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1. Introduction 

In General Relativity the connection is assumed to be metric ~nd torsionfree, i.e., in 
coordinate bases, V ~gpcr = 0 and r~~v = rv~~' This is perfectly satisfactory from the 
observational point of view fwd simplifies the theory considerably. In principle, however, 
the motivation underlying these assumptions'is not very strong. This is why generalizations 
of General Relativity involving torsion and/or nonmetricity have been studied for a long 
time [1]. In the last couple of decades this idea has become even more attractive since it 
makes gravitation more similar to the other interactions, which at a fundamental level all 
appear to be mediated by gauge fields [2,3]. 

IT one restricts one's attention ' to"metric connections, the most general action which 
is at most quadratic in curvature and torsion is ' 

S(g, r) = J .rx FY[AO + goR + a10~vpe~vp + a2e~vp0~pv + a3e v vpe~"p 

+ glR"vpcrR"vpcr + g2R"vpcrR"pvcr + g3R"vpcrRPcr"v + g4R"vR"v + gsR"v RV" + ga R2 ] 

(1.1) 
where R~vPcr = a~rvpcr - avr~pcr + rl'PTrVT 

cr - rVPTr"T cr, R"v = Rp"Pv, R = g"V R"v 
and 01'Pv = r"p v - rv p". There is a vast literature illustrating the analogy between this 
theory , and ga1,lge theories. It is less appreciated that gravity is, in the terminology of 
elementary particle physicists, a "spontaneously broken" gauge theory. 

To see this, let us set the cosmological constant Ao to zero for a moment; then flat 
space is a solution of the field equations that come from (1.1). In a certain gauge, flat 
space corresponds to r~"v = 0 and gl'v = V21J"v, where v is a constant. (Usually one sets 
v to one by rescaling the coordinates. For reasons that will become clea~ ' in the following 
it is better not to do so here). Flat space is the exact analog of the ground state of "the 
Higgs model in the broken phase, where the gauge field vanishes and the Higgs field is 
constant: <P = <Po == (0, ... ,0, v). When the Higgs model action is expanded to second 
order around its ground state, the kinetic term of the scalar fields gives a mass term for 
(certain, components of) the gauge field. Similarly, when the action (1.1) is expanded to 
second ord~r around flat space, the Einstein and torsion squared terms give a mass term for 
r. For generic values of the parameters, all components of the connection become massive. 
This is a gravitational analogue of the Higgs phenomenon [3,4]. This point is even clearer 
if instead of working with coordinate bases or orthonormal bases one allows for completely 
general linear bases. The theory then has a manifest local G L( 4) invariance, which is 
broken by the choice either of a soldering form, or a fiber metric. In the GL( 4) formalism 
the torsion is the exterior covariant derivative of the soldering form, and therefore the 
three terms with coefficients al, a2 and a3 can be regarded as the kinetic terms of the 
soldering form (see eq.(3.1) below). Upon choosing a gauge in which the soldering form is 
equal to .5~, (this being the analog of the unitary gauge in the Higgs model), the torsion 
becomes just the antisymmetric part of the connection. In this way the kinetic term of the 
soldering form becomes a mass term for the connection. 

The analogy can be generalized to include nonmetricity, and arbitrary curved back
grounds [3,4]. In the case of a curved background, it is the deviation of r from the 
Christoffel symbols of the background metric that becomes massive, with a mass of the 
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order v ~ mp (Planck's mass). This suggests that below Planck's energy one can treat the 
connection as a composite field and describe gravity by the metric alone, as in standard 
textbook treatments. Above Planck's energy however "new physics" would appear, in the 
guise of new degrees of freedom related to the connection. If one allows the "internal" 
indices a, b .. .. to run over a larger set 0,1,2,3 ... , N - 1, one can describe in this way 
a truly unified theory of gravity and an O(N - 4) gauge theory. In this way one gets a 
picture of the role of Planck's energy for gravity which exactly parallels the role of the 
electroweak scale for the standard model. 

