required variable change.
3.- SOME BASIC FUNCTIONAL RELATIONS
Now let us suppose
2828 . ¢ (17)
that is
2B = PQ (18)

thus eq.(1) can be written:

2
2d
[t ;—+ (Pt? +Qt) -X(P+l)t2 PQt Q(Q+Q—l)] y(t) =0 (19)



whose solutions are linear combination of egs. (12), (13) and/or (1%) that is of the following functions:

e Mps22)n?
#r& o)

F (3+0; Q+20; -(P+2A)1) (20)

g(l)(P,Q,l,Q;t) = 1 1(2

At 1-Q-¢
#2p,0,4,05) = eQ (_(Qli‘;z”t) F (1 %9-@, 2-Q-20; <(P+2A)1) 1)
4 F(—z—— -0)

JSrora-0-20

7Op,Q,1,031) = 4 7,10 +

(- 9-0)
(22)

ré&;-orQ+2e-n

+ 4 g(Z)(psQ,la Q;t)

r(§+e)

Well- known functional relations satisfied by contigous confluent hypergeometric functions (Luke

1975), by a little algebra, give:

t [gb—(l)(P,Q,l,Q-l;t) -g;(i)(P,Q,l’ Q"‘l;t)] = h(l)gr(l)(P,Q,l, ost) i=0,1,2 (23)
where
(1,2) _ 2(Q+20-1) (0) _ Q+2¢
hh2) . 230220 h = 32 (24)

Of course, any linear combination of egs.(20),(21) and/or (22) satisfies the relation (23) with the

corresponding linear combination of h(1
Thus eq.(23) is the basic relation between contiguous solutions of eq.(19). From eq.(23) a function

al relation between the derivative of the solutions and the contiguous solutions of eq.(19) can be easily

deduced. In fact, from:

= 2
t29—2-+(Pt2+Qt)— }.(P+/l)t + Qt o(Q+0-1)+Q+2(0- 1)] (t)—
| dt
2 d? PQ
dtz + (Pt +Qt) a5 /'L(P+l)t + 5 t- -0(Q+0-1)-Q-2¢0 .9*_9+1(t) =0
L

where / (t) stands for a generic linear combination of % #{i )(P Q,A,0;1), we get

2

2
[tZd + (Pt2+Qt) dt-l(P+l)t2 PQ; _o(Q+o- 1)]( (- () +
dt

+(Q+2(0-1) # (t) + (Q+20) & (t) =0

hence by relation (23)

(Q-140) Z,, |(B) vo F_y(1) = -h!:d%. R + 5 7 (t)] (23)
(M

where h is the linear combination of h™’ relative to 579('().



4.- A FUNDAMENTAL DIFFERENTIAL IDENTITY

Let us consider the pair of differential equations:

2 P.Q .
2d 2 2 11 F
Lt ;l—t'z—-l- (Plt +QLt) dt ll(Pl+ ll)t + T— t -[.L(QI-I-‘LL-].) {‘;.L(t) =0
. (26)
- 2 P.Q -
2d 1 22 g ¢l
L, Lz N F(d -
where % and ?_'Q stand simply for ﬁ(Pi,Qi,ﬂ,i, Qi;t) that is to indicate a different parametric de-
pendence.

By cross-multiplying the first equation of (25) by %;(%) and the second one by %‘,_,,(t) and then

summing up the results, after some simple calculation we get:

2 ), (P +A) P,Q
[2: + (Pt +(Q1 Q,*Dt - pz)— G )tz- -z, 12 Ly
t t
d Zut)
Q 1
P22 2 2 Qe - 'v(Q2+'v-l)] Fu) Fo - 267 ——— . (27)

d ’V(_ d d—v('l) (1)
: { —2t _(p,1%(Q-00. Fu®) 3: — + (QDt+Py)- %“"“‘55 =0

Now from eq.(25):

. o p P
HCE AR ;2 Fu0) FHD+ 5t Fulv {v(% ACEACE

=T [‘LL'V /"LL l(t) J’V 1( )+ (Q1+‘u 1)(Q2+’V 1) +1(t) {’V'l-l( )+ (28)

+ 1(Qy+-1) -%’_;L-l(t) zgy7,+1(:[l-)+v(Q1+M-l) %'Wl(t) %'7,,,_1(:(1')]

where & stands for the derivate of # with respect to the actual argument shown in brackets.

From eq.(23) we get

1
.lj(t) { (—-) rlxlzw 1(t) 2"’ l(t)+ fd“_‘uu(t) %rwl(;)-
(29)

1 1
h l,u l(t) J'v+1(t) 1‘u, l(t) J'v l(t )]

In the same fashion combining equation of kind (23) with equation of kind (25) by multiplication

we obtain:

o P
t1%0) ZE&)+5 ZF(1) 9"_(-)]=hh[.""~/ ) £ ()-
[1.“' <A 12 A A

(30)

- Q- 1) o0 ‘2%1» 1(—,(1-)_ ‘u,.i/; M f*;,+ l(—tl-)+ (Q+u-1) JTH l(t) AL )]



and

(31)

- (Q,+v-1) J:w;b_l(t) 7 ( )+ (Qyv- 1) @ ’°+1(t) M+1(t) { ()]

Finally by summing eq.(28) multiplied by 2, eq.(29) by
2pw + w(Qy-1) + w(Q-1) + (Q-1)Q,-1)
eq.(30) by Q,-1 and eq.(31) by Q -1 respectively, we obtain:
Q,-1

