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1. Introduction 

Gravity must be described by a spontaneously broken gauge theory. This is a consequence 
of the fact that the vacuum expectation value (v.e.v.) of the metric, or of the vierbein, is 
nonzero (actually, nondegenerate). In quantum field theory the vacuum expectation value 
of the fields is usually determined by the effective potential (the nonderivative part of the 
effective action). In classical theories of gravity the possible form of a potential for the 
metric is severely constrained by general covariance: the only allowed local term in the 
Lagrangian depending on the metric but not on its derivatives is the cosmological term. 
Now, if the metric has the form 

2-
91'-" = P 9,," , (1.1) 

then the cosmological term becomes J d4 x v'9 p4, which can be interpreted as a potential 
for the conformal factor p, but is not of the type that leads to spontaneous symmetry 
breaking. 

In order to have a nontrivial potential (by this we mean one that leads to a nonzero 
v.e.v.) without breaking diffeomorphism invariance it is necessary to have two independent 
metrics. In [1 J we have suggested a bimetric classical dynamics, in which one of the metrics 
is interpreted as the v.e.v. of the other, in the spirit of a mean field approximation. In this 
paper we will show that one need not introduce a second metric at the level of the classical 
action. Instead, it can appear in the process of quantization. There are two different but 
strictly related ways in which this can happen. 

A second metric can appear in the definition of the ultraviolet regularization. Normally 
one uses the dynamical metric in the definition of the regulator. However, one can decide 
to define the regulators using a different, fixed metric. At least in the cases we shall 
consider here, this procedure does not lead to any pathological features that were not 
already present in the theory. It seems therefore to be a viable alternative. 

A second metric also naturally arises in the study of the renormalization group for 
gravity. A convenient method of addressing this problem is the average effective action 
rk, a continuum version of the block-spin action of lattice theories (k is a parameter with 
dimension of mass) [2,3J. In the case of gravity, one would compute the functional integral 

e-W,U,y) = J (d9)e- S(g)-tl.s.(g,y)-U,g) , (1.2) 

where e-tl.s. is a term that forces the average of the metric 9 in a box of linear dimension 
k-1 to be equal to 9 and j is a (tensor density) source coupled linearly to 9. The precise 
form of the constraint will be spelled out in Section 4. Gauge fixing and ghost terms 
are included in the action S(9). If we call 9(cl) the variable conjugated to j we get after 
Legendre transformation an effective action rk(9(cl), g) whim can be thought of as the 
effective action for 9(cl) in the background geometry defined by g. The addition of the 
constraint term to the action amounts roughly speaking to putting an infrared cutoff at 
momentum k in the momentum integrals. This cutoff is naturally defined using the metric 
9 (see Section 4). So we see that this second way of introducing a second metric is very 
closely related to the first one: in both cases the second metric appears in the defini tion 
of a cutoff. 
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We will restrict our attention to metrics of the form (1.1), but all that we are going 
to say can be generalized to arbitrary metrics. Most of the time we will consider the case 
when g is flat. We concentrate on the average effective potential Vk(9(cl) , g)j for metrics of 
the form (1.1), it can be thought of as a function Vk (p, g) and in the case whe~ g is flat just 
as a function Vk(p). We find that when the UV regulator is defined using the metric g, the 
effective potential has the Coleman-Weinberg form [4], with the minimum occurring for 
nonzero p. We then compute the scale dependence of the minimum of the average effective 
potential, by varying the scale k. We find t.hat, irrespective of the way in which the theory 
is regulated in the UV, the v.e.v. of p2, and therefore of the metric, scales according to its 
canonical dimension above Planck's energy (up to logarithmic corrections). 

Since the case of pure gravity presents technical complications which are inessential 
to the main points we want to make here, we begin in Section 2 by discussing the case 
of a real scalar field propagating in a bagkground gravitational field. We will see how the 
quantum dynamics of the scalar field can produce a nontrivial effective potential for the 
conformal factor p. In Section 3 we will repeat the same arguments in the case of a theory 
of gravity. The average effective action for the gravity theory is computed in Section 4. In 
Section 5 we offer some speculations on the physical meaning of the scaling of the metric. 

2. Matter fields 

Let us start from the action 

S( cp, g#v) = - ~ J d4x Jg [gl'V al'CPavcp + m 2cp2] , 

describing the propagation of a scalar field cp in a background metric gl'V' Defining 

cp=p-I</> 

the action (2.1) can be written as 

2-gl'v = P gl'v 

S(</>,p,g#v) = -~ J d4x v'Y[gI'Val'</>av</> + m 2p2</>2 + ... J ' 

(2.1) 

(2.2) 

(2.3) 

where the ellipses indicate terms containing derivatives of p (these terms will not be relevant 
for us since we shall consider only constant p in this paper). 