This attractive picture has its own problems. For generic values of the parameters, 
the action {1.1) describes the propagation of several particles of spin 0, 1 and 2, some of 
which will have propagators with negative residue (ghosts) or imaginary mass (tachyons). 
Therefore, at the perturbative level, unitarity seems to be violated. It is true that these 
pathologies would only occur near Planck's scale, but nevertheless this problem has dis
couraged most researchers from pursuing this line of thought any further. Another major 
puzzle is the problem of the cosmological constant: naive dimensional arguments would 
suggest that the natural value of this parameter be of the order of one in Planck's units, 
whereas observation bounds it very close to zero. In view of these considerations it seems 
to be important to explore alternative approaches to the quantization of the theory (1.1). 
In this paper we will describe one such attempt. 

In the traditional approach to quantum gravity the metric gl'v is usually assumed to 
be dimensionless. It is then decomposed as 

g!'v = g(cl)!,v + lh/,v , (1.2) 

where g(cl) is a classical background, to be identified with the v.e.v. of g, and h is a 
quantum field with canonical dimension of mass. The constant l is usually identified with 
Planck's length.;G. The classical background is used to raIse and lower indices, and 
therefore defines the geometry: 

(1.3) 

There are two ways in which the decomposition (1.2) is unnatural: it does not respect the 
group structure of the theory, and it requires the introduction of the dimensionful constant 
i . In the next two sections we will review these points and then suggest an alternative 
procedure. 

2. A Multiplicative Parametrization of the Metric 

Let us . consider again a "spontaneously broken" gauge theory; for definiteness take an 
SO(n) gauge theory with scalars in the fundamental representation. Assume that the 
gauge invariant potential has its minima on the orbit of the field <Po. In order to deduce 
the masses of the physical particles described by the theory, it is necessary to linearize the 
Lagrangian around the vacuum state. Therefore, one expands linearly the field around its 
v.e.v. as <P = <Po + cpo For many purposes, however, it is better to consider a different 
par~etrization of the scalar fields, one that respects more the group action on the scalar 
fields. Any field configuration can be parametrized as 

(2.1) 
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where 1/(") = (0, ... ,O,v + 0'(,,)). This decomposition is not unique: the group-valued 
field g(,,) is defined up to left multiplication by a field h(,,) with values in SO(n -1). The 
independent degrees of freedom are the radial coordinate 0' (the physical Higgs field) and a 
SO( n)/ SO( n - I)-valued field. A convenient parametrization of the latter can be given in 
the following way. In the fundamental representation the generators Lij = -Lji of the Lie 
algebra of SO(n) are (Lijhl = liiklijl -lii1Iijk , all indices running from 1 to n. We denote 
Ki = Lin the generators which are not in the subalgebra of SO(n - 1). Then, we can 
choose a gauge such that g(,,) = exp( -e;(,,)K;/v). The Higgs fields 0' and the "Goldstone 
fields" ~i give a unique parametrization of any field configuration ¢>. This decomposition 
shows immediately that the fields ei are gauge degrees of freedom, while 0' is a physical 
variable. 

There exists an analogous decomposition also for the metric. The analogs of the groups 
SO(n) and SO(n -1) in the case of gravity are the general linear group GL(4) and the 
Lorentz group SO(I, 3) [5J. The space of nondegenerate symmetric covariant two-tensors 
of signature -, +, +, + is an orbit of the group G L( 4). This is simply a restatement of 
Sylvester's law. Thus one can decompose any metric as 

(2.2) 

where ,ab is any fixed metric and 8" 1'(") belongs to the group GL(4). For reasons that 
will become clear later, we are using here different types of indices on the metrics g and 
" but they should all be interpreted as coordinate indices in the tangent bundle. As 
in the case of (2.1), also (2.2) is an overparametrization: the ten components of g are 
parametrized by the sixteen components of 8. For example if ,ab = 1/ab, 8 is defined 
modulo left multiplication by some element of the Lorentz group. One can choose the 
Lorentz gauge such that 8 = exp(~), where ~ is a symmetric matrix. This matrix is the 
analog of the Goldstone fields ei. Note that there is no analog of the physical Higgs field 
here. If II'V oF 1/I'V the residual invariance is a subgroup of GL(4) conjugate to the Lorentz 
group. Namely, if rab is a matrix such that Ibc = rd br / c1/d/ (a vierbein for I), then 8 
is defined up to left multiplication by a matrix of the form r-1 Ar, where A is a .Lorentz 
transformation. Further motivation for the use of the multiplicative decomposition (2.2) 
comes from the canonical approach [6J. 

