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ABSTRACT. We consider the 504 invariant quantum dynamics of a point 
particle moving on the 3-sphere (or equivalently, of the relative motion 
of the spherical top). Quantum exchange relations for different times 
are derived with an "R matrix" depending on the time difference and 
on the conserved angular momentum. Their implications for correlation 
fWlctions are spelled out. The chUa! exchange relations of Alekseev and 
Faddeev [1] are also extended to different times. 

INTRODUCTION 

1 

A fresh view of the dynamics of a point particle moving on a group manifold 
G can serve both as an introduction to G current algebra models and as a 
part of their study - concerning the zero modes (for a sample of references on 
the Hamiltonian approach to such models - see [2,3,4]). Alekseev and Faddeev 
[1] presented an R-matrix treatment of the phase space r = T ' SU. with an 
emphasis on its splitting into chiral parts which admit a natural quantum group 
deformation. Here we present a manifestly SO( 4) invariant solution of the 
quantum mechanical model (independent of the choice of splitting into right 
and left movers). It is pointed that the SO(4) spectrum of the state space 
coincides with that of the non-relativistic hydrogen atom. The operator form 
of the solution 

where g E SU21 l:::: 110"1 + l20"2 + tJ0"3 is the right invariant angular momen
tum matrix that is a (hermitian) element of the Lie algebra 81'2, allows one to 
compute correlation functions of g(t) at different times. (We work out the ex
ample of the 4-point function.) Our main result is the derivation of generalized 
"exchange relations" 

1_ On leave from the Institute for Nuclear Research, Bulgarian Academy of Sciences, Tsari
gradsko Chaussee 72, BG-17B4 Sofia, Bulgaria. 
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where the "R-matrix" (or rather "6 - j symbol") depends on the time difference 
t12 = t, - t, (playing the role of a spectral parameter) and on the conserved 
right (or left) invariant angular momentum l (or l). The representatives of 
the resulting R-matrices with operator valued entries on a set of (permuted) 
n-point correlation functions satify a generalized Yang-Baxter equation (Eq. 
(3.19) below). R. I , appears to provide an example for an R-matrix depending 
on a spectral parameter in the framework of quasi-coassociative bialgebras (cf. 
[5])l In Sec. 4 we review the results ofref. [1] on the chiral R-matrices of the 
"top-model" and extend them too to different times. 

1. THE PHASE SPACE f = T'SU, IMBEDDED IN T ' C' 

Writing the SU, group element g = (g~) as a pair of conjugate 2-spinors 

or 

g = ( wI 
-wi 

we find that gg* is a multiple of the unit matrix 

( 
0 

-1 ~ ) , 

gg' = det(g) ·1, detg = w·w (= w:W U
). 

(l.1a) 

(l.1b) 

(1.2) 

Thus, the configuration space SU2 ~ S3 appears as a leal hypersurface in C 2 

given by the constraint equation 

S3 : ww' - 1 = 0 (w E C'). (1.3) 

We shall derive the PB structure on f from the canonical PB on T' C 2 Let 

".2 ) 
71'1 

(1.4) 

be the canonical momentum matrix. The non-zero PB on T* C 2 are 

(1.5) 

The restriction to r yields the secondary constraint 

2,. == tr(gp' ) = W7r + w",,' = 0, {w'w - I,,.} = 1. (1.6) 

Rather than computing the Dirac brackets for ,,(.) and w (·) we shall single out 
a subalgebra A(f) of the algebra of functions on T' C' whose Dirac brackets 

1 We thank Volker Schomerus for this remark. 
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coincide with the original PH. To this end we introduce the right invariant 
angular momentum 

L) . , , = 'pg 
-<3 

or I. = ~ tr(pg"".) (1.7a) 

l.e. 

(l.7b) 

and its left invariant counterpart 

1= -ig"p (= ip"g) = -g'lg (gg' = 1) (1.8a) 

or 
- 1 
I. = 2i tr(g"p".), ;; .( 1 , . 1) .(. + = t W 1['2 -- W27r etc . (1.8b) 

1 and i generate left and right infinitesimal SU, shifts: 

(1.9) 

(and similar formulae for the PH with pl. They imply that the angular momenta 
have vanishing PB with the constraints, 

{l.,w"w} = 0 = {I.,!,}, (1.10) 

(and similar relations for il, thus appearing as gauge invariant observables COI

responding to vector fields tangent to r. They span among themselves the 
SU2 x SU, PH Lie algebra: 

(1.11) 

(1.12) 

The similarity relation (1.8a) between -l and i implies that left and right an
gular momentum squares coincide: 