The effective action f(gl'v) is minus one half of the logarithm of the determinant 
of the operator I:!.g + m 2, where I:!.g is the covariant laplacian I:!.g = - ,igal'Jggl'V avo 
One would expect from standard quantum gravity arguments that it has an expansion 
f(g I'v) = J d4 X yg [AelT + "elT R + O( R2)]. For metrics of the form (1.1) the first. term 
becomes AelTp4 and can be interpreted as an effective potential for the conformal factor. 

The actions (2.1) and (2.3) are classically equivalent. We are now going to show that 
quantizing one or the other can lead to physically inequivalent results. Let us compute 
directly the one-loop effective action for constant </> and p by integrating over fluctuations 
of the field </> in the action (2.3), with gl'v flat. It is given by 

f(l)(p) = -- d4x -q-ln(l + m 2p2) 1 J J d4 

2 (271")4 ' 
(2.4) 
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where q2 = 51'v ql'qv' One can now proceed as one would with any theory in fiat space. The 
integral can be regularized by imposing the cutoff q2 < A2. Adding suitable counterterms 
of the form A2p2 and p4lnA one arrives at the renormalized one-loop effective potential 

(2.5) 

where jJ. is a renormalization mass. This is not the expected result: besides the quartic 
term in p it contains a further factor which is logarithmic in p. It is of the form found by 
Coleman and Weinberg [4]. Its minimum occurs for nonvanishing p. 

Let us elaborate a little further on why this result is unexpected. The action (2.3) is 
invariant under the transformations 

-I 2 -
gl'v = W gl'v , 

I -1 P =W p, (2.6) 

The classically equivalent action (2.1) is invariant under these transformations in a trivial 
way, since the combinations gl'v and cp are not affected at all. In fact any functional of g, 

<p and p which is invariant under (2.6) can be written as a functional of 9 and cp, and vice­
versa. Thus the symmetry (2.6) is a "compensator" or Stiickelberg type gauge invariance 
and there cannot be any anomaly for it (in particular, see [5], but also [6,7]). To see this it is 
enough to note that if we had quantized directly the field cp in the action (2.1) we would have 
obtained an effective action depending only on g, and hence automatically invariant under 
(2.6). We will call the transformations (2.6) "Stiickelberg-Weyl" transformations. They 
should not be confused with Weyl transformations of the metric g, which are anomalous. 

The effective potential (2.5) does not depend on 9 and p only through the combination 
g: invariance under the transformations (2.6) has been broken. It is the regularization 
procedure that we have chosen that breaks this invariance. In fact we have integrated over 
the range of momenta q2 = gl'Vql'qv < A2j this introduces a dependence of the quantum 
theory on 9 I'V alone, not accompanied by a factor of p, and is responsible for the appearance 
of the logarithm of p in (7). 

There is an alternative way of regulating the theory: integrate over the range of 
momenta gl'Vql'qv = p-2g l'vql'qv < ,\2 . Redefining the integration variables as q~ = 

p-1 ql" the momentum integral in (2.4) becomes 5(0)p4In p2 + p4 J (~:1'4 In(q'2 + m 2), 

the integration being now over the range gI'Vq~q~ < ,\2. Neglecting the term 5(0) for a 
moment, the important point is that the integral does not depend on p anymore. Thus 
after renormalization, the effective action will be 

V (1)( ) _ 1 4 (In m 2 3) 4 P ---m --- P . 
64~2 jJ.2 2 

(2.7) 

Thus, it is this second regularization method which yields results in agreement with tra­
ditional quantum gravity. The te1ID proportional to 5(0) could be simply discarded in 
dimensional regularization, but not in the cutoff regularization. We observe that it is ex­
actly the jacobian of a change of variables of integration from <p to cpo Thus the result of 
integrating with the cutoff gl'Vql'qv < ,\2 is exactly the same that one would have obtained 
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by integrating out the field 'P in the action (2.1), and we have already observed that this 
could not possibly lead to a nontrivial potential. 

Is there any criterion to tell us which one of the two quantization procedures is the 
correct one? One could argue that the correct quantization is the one that preserves the 
Stiickelberg- Weyl invariance (2.6). However in the present case it seems that breaking 
this invariance would not violate any physical principle. All that would happen is that the 
effective action, instead of depending on 9 and 'P only, would have an additional dependence 
on the field p. If the metric was also dynamical (as will be the vase in the next section), 
the field p could become an independent propagating field. This is entirely analogous to 
the situation occurring in those cases when a theory with anomalous local symmetry can 
be quantized [8,9]. 

The choice between the two regularization procedures can be related to which one 
of the metrics 9 and g is interpreted as giving the geometry of spacetime. In fact, the 
geometry enters in the definition of the modulus squared of the momentum. So if the 
geometry is given by g, one is led to the effective potential (2.7), while if the geometry is 
given by 9 one arrives at the effective potential (2.5). 