Consider now any gravitational action S(g, r). If we use in this action the parametriza
tion (2.2) and the analogous parametrization of the connection: 

(2.3) 

(where 8a l' is the inverse matrix of 8a 1') then the action can be written S(g, r) = S'(8, I, A). 
The action S' is invariant under diffeomorphisms, as well as under local G L( 4) transfor
mations. If E"b is an arbitrary matrix (an element of the Lie algebra of GL(4)), the 
infinitesimal transformation of the fields is given by: 

1i,8" I' = - E" b(Jb I' , 

Ii"ab = fC ",cb + fCblac , 

Ii,A>'"b = 8>.fab + A>. a cfcb - fa cA >. Cb . 

5 

(2.4a) 
(2.4b) 

(2.4c) 



This invariance is due to the fact that S' depends on 9, I and A only through the combi
nations 9 and r, and one can easily check from the parametrizations (2.2) and (2.3) that 
these quantities are invariant under the transformations (2.4). Note that the GL(4) trans
formations only affect the fields 9, A and I, and not other spacetime fields. So for example 
if v~ and w~ are two vectors, I~VV~Wv is not invariant under GL(4), but is invariant under 
the (Lorentz) subgroup of GL(4) that leaves I invariant. 

Similarly if we write an infinitesimal diffeomorphism x'l' = x~ -V~ for some vectorfield 
v, then the infinitesimal transformations of the fields are 

6.9· I' = v).lh9· ~ - 9c ~ocv' + 9· ).o~v). , 

6. I . b = V).O).I.b + I~bO.VI' + I.~ObV~ , 

6. A). · b = v T OrA).'b + AT ' b8).v T - A). cbOcV• + A).' c8bV c + 8).ObV· . 

(2.5a) 
(2.5b) 
(2.5c) 

Except for the last term in (2.5c), these variations are just the Lie derivatives of the fields, 
regarded as world tensors on all indices. 

The parametrizations (2.2) and (2.3) have led us to a GL(4)-invariant action S'. 
Mathematically, the equations (2.2-5) are identical to equations that were given in the 
G L( 4 )-invariant formulation of gravity [3,41. The physical interpretation, however, is now 
different: we do not treat 9, I and A as independent variables. Instead, I is to be tr€Cil..ted 
as a fixed background. For this reason we shall henceforth write the action as S' ( 0, 41 I) 
to emphasize that 9 and A are the dynamical variables, whereas I is a fixed baj:4grpund. 

Since I is now an "absolute element", the gauge group has to be restricted to. ,those 
transformations that leave it invariant, i.e. (Ii. + Ii,h.b = O. Combining (2.4b) and (~.,5b) 
we get a condition on the infinitesimal parameters v and f. For any v, the most general 
solution is given by 

• O' -1').0 c + - 1. c d f b = - bV - r cV ). r b r ca dr b , (2.6) 

where rCb satisfies Ibc = rd br / cTld/ and a satisfies Tlc/a/ d + Tld/ a / c = 0 (it represents there
fore an infinitesimal Lorentz transformation). At the infinitesimal level, the gauge group is 
parametrized by vectorfields v and Lorentz-algebra-valued fields a. The transformations 
of the fields under these local Lorentz transformations and modified diffeomorphisms are 

< 9' -, 9b 
V cr p. = - a: b Ii' 

< A· 8 -. + A • - 0 -a A c Vo .x b = .x a b ..\ cO! b - a c ..\ b , 

6.9' I' = v).8).9' I' + 9· ).Ol'v). - t'b9b ~ , . 

6vA). · b = v T OrA). ' b + A ; a~O).v T + 8).t'b + A).· cCb ~ t"~A). cb , 

where la b = _r-1a cv).8). r Cb. 

(2.7a) 
(2 .7b) 

(2.8a) 
(2.8b) 

The formalism simplifies somewhat if the background metric is flat: I . b = TI.b. In this 
case, and only in this case, one sees from (2.2) that 9 can be interpreted as the vierbein of 
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gj we can take rab = bt, so (2.6) reduces to fab = -8bVa + aa b• In (2.7) one can replace 
a by a and in (2.8) f = O. The resulting gauge transformation properties of the fields are 
exactly the familiar ones of the vierbein formalism. Note that the latin indices are inert 
under the modified diffeomorphisms. It is important to stress again that all indices can be 
interpreted as referring to coordinate bases in the tangent bundle. The distinction between 
indices a, b . .. and /-LV . .. is kept here only because it allows one to remember better how 
the gauge group acts: invariant quantities can be formed by contracting tensor indices 
a, b, ... with 'Yab and /-L, V, . .. with g"v' 