(1.13) 

The subalgebra A(r) with the above mentioned property is generated by I, i 
and 9 subject to the relations (1.9) (1.11-13) and 

{g ~ g} = o. (1.14) 

(The variable!, that serves to define the secondary constraint (1.6) is excluded 
from A(r).) 
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A general SU, x SU, invariant Hamiltonian is a function of L' and of the 
constraint (1.3). For an appropriate choice of the time parameter we can write 

H = L' + >.(w' w - 1). (1.15) 

This implies conservation of angular momentum 

(1.16) 

and yields the Lagrangean 

C = itr(lgg' ) - H = -itr(£g' 9) - H = 

{
.•. • lL' >'( ' )} = tr "gg - "2 - "2 gg - 1 = 

(1.17) 

= ~ tr(99" - >.(gg' - 1» = 

= ww' - >.(ww· - 1) 

which allows to identify the linear momentum (1.4) with 9 and the angular mo
menta land i with (the traceless parts of) igg" and -ig' 9. 

2. QUANTUM A(r): EQUATIONS OF MOTION AND THEIR SOLUTION; VACUUM 

REPRESENTAT10N 

We define the quantum algebra Ah = Ah(r) as the algebra generated by i, 
f and 9 with the PB (1.9) (1.11) (1.12) and (1.14) represented by commutators 
according to the rule 

ili{ , } ~ [ , ]. (2.1) 

The deformation parameter Ii also appears in the matrix counterpart of (1.13), 

H = l ' + Iii = (iY + l ; + i~)l = L(L + Ii) 1 = l' + Iii, (2.2) 

and in the equations of motion: 

ig(t) = li - l[g(t),H]= - ~ [g(t).iaL 0". = - g(t) (l+ ~Ii) = (i+ ~Ii) g(t). 

(2.3) 
While the quantum matrix equations l = igg· , i = - ig'" 9 require renormaliza
tion (subtraction of the trace in the right hand side) the counterpa rt of (1.8b) 
remains unchanged: 

t- 1( , . ) 
a = 2i tr 9 gUa , ia = ~ tr(gg' O"a). (2.4) 
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If one uses the "row spinors" (1.1) then the left and right invariant momenta I 
and l assume a rather different role. While I displays the spinorial character of 
W, 

[" l h • W ,.(.a = 2CTaW , (2.5) 

2£3 plays the role of a charge operator (such that w ' and w appear as positively 
respectively negatively charged): 

2[l3, w] = -hw, 2[l3, w'] = hw· . (2.6) 

A,,(r) admits an antilinear involution {I, "the TCP symmetry", such that 

{I(w(t)) = w' (- t), 

{I(la) = - la, 

{I(w'(t)) = w( - t), 

{I(Ia) = -La. 

(2.7a) 

(2.7b) 

We shall view the elements of A.(r) as operators in the vacuum Hilbert space 
1/ with a unique SU, x SU, invariant state (0 I 10) such that 10) is a cyclic 
vector with respect to A.(r) and 

(2.8) 

The involution {I(A) is then implemented by an antiunitary operator 0 such 
that 

(2.9) 

Charge conservation implies that only even point correlation functions with an 
equal number of wand w· can be nonvanishing. e mvariance and antiunitarity 

( 0.p I 0w ) = (.p I w) = (w l.p ), 

allow to relate correlation functions with opposite order of factors, e.g. 

1 2 2n-1 2n 
(Olw(t,)(wl'(t,) ... w (t'n_,)(w)'(t'n)IO) = 

= (0 I (t:)'(- t,n) '':V\-t'n_l) .. ·(J,l'(-t,) ';'( - t,) 10). 

(,:, (.) stands, as usual, for the ith factor in a 2n-fold tensor product.) 
Using the solution of the equations of motion (2.3), 

or 

(2.10) 

(2.11) 

(2.12a) 

(2.12b) 
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where 

. ((- 1)) (N) 2i+h (N) e(z) = eox => e l +"ih t = cos ""ilit + iNk sin ""iht , (2.13a) 

N'h' = (2L + h)', (2.13b) 

Eq. (2.12b) and 0 and time translation invariance allow us to write 

(01 wO(tdwp(t,) 10) = (0 1 w~(tdwO(t,) 10) = ~ e ( -~ht12) 6$, t12 = t , -t,. 