One may still worry that the logarithmic terms in (2.5) are an artifact of the momen­
tum cutoff regularization, which is special to flat space, and that they could not arise if 
an invariant regularization was used. We will therefore now rederive the , effectiv~ poten­
tial (2.5) using the heat kernel regularization in a curved background. This calculation is 
of independent interest since it gives also the for.m ,9£ the curvature term in the effective 
action. 

l. -' " 

If we start from (2.3), the effective action can be defined by the formula 

r(l)(p,g) = -~lndet(bog +m2l) = '~ j~ dss-1Tre-·(<l,+m
2p2

), (2.8) 
AT 

where A is an ultraviolet cutoff. In order to extract the exact dependence of r on constant 
p, we write e-s(<l,+m 2 p2) = e-s<l, e-·m2 p2 and use the asymptotic expansion of the heat 
kernel of bog. Then the r.h.s . of (2.8) becomes 

~ j~ ds J a:tx...jg (bo(bog)e-sm2p2 8-3 + b2(bog)e-sm2p2 s-2 + b4(bog)e-sm2p2 S-1 + .. .) 
AT 

(2.9) 
The integration over s can be performed explicitly (see Section 5 in [1]). Using a suitable 
renormalization scheme one arrives at the effective action 

1 J [ (m
2p2 3) 1 - (m

2p2 
) ] r(I)(p,g) = 647r2 a:tx...jg_m4p4 InY-2 +3Rm2p2 lny-l + ... , 

(2.10) 
where the ellipses stand for terms of higher order in curvature. We see that when 9 is flat 
the potential (2.5) is reproduced. 

Alternatively, one could start from the action (2.1) and integrate out the field 'P. In 
this case the relevant operator is bog + m 2, and one arrives at' an effective action r(l)(gl'") 
which is identical to (2.10) except for the replacement of m 2p2, 9 and R by m 2, 9 and 
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R. In tills effective action, p only appears within the metric g and the Stiickelberg- Weyl 
invariance is preserved. When 9 is flat and p is constant, the effective potential (2.7) is 
reproduced. 

As in the case of the flat space calculations with cutoff, the choice between the two 
quantization procedures depends on whether g or 9 is interpreted as the geometric metric. 
In fact in the heat kernel regularization one isolates the divergences by looking at the 
coincidence limit of a Green function with the distance between the points measured with 
respect to a certain geometry. In the first calculation, this geometry was given by g, and 
tills led to the appearance of a nontrivial potential for p, in the second calculation it was 
given by g and the effective potential is given just by a cosmological term. The difference 
between the two quantization procedures outlined above can also be interpreted as the 
addition of a Wess-Zumino term [6,10]. 

Effective potentials of the form (2.5) had been obtained earlier [6,10,11] and were 
attributed to a dilatation anomaly. We have given another derivation of these potentials, 
from the point of view of the coupling of matter to gravity. In our approach the presence 
of the potential is not the consequence of a conformal anomaly. Strictly speaking, one 
should say that a theory is anomalous only when there is no way to quantize it which 
preserves all classical symmetries. We have seen that the Stiickelberg-Weyl symmetry is 
not anomalous. Instead, we have used a quantization procedure that explicitly breaks the 
Stiickelberg-Weyl invariance. 

The dynamics for the conformal factor induced by the anomaly of matter fields has 
been investigated recently in [12]. There, the standard regularization was used and there­
fore no nontrivial effective potential was obtained. In a similar context, an effective po­
tential for the conformal factor Wrul obtained and discussed in [13]. 

3. Gauge theory of gravity 

Having discussed how a nontrivial potential for the conformal factor can appear in quantum 
field theory in a fixed background metric, we are now ready to see the same phenomenon 
happening in pure gravity. It should be clear from the previous discussion that a crucial 
ingredient is the appearance of an operator of the form of a laplacian plus a constant times 
p2. Thus in the case of pure gravity we will also need an action ·which upon linearization 
yields an operator of this form. This is not the case for the ordinary Einstein action. We 
will choose instead an action quadratic in curvature and torsion. This type of action is 
also necessary in a unified theory of gravity [14]. 

In the model we shall consider, the independent dynamical variables are the vierbein 
oa" and an 0(4) gauge field A" a b (we shall concentrate on the Euclidean theory, where 
a,b = 1,2,3,4 are internal indices and 11-, IJ = 1,2,3,4 are spacetime indices). With 0 and 
A we can construct metric, curvature and torsion fields: 

g ". = oa" Ob. Cab , 
F". ab = o"A" ab - o.A" ab + eA" a cA. cb - eA. a cA" cb , 
0" a. = o"oa. _ o.oa" + eA" abOb. _ eA. abob" , 
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where e is the gauge coupling constant. As an action we take . , 

It is manifestly invariant under local 0(4) and general coordinate transformations. 
In the previous section, it was implicitly assumed that g~v, p and g~v were all dimen­

sionless. On the other hand now B" ~ and A~"b have canonical dimension of mass, and g~v 
of mass squared. Therefore, from now on, we will assume that in (1.1) p has dimension 
of mass. One can adjust the dimensions of the fields 'P and", to ·be consistent with this 
choice [15]. Note that on the other hand the geometric metric 9 which enters in the def­
inition of the line element ds 2 = g~vdx~dxv has to be dimensionlt;ss (we are taking here 
the coordinates to have dimension of length, as is customary in ,quantum field theory). 
Therefore, g~v must be related to the v.e.v. (g~v) by a constant factor with dimension of 
lenght squared, which can be naturally related to the Planck length [1]. 