3. Dimensions 

In quantum gravity there is always a clash between the geometrical requirement that the 
metric be dimensionless, as required by the the formula for the line element (1.3), and 
the dynamical requirement that the metric, or vierbein, have the canonical dimension of 
bosonic quantum field . To see this in a concrete example, consider the action (1.1) and 
apply to it the multiplicative decomposition (2.2-3), choosing 'YI"V = b"v (from here on we 
work in the Euclidean regime). We get an action S'( 0, Aj 'Y) which is identical to the action 
(1.1) written in vierbein formalism. We have an independent vierbein oa I' and SO( 4) gauge 
field AI" a b. The curvature and torsion fields are: 

We will freely raise and lower indices a,b, ... with liab. The action (1.1) becomes 

(3 .1a) 

(3 .1b) 

S' (8, A) = J a:z det 0 [.AD + g oOa 1"8b v F"v ab + Hl'avpbO' 01"av0 pbO' + Gl"vabpO'cd Fl'vab FpO' cd] , 

where 

Gl'vabpO'cd = SYMM {glgl'P gVO' 17a c17bd + g2gl'pOCV oaO' 17 bd + gaOcl'()dv ()ap ()bO' 

+ () al' () CP(g4gvO' r/d + gs()dv ()bO' + g6()bv ()dO')) , 

Hl"avpbO' = SYMM{gM( al17abg vO' + a2()aO'()bv + aa()av()bO')} , 

(3.2) 

(3.3a) 

(3.3b) 

where the prefix "SYMM" indicates that one has to take the proper combinations so that G 
is antisymmetric in (/-L, v), (p, u), ( a, b), (c, d) and symmetric under the simultaneous inter
change of /-Lvab and pucd and similarly His antisymmetric in (/-L, v), (p, u) and symmetric 
under the simultaneous interchange of /-Lav and pbu. 

Let us now discuss the dimensions of all quantities considered so far. We take the 
coordinates to have the dimension of length, as is customary in field theory. While the 
dimensions of all objects depend on this choice, the general conclusions that we shall reach 
would be the same if we had chosen the coordinates to be dimensionless, as would be 
more natural in quantum gravity (see the appendix in [4]). The kinetic terms of () and 
A are the terms quadratic in torsion and curvature respectively. In these terms indices 
are contracted with four inverse powers of (), which cancel with four powers of () in det 0. 

7 



Thus, the dimension of (} and A is that of mass. One can now easily check that all coupling 
constants appearing in the action are dimensionless, including the parameters >'0 and 90. 
This is desirable from the point of view of quantum field theory, wher,~~ .one would like 
to see Newton's constant arise from a phenomenon of dimensional traI,l~JTIutation in an 
otherwise scale invariant theory, rather than appearing as a bare coupling constant in the 
Lagrangian [7J. , 

Since (} has dimension of mass, the "metric" 9p", as defined by (2.2), would have 
dimension of mass squared, which is not appropriate to define a line element. One could 
rescale 9 by a dimensionful constant, but this seems to be artificial, since there is no 
dimensionful parameter in the theory. The interpretation that we shall follow is that the 
geometry is not given by 9 but rather by the dimensionless background 'Y. Thus, the line 
element would not be given by (1.3) but rather by 

(3.4) 

In the next section we will apply this point of view to the quantum theory and see that it 
leads td some nonstandard results. 

4. Quantization 

We will now consider the formal path integral quantization of the theory. We have to 
functionally integrate exp(-S'(II,Aj'Y)/Ii) over (} and A. This requires that we fix the 
gauge for the modified gauge transformations (2.7-8). Since we are assuming that the 
geometry is given by 'Y, the functional measure (dOdA) will also be defined with 'Y. Here 
we depart from the standard procedure, which uses the metric 9 in the definition of the 
measure. Our functional measure will be invariant under the original diffeomorphisms 
(2.5), but not under the GL(4) transformations (2.4). This is because it depends on 'Y 
alone, not on the GL(4)-invariant combination 9. As a consequence, the measure will also 
not be invariant under the modified diffeomorphisms (2.8), although it will be invariant 
under the Lorentz transformations (2.7), as follows from the remark made after (2.4). 