(2.14) 
The normalization is dictated by the (quantum) constraint (1.3). One can also 
rewrite (2.14) in terms of g: 

(Olg~~(t,)g~;(t,)IO) = ~'o,o"P'P' e( - ~htl')' (2.15) 

where, is the unit antisymmetric tensor (LIb). The 2n-point function is 
uniquely determined from the initial (equal time) condition 

( 01 gP , . . . gP," 10) = 1 '" II, . . ,P;P,. 
°1 0'2.. (n+ I)! D . . 0',0:.1 I 

,<, 
(2 .16a) 

in terms of w(·) the non-vanishing equal time expectation values are expressed 
in terms of the Euler beta-function: 

( I( 1 ")"' ( , ')"1) ( ) m! n! o ww, ww, 0 =Bm+l,n + l =(m+n+l)!; (2.16b) 

(the sum in (2.16a) is spread over (2n - I)!! different products of 2n < factors 
each) . For instance, the 4-point function has the form 

1 2 3 4 1234 (h ) (0Ig(tdg(t,)g(t3)g(t,)10)=(0IggggI0)e -"4(3t14 + (1+ 4P3.)t23) 

(2.17) 
where P3• is the operator permuting the indices {33{3, such that 

(P3 ,)' = 1 and (2.18) 

for 

1 2 3 4 
(01 gggg 10) = 
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Due to the identity 

(2.20) 

only two out of the three structures appearing in (2.19) are independent. 
The spectrum of our Hamiltonian (1.15), the angular momentum square, 

is s(s + 1)1i?, where s = 0, t, 1, ... so that the spectrum of the operator N 
introduced in (2.13) runs over the natural numbers. The integrability of the 
model is reflected in the existence of three commuting integrals of motion, L2, 
i 31 and l3' The state space 'H. is spanned by the canonical basis 

(2.21) 

where 
I - N H N - l 
- - < 53< - -, N:::; 1,2, ... , 2 - - 2 (2.22) 

the eigenvalue N being thus N 2 fold degenerate. We observe that 1£ has the 
sot 4) structure of the space of bound states of the non-relativistic hydrogen 
atom. In fact, the energy spectrum of the hydrogen atom is reproduced by the 
Hamiltonian 

(2.23) 

3. A QUANTUM R-MATRIX WITH OPERATOR VALUED ENTRIES 

The operators g(t) satisfy for different times a generalized exchange relation 
of the type 

(3.1) 

where Rl'l and Rl'l depend on the time difference t12 and on the conserved right 
and left invariant angular momenta La and lal respectively. To construct Rl2 and 

1 1 
thus derive (3.1) we express g(td in terms of g(t2) and use the commutatativity 
of 9 at equal times: 

where U12 is a unitary operator defined by 
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for 

(3 .2) 

where P = P12 is a permutation operator related to the SU2 Casimir invariant 
in the tensor product space: 

1 2 
!!: X !!: = 2P - 1. 

Noting that P is involutive and interchanges particle momenta! 

p2 = 1, 

and using the identities 

(i + i) (P - 1) = 0, 

which implies [H + H +2L(L + Ii) ] (P - 1) = 0, and 

Ii p,i - i, i =ii - it +Ii i - i P = 0, [ 1] [1 2] 21 12 (2 1) 

(3.3) 

(3.4) 

(3.5a) 

(3.5b) 

we deduce from (2.13) and the above calculation that R12 can be written in the 
form 

(3.6a) 

where the exponential has been factored out for later convenience and 

(3.6b) 

To compute F, we differentiate (3.1) with respect to t1 finding 

(3.7) 

To see that the structures in (3.6a) are reproduced we use the identity 

(3.8) 
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The resulting system of ordinary differential equations for Fi with the initial 
condition 

R.2(0) = 1 ¢} Fi(O, N 2
) = 6 .. , 

has a unique solution given by 

2 2 (.hl 1 i ) 2 h Fs = --- e-' - -cosNht+ - sinNht - - = 
N2 - 1 N2 N N2 

i h' N' + 1 = __ h3t3 __ t' + i ___ hStS + ... 
3 12 60 • 

hF. =ihF5= N,2_ 1 (-cosNht+ ~sinNht+e-i") = 

3 , 

= h't' _ i~ t 3 _ N + 1 h't' + .. .. 
3 12 

'F _ cosNht-1_ 1,22 N 2
h" 

" 3 - N2 - -2"" t + 24 t + ... , 

. sin Nht . .N2 
3.1 

F2 = -, N = -,ht + '"""6 h t + .... 

F 
cos Nht - 1 h2 ", N 2 - 1 

I = 1 + + .<"S--- = N2 4 

1 2 2 .N' - 1 3 3 
=l-2"ht -'-1-2- ht + .... 