We will now assume g~v = c~v in (1.1) and evaluate the. one-lqop effective potential 
for the conformal factor p using the background field method: We flrst expand S up to 
second order around the classical solution of the field equations A(d)~" b = 0, B(d)" ~ = p 8:, 
with p constant. The linearized action has the form 

S(2) = ~ J d4 x [M~"b8"C( 8bd (-8~pa2 + a~ap) + eZ p2 (8bd8i<P - cbp8d~) )Mpcd 

- 2ep 8B" ~ (cd~ap - 8~pad) 8"C8Apcd + cB" ~8"c (_c~pa2 + a~ap) 8Bc pl. 
(3.3) 

In this expression, indices are raised and lowered with 8~v. This linearized action is invari­
ant under the linearized gauge transformations and linearized coordinate transformations. 
We add to the linearized action the gauge-fixing terms 

(3.4) 

The effective action is one half the logarithm of the determina,nt of the differential operator 
appearing in (3.3), plus gauge fixing and ghost terms. The opera:tor can be diagonalized 
using the method of the spin projectors, see the Appendix. We find 

1 J J d4

q [1 ] r{l)(p) = 2 ~x (271')4 (5 + 3)ln(q2 + 2e2l) + 3ln(l + e2p2) + In(q2 + 2e2p2) , 

(3.5) 
plus terms independent of p (we used the notation q2 = 8~Vq~qv)' The first term comes 
from the modes with spin 2- and 1-, the second from those with spin 1+, the last from 
those with spin 0-. The ghost contribution turns out to be independent of p. 

As in the case of the scalar field, one has a choice in the definition of the regularization. 
The standard result of quantum gravity, that r(g) R:l Aeff J d4 x ytgp\ is obtained if we 
define the cutoff with the metric g. In what follows we describe the result of regularizing 
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the integral (3.5) with the cutoff q2 < A 2 . Adding suitable counterterms of the form A 2 p2 
and p4 ln A one arrives at the renormalized effective potential 

(3.6a) 

(3.6b) 

where J1. is a renormalization constant with dimensions of mass; we have written the result 
for an arbitrary constant g,,". This potential has the same form of the one we computed 
previously in the mean field approach [1]. It has a minimum for p = Po = J1./e. Not that 
since we had to add counterterms involving the metric g, the quantum theory is effectively 
a bimetric theory of the type discussed in [1]. 

Finally, let us comment on diffeomorphism invariance. The calculation leading to 
the effective potential (3.6) was performed in flat spacetime and therefore diffeomorphism 
invariance is not manifest. As discussed in the introduction, one has to think of the effective 
action as a functional of two metrics, and if both are transformed at the same time, this 
functional is diffeomorphism invariant. For metrics conformally related as in (1.1) this is 
made clear by the heat kernel calculation in Section 2. 

4. Average effective potential 

We turn now to the average effective action ' [2,3]. It is an effective action depending on 
a momentum scale k, which can be used to compute the renormalization group flow of 
various quantities of interest. Our main interest will be in the ' scale dependence of the 
effe~tive potential, and hence of the v.e.v. of the operator 91'"' 

To define the average effective action, one begins by adding to the classical action 
(3.2) quadratic terms which constrain the averages of the fields e and A in volumes of 
size k-4 centered around the point x to take certain values iJ(x) and A(x) (up to small 
fluctuations) : 

(4.1) 

In this formula fk = fk( -gl'"'fj" 'fj"), where 'fj "ea" = G"ea v + eA" abeb" - r;.,ea A and r 
are the Christoffel symbols for the metric g"v. The differential operator h( _g"v'fj" 'fj v) 
will perform the desired averaging operation if we take fk(X) = exp( _a(x/P)b), with a, b 
constant parameters. Note that the explicit introduction of the fields iJ and A breaks both 
coordinate and gauge invariance, so no further gauge fixing is needed (for similar remarks 
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see [16]). In (4.1) we have contracted all spacetime indices with the metric Ypv. This is 
necessary in order that the constraint term be only quadratic in the fields (J and A. It is 
also in line with the assumption that it is the metric Y that dictates the geometry. 