This leads to a slight complication in the gauge fixing procedure for the modified 
diffeomorphisms. According to the standard Faddeev-Popov procedure, one inserts in the 
functional integral a factor 1 = AFP((},A) f(df)6(Gv((}', AI)), where GD is the gauge 
fixing, f denotes a diffeomorphism, (}I and AI are transformed fields, and AFP = det OFP 
is the invariant Faddeev-Popov determinant. Then one changes the variables of integration 
from (} and A to (}I and AI. Due to the noninvariance of the measure, thi'; gen'er',;,tes a 

Jacobian det [6/~:~;)). However, it appears from (2.8) that t.his Jaco?f~ndep~nds only 

on f, and therefore one can still factor a global group integral, independent of the fields. 
We introduce tensor density sources Jpp and KI'a6 coupled linearly to the quantum 

fields (} and A respectively. We will use the notations (J, II) = f d4
'J) Jpl'(}P I' and (K, A) = 

f d4
'J) KI' a 6 AI' a 6. With all this in mind, the generating functional for connected Green 

functions W(J, K j 'Y) can be written 

e- i W(J,K ;'Y) ~ J (d(}dA)AFPe- i (S(8 ,A ;'Y)+(J,8) + (K,A)) , (4.1) 
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where S = S' + SGF, w.ith SGF a gauge fixing term for the m~dified diffeomorphisms and 
local Lorentz transformations. For defiill,teness we will assume that the gauge fixing term 
has the form 

SGF(IJ,A) = J cr;z;yIg [2~L "(.c"(bdGL·bGLcd + ' 2~DgP"GDPGD"] , 

GL·b =gI'VV I'(A.,.. AVb + (3GObl' (IJ - 0)" I' , . 
GDp =O.I'V I'(IJ - 0)" p + (3DO.I'V p(1J - 0)· I' • 

(4.2a) 

( 4.2b) 

(4.2c) 

In this formula quantities with tildas are fixed background fields and V denotes the co
variant derivatives with respect to the background fields 9 and A. The functionals W and 
r below will depend on the choice of these backgrounds. 

The expectation values of IJ and A in the presence of the sources are given by 

IJ. oW 
(el) I' = oJ.1' ' (4.3) 

These equations in principle can be inverted to yield J and K as functionals of lJ(cl) and 
A(cl). The effective action r(lJ(cl),A(cl)i"() is the Legendre transform of W: 

( 4.4) 

It is the generator of one-particle irreducible diagrams. From (4.3) and (4.4) one has 

(4.5) 

showing that the stationary points of r are the expectation values of the fields in the 
absence of sources. 

Since the functional measure is defined with "( instead of g, the GL(4) invariance 
of the classical action S'(IJ,Ai"() will be broken at the quantum level. We recall that 
this invariance amounts simply to the statement that S' depends on its arguments only 
through the invariant combinations 9 and r. The quantum effective action will not be 
expressible in terms of these combinations alone, because the functional measure depends 
on "( alone. Therefore the quantum action will have separate functional dependences on 
the background metric 'Y and the (generalized) vierbein IJ: it will be a bimetric action. 

However, there are some remaining symmetries. The local Lorentz transformations 
(2.7) are broken only by the gauge fixing term. This is because all other terms in (3.1) 
are constructed with 9 and "(, both of which are invariant under these transformations. 
As in ordinary gauge theories, this invariance will be recovered in the effective action r. 
Since local GL('l) invariance is broken, the modified diffeomorphisms (2.8) will be broken 
too. However, invariance under the original diffeomorphisms (2.5) will be preserved, with 
our choice of gauge, provided the background fields 0 and A are transformed too. This is 
certainly the case if in the end we set 0 = lJ(cl) and A = A(cl)' as will be implicitly assumed 
from now on. In conclusion, the effective action r(1J(cl),A(cl);"() will be invariant under 
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Lorentz transformationsj it will not be invariant under diffeomorphisms if 'Y is kept fixed, 
but it will be invariant if 'Y is transformed too. These rather formal arguments have been 
verified in a special case by explicit calculation [8]. 