(3 .9) 

(3.10a) 

(3.10b) 

(3.10c) 

(3.10d) 

(3.10e) 

The operator :F., (just as well as R.2 ) goes into its inverse if we interchange the 
labels 1 and 2 

(3.11) 

in accord with the involutivity of (3.1). 
One can derive a similar relation for R

" 
= R 12 (t12; ta) (of (3.1)); the result 

is 2 1 1 2 __ 

g(t2) 9(t, ) = R.2 9(t,) 9(t2 ), R.,(t.,;l) = R.,(t,,; -f). (3.12) 
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Acting on the right and left vacuum R12 and Rl2 reduce to the same numerical 
matrix: 

{OIR12 = ( O l e -i .( P-~) I " , 

the vacuum value of F12 in both cases being 

( :Fdt) ) = e- ihPI = cns ht - iP sin ht. 

(3.13a) 

(3 .13b) 

More generally, we can compute the action of Ri i+1 on correlation functions. 
The above analysis tells us that the resulting expressions for:F12 and .JL2rl - 12n 

are given by (3.13b) with P = P I 2 and P = P'n - J2n (and t =' t 12, t = t'n - 12n), 
respectively. It is instructive to compute as a less trivial example the middle 
R-matrix, R 23 , for the 4-point function (2.17), (2.19). 

We first note, using (2.19) and (2.20), that each three permutations Pij , for 
either i, j = 2,3,4 or i, j = 1,2,3, acting on the equal time 4-point function are 
linearly dependent: 

Indeed, this is true for anyone of the three terms in the right hand side of 
(2.19). Denoting the matrix «PiP, ) by «ij) we can write 

(3.14b) 

for any permutation (i , j, k) of (2,3,4) {respectively (1 ,2,3)) . Furthermore, we 
note the relations 

(3.15) 

As a result we find the following equivalent realizations of ;:23 in the space of 
4-point functions: 

(3.16a) 

(3.16b) 

{the first acting from the right, the second from the left of (2.17)). The matrix 
Ria defined as the ratio of corresponding 4-point functions (2 .17), 

(3.17a) 

where we omit the brackets indicating matrix elements and set 

(3.17b) 
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depends on the middle point t2 (rather than just on the time difference t'3) . 

The Rij (and :Fij) so defined are verified to satisfy the relations 

(3.18) 

R (123)(t ) R(213)(t ) R(231)(t ) _ R(123) _ R(123 )(t ) R (132)(t ) R(312)(t ) 
12 12 13 13 23 23 - 13 - 23 23 13 13 12 12 I 

(3.19) 
i 

where the upper indices (ijk) stand for the order ofg(ti) to which R is applied. 
We note that such generalized Yang-Baxter equations that reHect the op

erator dependence of R are reminiscent to the relations found by Mack and 
Schomerus in their study of quasi co-associative quantum symmetries [5] . 

The "quantum R matrix" allows to obtain its classical counterpart . Setting 

{I 2} i [, 1 1 9(1,) , g(t,) = :~o Ii. g(t, ), g(t,) (3.20) 

we find 

(3.21) 

where 

fit)) = tP - ~ t' 1+ i + it' i P + ~ t 3 ii, . (' ') , 21 (3.22) 

or a similar expression with T(t, l) = f(t, - l) acting on the left. We can also 
write a simpler looking (linear in t) expression for the PB on the price of having 

12 
an operator acting on both sides of gg: 

(3.23) 

(where [ , l+ stands for an anticommutator). Eq. (3.23) is verified directly: 
differentiating in tll using the differential equation for 9 and checking the initial 
conditions. 

4 . SPLITTING INTO LEFT AND RIGHT INVARIANT CHIRAL MODELS. 

The I-form i tridgg- 1 , whose differential defines the symplectic structure of 
the phase space r, can be split into left and right invariant parts, in parallel 
to the splitting of the basic 2-form of the Wess-Zumino-Novikov-Witten model 
into chiral parts-see [6,7] . We shall brieHy review the treatment of this problem 
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in [1J supplementing it with an expression for the different time PB and for the 
quantum exchange relations in the chiral theory. 

Let u and v be unitary 2 x 2 matrices that relate land i to the diagonal 
matrix ±L<T3: 

l = uL<T3U', (ldetu = )uu'=I, 

I = - v" LU3V , vv* = 1. 

This is consistent with the relation /g ;....; - 9£ fot 

9 = uv. 