In order to compute the average effective potential we choose the average fields A = 0 
and lia I' = P 8~ with P constant. If the parameter b in !k is chosen larger than 2, the 
Ansatz Aclpab = Allab and (Jcl a I' = iJa I' gives a solution of the classical equations of motion 
of the total action. Proceeding as before, we arrive at the average action 

1 J 4 J d4

q [ ( 1 2 2) ( 1 2 2 2) fk(p) = 2 d X (211")4 8ln Pk + 2e P +61n Pk + 2e P Ik 

+ 3ln (pi + e2 p2 Pk (1 + ( a + D Ii) + ae4 p4 Ii) (4.2) 

+ 3ln (Pk + ~ae2l tl ) + In (Pk ~ 2e2 p2) 1 ' 

where Ii = (!k(q2)/ and Pk(q2) = q2/(1 - In Note that in the limit k -> 0, the 
function Ik becomes zero and Pk becomes equal to q2. One can then easily check that up 
to field-independent terms, fo = fk=O reduces to the old effective action (3.5). One can 
split fk(p) = fo(p) + t..fk(p), where fo(p) contains the divergences but is independent of 
k and 

which contains all the k dependence, is both IR and UV convergent. The part fo(p) can 
be renormalized in either one of the two ways mentioned in Section 3. If the UV cutoff 
is defined using the metric g, we are led again to the effective potential Vo(p) given in 
(3.6). We shall briefly discuss the other option later. Define the average effective potential 
Vk(p) = Vo(p)+ t.. Vk(p) by fk(p) = J ~x .j9Vk(p). To find its minimum we have to solve 
the equation 

0= OVk(P) = ~ [18e2lln e
2

p2 + k2p (e
2p2

)] 
8(p2) 6411"2 ,..2 k2' 

(4.4) 

where, using the dimensionless variables x = q2/k2, t = e2p2/k2 and p(x) = Pk(q2)/k2 = 
x/(l + P), P = exp( -2axb ), the function P is given by 
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F(t) = ~;;: 8~(~~) =2 [X> dxx f2 [- (p + ;:X + t) + P /~tJ2 
p(~x - p) + ex(Px + t(2x + t)) 

+3 (_ _ (4.5) 
(x +t) p2 +Pt(1 +(ex+ ~)J2) + ext2J2) 

3 ex 2P] 
+ 2 P + ~tJ2 - (p + 2t)(x + 2t) 

This function can be studied numerically. Choosing a = 1, b = 3.19 in P, (see [2]) and 
setting ex = 0, F(t) grows from F(O) = -Cl ~ -12 to zero for t ~ 5, it reaches a maximum 
of order 0.2 for t ~ 15 and decreases slowly to zero for large t like Kit for K very slowly 
varying. The minimum of the effective potential can be plotted numerically. One can 
only study analytically the behavior for t very large and very small. Let us denote Pk the 
minimum of Vk. For k = 0, po = Jile. For t ~ 1 (which corresponds to k ~ Ji) we can 
expand Pk = po + €, and use the asymptotic behavior F(t) ~ Kit. Inserting in (4.4) one 
finds 

2 2 ( K k4) 
Pk = Po 1 - 18 Ji4 ' (4.6) 

On the other hand for t ~ 1 we can expand the function F in Taylor series around t = 0: 
F(t) = -Cl +C2t+ .... Equation (4.4) shows that pi grows slower than c1 k2 and faster than 
clP I (18In(cl P I Ji2) + C2)' For k ~ Ji the denominator becomes large and this justifies a 
posteriori the approximation t ~ 1. In fact, this can also be checked numerically. 

For ex =f 0 but not too large, the behavior of the potential is essentially the same. We 
note that the behavior for large and small k agrees with the one found using a mean field 
approximation and treating k simply as a sharp infrared cutoff [17). 

By a reasoning which was discussed in [1), the scale Ji has to be identified with Planck's 
mass. We have thus found that the v.e.v. of gl'v is given by 

(4.7) 

where Pk is essentially constant for k smaller than Planck's mass and grows linearly for 
k larger than Phmck's mass. Note that the scaling behavior for large k is the one that 
is expected on the basis of dimensional considerations. In a more sophisticated approach 
one would have to take into account also the corrections due to the anomalous dimension 
of the metric. 

Let us discuss briefly what would happen if the UV regulator was defined with the 
metric g. Then Vo(p) = AelfP\ where Aelf is an undetermined parameter, possibly zero. 
The minimum of the effective potential at k = 0 is for P = O. For k sufficiently large, 
however, Vk. would develop a nontrivial minimum. This is analogous to the result of 
[18). For k ~ Ji the v.e.v. of P sc~ies again linearly with k, up to small corrections. 
Thus irrespective of how the theory is regulated in the UV, the metric scales like k2 

above Planck's energy. Modulo anomalous dimensions, this result can be trusted. The 
behavior for small k should be studied more carefully using an "improved" form of the 
renormalization group equation, along the lines of [3). We plan to discuss this elsewhere. 
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5. Implications and conclusions 

The most striking aspect of the foregoing analysis is the scaling of the v.e.v. of the metric 
g. This can be understood in terms of a fractal structure of spacetime. Let us recall the 
well known example of the length of a coastline [19]. This concept is not well defined by 
itself: it depends on the choice of a parameter L representing the length of the yardstick 
that we use to perform the measurement. It is essentially the smallest size of the features 
of the coast that we can resolve. The result of an actual measurement will be larger if we 
use a shorter yardstick, since we are then able to follow more faithfully all the features of 
the coast. Thus the distance between two points on the coast is a decreasing function of 
L. 