It is important to realize that these conclusion do not depend on any approximation. 
In practice, however, if we want to compute the effective action (4.4), we will have to 
resort to some approximation. For example, if we want to compute r at one loop, we can 
use the WKB method. In practice, this amounts to performing again an additive type 
of decomposition of the quantum fields. Let 0 and A be solutions of the classical field 
equations in the presence of sources J and K: 

- - J I' . - P' (4.6) 

We expand 
OP I' = OP I' + ,pP I' , (4.7) 

Note that unlike in the decomposition (1.2), it is not necessary to introduce dimensionful 
constants at this stage. Next, the action is expanded in Taylor series around the classical 
fields: 

- - - - (2) - -
S(O, A.j'Y) + (J, 0) + (K, A) = S(O, Aj 'Y) + (J, 0) + (K, A) + S (,p,w, 0, Aj'Y) + ... (4.8) 

The linear part is absent because of (4.6), and the quadratic part of the action can be 
written 

1 J d4 c:; [ • '" I' bv d c :2 Xy'Y wI' b V[wwJ • c Wv d 

( 4.9) 

+ 2,p'" O[",wJ'I'V cd Wv cd + ,p' I' O["''''Ja''bv,pb v] 

The part of this linearized action coming from S' is invariant under the linearized gauge 
transformations: the fields ,pPI' = cOP" and WI'"b = CAI"b given by Eqs. (2.7-8), with 
A = A and ° = 0, are null vectors for the operator 0 which is the block matrix opera
tor appearing in (4.9). This degeneracy is removed however by taking into account the 
contribution of the gauge fixing term SGF. 

The generating functional W is given in the WKB approximation by 

e- k W(J,K ;")') = e- k(S(ii ,A;")')+(J,ii)+(K,A )) J (d,pdw )~FPe - ks(,)( "" w , ii,A;"Y) ( 4.10) 

The functional integral is now Gaussian and we find 

-- - ' - Ii 
W(J,Kj'Y) = S(O,Aj'Y) + (J,O) + (K,A) + "2 lndet 0 -lilndetOFP . (4.11 ) 
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From (4.3) and (4.11), the expectation values of 9 and A in the presence of sources J and 
K are 

( 4.12~ 

Expanding 8 to first order around 9(cl) and A(cl) and using (4.6) one finds that 8(8, Aj 1') = 
8(9(cl), A(cl) j 1') + (J, 9(cl) - iJ) + (K, A(cl) - A). From the definition (4.4), discarding terms 
of order h2

, and dropping the subscripts "( el)" for notational simplicity, we find the usual 
result 

h 
r(9,Aj1') = 8(9,Aj1') + "2 lndet 0 - hlndetOFP . ( 4.13) 

The nonstandard aspect of our approach is now in the definition of the determinants. We 
shall see this explicitly in the next section. 

5. One-loop calculation 

We illustrate the general ideas of the previous section with a specific calculation. We will 
compute the one-loop effective potential for 9, which is defined by 

r( 9) = J .r:v v'I V( 9) , (5.1) 

with 9 constant and A = o. We restrict our attention to the case 1'ab = Oab and iJ· I' = po~, 
so the effective potential will only be a function of the conformal factor p. This choice of 
9 breaks the classical local G L( 4) invariance to Weyl scalings. We shall see explicitly how 
this invariance is violated by our quantization ·procedure. 

The part of the operators appearing in (4.9) that comes from varying the action (3.2) 
is 

where 

O pcd _ 8G- v pucd8 8 + 8H- pcd 2 + 2 2 cc (C cdp cp Cd) 
[wwjl'.b - - I'.b v u I'.b P 90P Vb o'l'v - 0a 0,.. , 

O pcd _ 8H- "y pcd8 + 2 (c cdp ccoy + cd ccp c-r cd cp cC"Y) 8 
[¢wj.,.. - - '1' "Y 90P 0.1'0 V 0,.. V Va - V,..V.V "Y , 

O bp 8H- vpbu8 8 [¢¢].,.. = - 1" v u , 

C,..v.bpucd =SYMM {91 0 1'P oVU O·cObd + 92 0 l'P oCV O'U Obd + 93 0Cl' Odv oap Obu 

+ oal'OcP(940Vuobd + 9s0dvObu + 960bvOdu)} , 

Hl'avpbu =SYMM{0I'P(al0·bovu + a20auobv + a30.vobu)} . 