° . 1 l 6‘_ 1 6__ l
2 %(t) g*"q,(;)v(PlJf ) @(t) f“’(¥)+ (P,+(Q,-1)1) fM(-t) ?ﬂ’(?h
P(Q,-1) P(Q,-1) ; PP
e 2 L L2 s QD QpD) Ak F) =
z - (32)
LN EACE AN /m)]
By identity
Iy 2 & gl -
D= FH (33)

eq.(27) can be written as:

2
[tz d —+ (P t +(Q1-Q2+1)t P )dt- A (P +A )t - 2(P2+12)

dt
P (Q,-Q,+1) P(Q,-Q,+1) P.P
174172 2271 1 712 (34)
* 2 t 2 T2 (“’*”"Ql‘l)(““’*Qz'l)] :
g0 2@ =nb [Z0 Z @+ 0 7 9]
1+ 2 12 L1 2 1“
which is the very starting point for the new functional series.
5.- THE PRINCIPLES OF THE METHOD
Let us consider the differential equation:
2 a b
2d 2 d 2 ¢ 2 B
[t :j—t-z— +(plt +qt+p2)d—;[—+ at +:§+ b1t+t—+c]y_0 (35)
where
(36)



If we take:
Pi=p;» Q =4, -ll(P1+Al)=al, p=n+ Q (37)
Pzz-pz, szﬁ-q+l, -12(P2+12)=a2, 'v=n+92 (38)

where g, 0,0, are arbitrary (real or complex) numbers and n a positive or negative integer, it is

easy to verify that eq. (35) is formally satisfied by:

+00 (91,92) _ 1
y(t) = ZOOD n+ Ql( t) ;‘mgz( ) (39)

when the recurrent relation

oo, (€,2)
C - 2 + (2n+ Ql+ Qz+q 1(2n+ Q]_+ Qz+q q) -

(¢,,0.) (0,,0,)
_=hh[D =2, p ! 2]
1

2 n-1 n+l

(40)

holds.

Formula (40) is peculiar to the trigonometrical developments of Mathieu's equation solutions. In
this sense our functions (39) can.be considered generalized Dougall's developments.

Of course, so that eq.(39) can make sense, the convergence of the series must be proven. A well-

-known result (Luke 1975) asserts that

3¢

l(a’ g) ——> e

holds uniformuly in § when c is large and %-a is bounded.

Hence in our case we have

1
‘lgb—n+ Ql (t) n+92+1(t) o
;;m Ql(t) n+92( )
thus, for n —» + ©
e.)
(773 t ?

n+l {n+ Ql+1( ) F n+92+1( ) Dn+11 2

D, m Ql(t) J'm_gz( ) D,

Now from eq.(40) we get :



(Ql, 92)
Dn+1 1
(€ &) PIP2 ) - (0,0, ~
D, C -yt (2n+ 0+ 0y +g+ D(2n+ 0+0,+3-q+2) Dn+2
hh - (e,,0)
12 Dhe1
(1)
00
= - z ll
k=0 | P12 4+ 1)(2 4-q+2)
C- ) + (Zn+ Ql+ Qz+q+ n+ Ql+ 92+q-q+
h h
12

It follows that series (41) will converge (for positive integers) by virtue of the Pringsheim's theorem
(Pringsheim 1898, Perron 1929) when:

PP
c _-;_.Z + [2(n+k)+ 0+ Qz+<':]+ 1] [2(n+k)+ 0+ Qz+ﬁ-q+2] .

hh
12

¥ kéiN: (42)

but this condition in always satisfied (for n sufficiently high).
The series (39) for negative n is likewise convergeént, since by changing n into -n, (40) can be

written as:
15 A q.(9,0)
[C -5+ (2n-01-0,-8+ 1)(2n-0,-0,-8+q) D _, )

(e,,0) (e,,0,)
-hhlp P2 ,p ! 2]
12 -n+1 -n-1

(43)

which is identical to (40) for positive n except for an inessential sign change in the parameters; thus

the same conclusions are true.

6.- SOLUTIONS OF MATHIEU'S EQUATION

The close link between eq.(35) and Mathieu's equation must now be shown.

Let us observe that by factorization

A
z'lt t2 ¢
y(t) = e t £(t) (44)
eq.(35) transforms into:
2 a' b!
2d V12 atent Y9 42, 2 2 -
[t 2 + (plt +qt+p2) qrra 3 +b 1t+_t—+c] f(t)=0 (45)

where
2
P,l = P1+2211 ’ q' = q+20 ) p‘z = Pz"zlz’ all = al+Plal+ll 3
al, = az—pzlzi-}l% s bYy=b+qi+p;0+240, b= b2+(2-q)12+p20-23.20,

(46)
o = C'pl}‘2+p2 ;Ll+qg-2 xllzw(o-l)



As special property of (44), for every 4, A, and g, we have
2b1 = qu = 2b'1 = p'lq'
2b, = p2(2-q) = 2b, = p'2(2-q')

Now let us choose

Py Py

I -2 |
Ay = ’ hy=3 s 0=

so that eq.(45) becomes:

2 2
2.d _.d P1,.2 P2y 1 1q,2_P1P2 )
[t dtz +tdt+(a1'7+_)t +(8.2-4 )? +c-( > ) -5 f(t)=0
hence with

2

P

a. L

B 27y

t= > T
Py
%

we get Mathieu's equation in its algebraic form:

2 2

dt

2 p
[rz a_. 173—,6 + p(fv2+1,_17) +C- (—1%1)2- —&-] f(tr) = 0

where

Pl P
p= Ve -3 (-7

Therefore series (39) represent solutions of Mathieu's equation.

@7)

(48)

(49)

(50)

(51)

By choosing opportunely g, 0 and @, we can construct pairs of linearly independent integrals

satisfying particular confluence conditions.
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