Our result on the scaling of the metric can be interpreted in the same way. If we 
perform experiments at an energy scale k, we are unable to resolve features of the fluctu­
ating spacetime geometry with lengths smaller that L = k - 1 . Fluctuations of the metric 
with wavelengths shorter than k will have to be integrated over, so the effective metric is 
(gl'v)k. According to the results of the previous section, the distance between two points 
measured with this metric increases with k. This is exactly the behavior that one expects 
on the basis of the example of the coastline. For other comments on the fractal structure 
of spacetime, see e.g. [20]. 

We now turn to the discussion of the physical implications of our results. Consider 
a scalar test particle coupled to the dynamical metric gl'V' The action for the scalar field 
is given by (2.1), where'P and m are dimensionless. The first term in (2.1) represents. 
an interaction between the scalar field and the metric. The standard perturbative kinetic 
term is obtained by replacing gl'v wit4 its v.e.v. and rescaling 'P as in (2.2) so that it 
acquires canonical dimension of mass. In this way one recovers the action (2.3), which for 
91'v = OI'V and P constant can be written in momentum space . 

(5.1) 

As we argued above, a particle of momentum p is insensitive to fluctuations of the metric 
with wavelengths smaller than p-l, and therefore it propagates according to the metric 
(gl'v)k with k = p. This amounts to evaluating the factor p2 in (5.1) at the scale k = p. 
The inverse propagator of 4> would then have the form p2 + m 2 p~, with p; approximately 
constant for p2 < p~ and growing roughly like p2 for p2 > Po' The physical pole of 
the propagator occurs at mass approximately equal to mpo for m 2 < 1, but is shifted 
to exponentially large values for m 2 > 1. In fact, a positive anomalous dimension for p 
could make the pole disappear altogether. As already mentioned, the mass Po has to be 
identified with Planck's mass [1]. Thus, particles with masses larger than Planck's mass 
would essentially disappear from the spectrum. One may hope that a mecllanism of this 
type is capable of removing the ghosts of the gravitational sector. This seems to be a 
restatement of the criterion given in [21]. 

12 



Acknowledgements 

We benefitted from discussions with D. Anselmi, S. Bellucci, M. Fabbrichesi, L. Griguolo, 
M. Reuter, A. Schwimmer, E. Spallucci, K.S. Stelle and M. Tonin. R.P. also wishes to 
thank G. Horowitz, J. Madore and R. Woodard for conversations and the Institute for 
Theoretical Physics at Santa Barbara for hospitality. This work is supported in part by 
the National Science Foundation under grant No. PHY89-04035. 

13 



Appendix 

In this appendix we shall explain how the expression (3.5) for the effective action can be 
computed starting from the quadratic action (3.3) and (3.4). The effective action is minus 
one half the functional determinant of the operator 0 appearing in the linearized action. 
Since this operator is Lorentz covariant, it does not mix irreducible representations of the 
Lorentz group with different values of spin J and parity P. A partial diagonalization is 
therefore achieved by decomposing 0 in diagonal blocks corresponding to definite spin and 
parity. 

Since the background vierbein is 6~, there is no need to keep the distinction between 
latin and greek indices. For convenience, we also make the following redefinitions: wl'Vp = 
6Al'vp, '(JI'V = 68(l'v) = (68pv + 68vl')/2 and XI'V = 68[l'vl = (681'v - 68vl')/2. 

The linearized quadratic action (3.3), together with the gauge-fixing (3.4) (the ghost 
contribution is field independent and thus decouples) can be written as 

(A.l) 

where q; = (w, '{J, X)j the indices A, B run over the letters w, '{J aIid X, and the dot signifies 
contraction over the greek indices. 

We decompose walh, '(Jaf3 and Xaf3 into irreducible representations of the Lorentz 
group. If we choose coordinates such that XL is in the direction of the momentum and 
Xi, i = 1,2,3 are transverse, then the irreducible representations can be listed as follows: 
Wijk (2-), Wiik (1-), W[ijk) (0-), WL[ij) (1+), WUj)L (2+), W[ij)L (1+), WiiL (0+), WLiL (1-), 
'(Jij (2+), 'Pii (0+), 'PiL (1-), 'PLL (0+), X[iIl (1+) XiL (1-). We have used square and 
round brackets around indices to denote symmetrization and antisymmetrization, repeated 
indices denote a trace and underlined indices denote tracelessness. Each spin-2 part has 
five independent components, the spin-1 parts have three independent components and the 
spin-O parts one component, so that the tensor wl'Vp posesses 24 independent components, 
while the tensor 'PI'V + XI'V has 16 independent components, as it should be. 