(5.2a) 

(5.2b) 

(5.2c) 

(5.3a) 

(5.3b) 

Here and in the following indices are raised and lowered with 1'I'V = 0l'v. In (5.2) we have 
set '\0 to zero for simplicity. To this, one has to add the contribution of the gauge fixing 
terms, which now read 
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A partial diagonalization of the operator CJ in (5.2) is achieved by decomposing the fields 
in irreducible parts with definite spin and parity. For convenience, we make the following 
definitions: <p~" = ,p(~") = (,p~" +,p"~)/2 and X~" = ,p[~"l = (,p,," - ,p"~) / 2. There are two 
modes with spin-parity 2+, coming from wand <p, one 2- mode from w, three 1+ modes, 
two of which come from wand one from X, four 1 - mode, two from wand one each from 
<p and X, three 0+ of which one comes from wand two from <p and finally one 0- mode 
from w. 

The linearized quadratic action (4.9) can be rewritten as 

(5.5) 

where cP = (w,,p,X), the indices A, B run over the letters w,,p and X, and the dot signifies 
contraction over the greek indices; Pi1B (J1') are spin projection operators, which can be 
found in the literature [8,9], and ai}B (J1') are coefficient matrices. For the operator given 
in (5.2), one explicitly finds: 

a(2+) _ [Glq2 + Blp2 
- iV2B llqlp 

-iV2B1Iqlp] 
B2q2 , (5.6a) 

a(2- ) = G2q2 + Blp2 , (5.6b) 

[Gaq2 + Bap2 - V2B4p2 -iV2B4 IqIP] 
a(l+) = - V2B4p2 BSp2 iBslqlp , (5.6e) 

iV2B4lqlp -iBslqlp BSq2 

[GO" + B,p' V2B7p2 iV2B7lqlp 
;v'2

B'I'IP] _ V2B7P2 BSp2 iBs lqlp iBs lqlp (5.6d) a(l ) = -iV2B7Iqlp - iBslqlp Bsq2 B 2 • sq 
- iV2B7Iqlp -iBs lqlp BSq2 BSq2 

[GSq2 + Bgp2 - iV2B9Iqlp 

~] , a(O+) = iV2~9Iqlp B1Oq2 (5.6e) 
0 

a(O-) = Gaq2 + BUp2 , (5.6!) 
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where we have used the following abbreviations: 

G1 = 491 + 292 + 49a + 94 + 9s , 

G2 = 491 + 92, 

Ga = 491 - 49a + 94 - 95 , 

G4 = 491 + 92 + 294 , 

Gs = 491 + 292 + 49a + 494 + 49s + 129a , 

Ga = 491 - 292 , 

Bl = 2al + a2 + 90 , 

B2 = 4al + 2a2 , 

Ba = 6al - 5a2 - 90 , 

B4 = 2al - 3a2 - 90 , 

Bs = 4al - 2a2 , 

Ba = 2al + a2 + 2aa - 90 , 

B7 = a3 - 90 , 

Bs = 2al + a2 + a3 , 

B9 = 2al + a2 + 3aa - 290 , 

B 10 = 4al + 2a2 + 6aa , 

Bll = 8al - 8a2 - 290 . 

(5.7) 

The matrices a(l +), a(l-) and a(O+) are degenerate. This is a consequence of the gauge 
invariance of the classical action: diffeomorphism invariance requires that the third and 
fourth rows and columns of a(l-) be proportional and the third row and column of a(O+) 
be zero; local Lorentz invariance requires that the second and third rows and columns 
of a(l +), and the second and fourth rows and columns of a(l-) be proportional. These 
degeneracies are removed by the contributions of the gauge fixing terms, which are: 

a(2+)GF = [~ dp2] , (5.8a) 

[~ 
0 

-i~lqlp ] a(l+)GF = L (5.8b) "'G 

i~lqlp &p2 
"'G 

0 0 0 0 
0 L 0 i~lqlp 

a(l - )GF = "'G 
(5.8c) , /3' _L 0 0 -'1- + =p2 

2a:D CXa 2",v 

-i~lqlp 
, , /3' 2 

0 _-'1- ~+~P 2",v 

[~ 
0 

o ] a(O+)GF = 3E1 l + &p2 v'3{3D /3~~1 q2 (5.8d) QD etG 

v'3{3D /3D -I q2 (/3v- 1)' q2 + &p2 
"'D CtD QG 

The ghost action is 

1 J d4 [1-·bO cdl + -1·bO v d = "2 z [1IJ.b cd [ldJ.b v 
(5.9) 

+ .I)' O[ dlJ I' cd led + .II' O[ ddJ / dv 1 
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where 