The basic I-form in r then splits as follows: 

(4.1a) 

(4.1b) 

(4.2) 

(4.3) 

The conditions (4.1) and (4.2) do not fix u and v in a unique manner: they 
leave room for a (time dependent) gauge transformation 

u ~ uV, v ~ V -l v, V = V(t) 

with 'D any non~singular diagonal matrix. At the classical level u and v can be 
parametrized in terms of the angular momenta land i and a pair of zero mode 
variables eo {: 

u = (4.4a) 

.J: 1 ( L - £3 
V = e-' ,., J2L(L _ i3) £+ 

-L ) 
L - i3 . ( 4.4b) 

(At the quantum level these relations give rise to an ordering problem.) It is 
convenient to regard at this stage the variables u and v as completely decoupled. 
We shall take the equality L = L into account later on. 

We concentrate for the moment on the right invariant u-sector and consider 
the first order classical Lagrangean 

c. = tr{L<T3 iu"u - A(U'" - I)} _ ~L2 (4.5) 

From (4.5) we deduce 

(4.6a) 

while (4.1a) yields 
la = i tr(<Tau,,· ). (4.6b) 
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The Lagrange multiplier is found to coincide with the Hamiltonian, 

1 2 
).="2L =H, 

while the classical equation of motion 

. . 1 L I, 
1.u= '21.£ U3 = 2~'1L 

13 

(4.7) 

(4.8) 

indicates that 1£ carries just a half of the time dependence of g. Indeed, according 
to (4.2), 

get) = u(t) vet) = e-ittu(O) v(O) eF'. (4.9) 

The phase space r + ofthe variables u and l satisying (4.la) is 4-dimensional. 
Indeed the solution of the constraints (4.la) can be parametrized by the com
muting integrals of motion Land 1.31 or the ratio 

~_JL-13 
tg 2 - L + 13 

and a pair of angle variables cp and e, so that 

(;:;. 0) (4.10) 

/'3 == Lcos(}", l± = L sin 0 e±i<P. 

(4.11) 
The canonical I-form corresponding to the first term of the Lagrangean (4.5b), 
ihi.dul1:, gives rise to the symplectic form 

w =id(trlduu') = ~dla I\tr{(O"a + L- 21a1)duu'} = 

= dL 1\ (~ - dcp) + dl3 1\ dcp. 

The associated non-zero canonical PB 

{e,L} = 1 = {CI3} = {cp,13} 

(4.12) 

(4.13) 

can be written as quadratic (equal time) PB relations for the matrix elements 
ofu: 

1 2 1 2 
{u,u} =1£" T(L), (4.14a) 

(" 
0 0 

D i12 12 i 0 0 -1 (4.14b) T(L) = 2L(0"_0"+ - 0"+0"_) = 2L 0 1 0 
0 0 0 

As pointed out in [1] the relation (4.14) admits a Uq (sI2) deformation which 
allows one to connect it with the exchange relations for isospin ~ primary fields 
in a 81.£2 current algebra model. 
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Here we only note that the method of this paper allows to compute the PB 
of the chiral field u for different times with the result 

{

' 2 
" 2P - 1 l-l 

{u(t,), u(t,)} = 1 + ~ sin Lt12 + iP 4£2 (1 - cos Lt12 )+ 

l2 } sin Ltl2 II 1 2 
+ (t12 - L ) 4L' J u(t,) u(t,) T(L). 

(4.15) 

The corresponding quantum exchange relation can also he written in a form 
similar to (3.12)' (3 .6) or, alternatively, as a product of the equal time quantum 
R matrix (computed in [1]) 

( 
~ ~-1 ~ ~ 1 
o - 1 .,j N' - 1 0 ' 
o 0 0 N 

R(N) = ~ N'h' = (2L + h)2 (4.16) 

by a pair of diagonal matrices. The quasi-classical limit of R is obtained for 
1i --+ 0, N --+ 001 Nh --+ 2L, finite: 

R c:) '" 1- ihT(L) 

with T(L) given by (4.14). 
Using the defining relations (4.7) and 

we find 

as a result 

0'3 
[u(t), L} = hu(t) 2' 

. (' ~) u(t) = u(O)e" ,- , ; 

(4.17) 

(4.18) 

(4.19) 

(4.20) 
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hospitality of Laboratorio Interdisciplinare pcr Ie Scienze N aturali cd U manis
tiche of the International School of Advanced Studies (SISSA/ISAS) and the 
Istituto Nazionale di Fisica Nucleare (J.N.F.N.) in Trieste, where this work was 
started, and of the Erwin Schriidinger International Institute for Mathemati
cal Physics (ESI) in Vienna where this paper was completed. The work was 
supported in part by the Bulgarian National Foundation for Scientific Research 
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