The 40 x 40 matrix 0 AB appearing in (A.l) decomposes into two 1 x 1 blocks, cor­
responding to 1'P = 2-,0-, one 2 x 2 block, with 1'P = 2+, two 3 x 3 blocks, with 
1'P = 1+,0+ and one 4 x 4 block, corresponding to 1'P = 1-. In order to obtain this 
decomposition, we shall use the formalism of the spin-projector operators. 

We will use indices i,j to label isomorphic representations occurring more than once. 
For example for spin-parity 2+, i = 1,2j for 1+, i = 1,2,3 etc. One can construct a com­
plete set of projection operators Pi1A(1'P) which project out of a field a given irreducible 
representation, and intertwiners Pi1B(1'P) (with i ¥ j) which give isomorphisms between 
the different representations occurring more than once. (Note that the indices A, B in 
these projectors are redundant since i, j already label the representations. It is neverthe­
less convenient to keep them in order to remember by what field a certain representation 
is carried, e.g. for 1'P = 1+ the representations i = 1 and i = 2 are carried by W and i = 3 
is carried by X). 

The projection operators have been computed and listed in the literature (see [22]). 
Their explicit expression is reported below. The operators Pi1B(1'P) are orthonormal and 
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complete: 
p;1B(fP). pfiD([Q) = OIJOPQ Ojk OBC p;1D(Jp) , 

L p;1A(JP) = 1. 
J,P,A,i 

(A.2) 

Expanding the operator 0 AB in terms of these projection operators, one can rewrite the 
action (A.l) as 

(A.3) 

where ajB (JP) are coefficient matrices. These can be computed by acting with 0 AB on 
the diagonal spin projectors p;1A ( JP) and subsequently reexpressing the result in terms 
of P;1B (JP). In the present case, one explicitly finds: 

a(2-) = l + e2 p2 12 , (A.4a) 

a(O-) = q2 + 2e2l , (A.4b) 

[ q2 + e2 p2 12 a 2+ -( ) - ieplql/V2 
-ieplql/V2] 

q2 , (A.4c) 

[ q2 + e2 p2 12 -ieplq l/V2 

q2;p] 
a(O+) = iepl~/V2 l (A.4d) 

0 

[ q2 + 3e
2 p2 12 -e2p2/V2 -ieplq l/V2] 

a(I+) = _e2p2/V2 q2 lOt + e2 p2 ieplql (A.4e) 
ieplql/V2 -ieplql q2 

[q, + ""p' /2 0 0 

o 1 a(I-)= ~ q2 lOt + e2 p2 12 ieplql/2 ieplql/2 . (A.4f) 
-ieplql/2 (1 + II P)q2 12 (1 - II P)q2 12 

0 -ieplql/2 (1 - II P)q2 12 (1 + II P)q2 12 

One can easily check that the determinant of 0 AB as a 40 x 40 matrix is equal to the 
product over spin J and parity P of the determinants of the matrices a. The determinants 
of the above matrices are readily computed; only those with JP = 2-, 1 + ,1-,0- depend 
on p. Taking into account the multiplicities of these contributions, one finally arrives at 
(3.5). 

Similar computations lead to the effective action (4.2). In this case one starts from 
the linearized action (3.3), to which the constraint contribution (4.1) is added. No gauge­
fixing is now needed because of the presence in (4.1) of the background fields A and li. 
The matrices a are now as follows 

(A.5a) 
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(A.5b) 

(A.5c) 

(A.5d) 

(A.5e) 

o -o 
ieplql/2 

q2/2 + jkPk 
(1 - 11 (3)q2/2 

ieplql/2 j 
(1 - 11 (3)q2/2 . (A.5j) 
q2/2 + lkPk 

The calculation of the functional determinants of these matrices immediately gives the 
result (4.2). 

Finally, let us collect the explicit expressions of the spin-projector operators Pi1B (fP). 
It is useful to introduce the following notations: 

f/'=qI'IR, L~=(Mt, T;=8~-L~, (A.6) 

obeying the relations: 

L"TP = 0 
"I' ' 

T "TP - LP 
I' v- Il' L"LP - LP I'v-p.° (A.7) 

In terms of i]l', L~, and T;, one finds: 

[PWW(T)] ol3-t = ~ TO ~[{l Toyl + ~ T[OY ~{ll TO _ T Tl"Y T{llo 
TP" 3 T [p "l 3 T [p "l T[p "l ' 

[pWW(O-)] o{loy = ~ TO ~[{l T""(l _ ~ Tl"Y ~{ll TO == ~[o T{l T""(l . 
TP" 3 T [p "l 3 T [p "l [T P "l' 

[ 
+ ] _ [[PuW(2+)]TP" o{loy [Pt~'P(2+)]TP" O{l] 