O[I/lab cd =5~5: (_82 + (3GP2) , 

O[ldlabv 
= -(3Gl5~8b, 

'" cd cc 8d 
V[dfj,.. =pul' ' 

O[ddl/ =P (-5~82 + (3D8,..8 V
) 

(5.10a) 

(5.10b) 

(5.lOc) 

(5.10d) 

The determinant of 0 AB as a 40 x 40 matrix is equal to the product over spin J and parity 
P of the determinants of the matrices a. Taking into account the multiplicity of these 
contributions, the one-loop effective action is 

1 J J d4

q r(1){p)=2" ~x {27r)4~)2J+1)ln{deta{JP))-lndetOFP ' 
J,P 

(5.11) 

The determinants are' hofuogeneous polyonomials in q2 and p2 of degree up to eight. Th'e 
evaluation of the momentum integrals would be quite difficult in general. To, si~plify it 
we choose the gauge (3G'= (3D = O. With these assumptions, one easily finds: ' . 

det a(2+) =~2 [B2G1 q2 -t- B 1{B2 - 2B1 )l] , 
4 

det a{l +) =-q- [BSG3 q2 + (BaBs - 2B4)l] , 
2aG 

deta{l-) 2
q

6 [B8G4q2+{B6B8-2B~)l], 
aGaD 

4 • 

det a{O+) =L [BIOG S q2 + B9{B10 - 2B9)p2] , 
aD 

(5.12a) 

(5.12b) 

(5.12c) 

(5.12d) 

while the ghost determinant becomes independent of p after a rescaling of the ghost vari
ables. The integrals in (5.11) can now be performed exactly, With an appropriate choice 
of the renormalization conditions, the result is .. 

(5.13) 

where J.L is a renormalization constant with dimensions of mass and the constant C is 
related to the coupling constants in the Lagrangian by 

(5.14) 

There are various restrictions on the coupling constants due to the requirement that the 
ratios of the coefficients of p2 and q2 in (5.12) be positive. We shall not discuss this here. 
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The mirumum of the potential occurs for P = /1. In order to relate this undetermined 
mass to physical quantities one has to consider the case when 'Y is not flat and compute 
more terms in the derivative expansion of r. The results of,.[8,10] show that for A = 0 and 
P constant, r will have the general form 

r(Pi'Y) = J d4xy9 [COp4 (In (::) + dO) + Clp
2 

(In (::) + d1 ) R(-y) + O(R(-y)2)] , 

(5.15) 
where Ci and di are constants and R(-y) is the curvature of the metric 'Y. The minimum of 
the potential will be affected by the presence of curvature, but for weak fields it will always 
be of the order of /1. Reinserting the rrunimum value in (5.15) one obtains a functional of 
the metric of the form 

(5.16) 

showing that /1 has to be of the order of Planck's mass. The effective action r elf d!!scribes 
the long distance dynarrucs of the gravitational field. As described in section 1; the ' gauge 
field A acquires a mass of the order of /1, and therefore can be neglected below' Pl~ck's 
energy. The only dynamical variable at low energy is the dimensionless nietric 'Yi the 
coefficients of the Einstein and cosmological terms in the action now have ~he ' faniiliar 
dimensions. It is in this regime that we expect to recover the gravitorl.' Hwever, this· issue 
requires further analysis. 

The cosmological term in (5.16) seems to be undeterrruned as in the standard ap
proach. However, the fact that r is essentially a bimetric action could have some bearing 
on this issue. A hint in this direction comes from the observation [10] that in the presence 
of a second metric 'Y, g~v = S~v is a solution of the field equations also in the presence of 
the .\0 term in the action. One way to address this issue is to compute the renormalization 
group flow of r. Some preliminary investigations in this direction [10] show that the v.e.v. 
of the metric g~v is constant, equal to /12S~., for scales smaller than Planck's mass, but 
grows roughly like the momentum squared for larger scales. This behaviour may affect 
the propagation of particles with very high energy, in particular the massive ghosts of the 
gravitational sector. 
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