P(2 ) - [Pi;W(2+)]p" ofl""f [P~'P(2+)]p" o{l , 

[PWW(2+)] o{l""( = TO ~[{l L""(l + Tl"Y L{ll TO _ ~ T L[OY T{llo 
11 TP" T [p "l T [p "l 3 T[p "l ' 

[PW'P(2+)] o{l _ v2 T(o ~fJ)" _ v'2 TofJ T " 
12 TP" - T [p q"l 3 T[p q"l ' 

[P'PW(2+)] ofJ""( = v2To T[{l <joyl _ v'2 T To[fJ q"""(l 
21 P" (p ,,) 3 P" , 

[p'P'P(2+)] ofJ = T(o T fJ ) _ ~ T TofJ 
22 P" (p ,,) 3 P" , 
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[

[PDW(O+ )JTp" a(J",! [P~'P(O+)JTP" a(J 

[P(O+)] = [P~W(O+)Jp" a(J",! [P~'P(O+)Jp~ a(J 

[Pjt(O+)J p" a(J"'! [Pa";'P(O+)Jpu a(J 

[pWW(O+)] a(J"'! = ~ To [ Lb T(J]a 
11 TP" 3 T P u] , 

[PW'P(O+)] a(J _ viz Ta(J To " 12 TpU - 3 T[p q,,] , 

[P1~'P(O+)] Tp" a(J = fs La(J Tr[p ij,,] , 

[p'PW(O+)] a(J",! = viz T Ta[(J q""'!] 
21 pu 3 pu I 

[p'P'P(O+)] a(J = ~ T Ta(J 
22 pu 3 pa , 

[p'P'P(O+)] a(J = ~ T La(J 
23 pu J3 per , 

[p'PW(O+)] a(J",! = ~ L Ta[(J q""'!] 
31 P" V 3" pu , 

[P'P'P(O+)] a(J = _1 L Ta(J 
32 P" y'3 P" , 

[p'P'P(O+)) a(J = L La(J 
33 pu per , 

[PWW(l +)] a(J"'! = T a T,[(J L"'!] _ Tb L(J] T a 
11 rpu T [p ,,] r [p ,,], 

[PWW(l+)] a(J"'! = hT[-YT,(J] La 
12 Tp" T [p u], 

[PWX(l +)] a(J = -viz T[a T,(J] q" ] 
13 rpu T (p CI , 

[PWW(l +)] a(J"'! = h L[-Y T,(J] T a 
21 Tp" r [p u], 

[PWW(l +)] a(J",! = La T,[(J T"'!] 
22 TpU r [p u], 

[PWX(l+)] a(J = q" T,[a T(J] 
23 , TpU T [p "]' 

[PXW(l+)] a(J-y = _hT,aT[(Jq""'!] 
31 P" [p ,,] , 

[PXW(l +)] a(J"'! = q"a T,[(J T"'!] 
32 P" [p ,,], 

[PXX(l +)] a(J = T,[a T(J] 
33 pu [p ,,], 
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[PWW(l-)) aih 
12 rpu 

[PWW(l-)) afh 
22 rpu 

[P~W(l-)) p<7 aih 

[PtzW(l-))p<7 afh 

[p WW(l-)] afJ"t = T [ Tb TfJJa 
11 rpa r P 17] , 

[PWW(l-)] afJ"t = v'2 La[fJ Tb T 
12 rp<7 <7J pJr, 

[p
W'f'(l-)] afJ = v'2 T [ T(a q-fJ) 
13 rpt1 T P IT] , 

[PWX(l-)] ap = -v'2T [ T[a q-fJJ 
14 Tpa T P 17] , 

[P~';W(I-)lrp<7 afJ"t = v'2 Lr[p TlT TfJJa , 

[PWW(I-)] afJ"t = 2 La L[fJ T"tJ 
22 rp<7 r [p <7J ' 

[p
w 'f'(I-)] afJ = 2 - L(a T fJ ) 
23 rp<7 qr [p <7J ' 

[PWX(I-)] afJ = 2 - L[a TfJJ 
24 rp<7 qr [p <7J ' 

[p'f'W(I-)] afJ"t = '2 Ta[fJ T"tJ q-
31 p<7 V L. (p <7) , 

[p'f'W(l-)] afJ"t = 2q-a L[fJ T"tJ 
32 p<7 (p <7)' 

[p'f''f'(I-)] afJ = 2 T(a L Ii ) 
33 p<7 (p <7)' 

[p'f'X(l-)] afJ = _2T[a LfJJ 
34 p<7 (p <7)' 

[pXW(I-)] afJ"t = -v'2 Ta[1i T,"tJ q- J 
41 prY [p U , 

[p'f'W(I-) ] ali"t = 2 q-a L[fJ T"tJ 
42 p<7 [p <7J ' 

[pX'f'(I-) ] ali = -2 T,(a L Ii) 
43 p<7 [p <7J ' 

[pXX(r)] afJ = 2 T,[a L IiJ . 
44 p<7 [p <7J 
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