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Abstract 

We have evaluated the one loop correction to the bound on the lightest 

Higgs mass valid in the minimal, E6 based, supersymmetric 'fJ model. Under the 

assumption that the theory remains perturbative up to the 1016 GeV scale, we 

derive a conservative bound that decreases with the top mass for M, :S 2Mw 

and varies from ~ 160 GeV to ~ 145 GeV when 90 :S M, :S 200 GeV. 



One of the most exciting (and corageous) predictions of a large class of supersymmetric 

models is the existence of (at least) one light Higgs scalar [IJ, that would be certainly 

discovered at the next colliders ( alternatively, the non observation of such particle would 

be rather difficult to explain for the previous models). 

An extremely important theoretical task becomes therefore the accurate determination 

of a rigorous upper bound for this light Higgs mass. For renormalizable models, this means 

that a calculation that includes radiative corrections e.g. at the one loop level would be 

relevant and welcome. 

A well known and particularly illustrative example of the previous statement is provided 

by the so called Minimal low energy Supergravity Models [2J. Here, as a consequence of 

Supersymmetry, one has the famous tree level bound: 

(1) 

where by MHI we denote, from now on, the mass of the ligthest CP even Higgs scalar. This 

bound, as it has recently been stressed in several publications [3], is common to a class of 

"Minimal" SUSY models, that includes SUGRA models where e.g. all the SUSY breaking 

scalar masses are supposed to be equal at the GUT scale [4], but also models where such a 

constraint is not imposed and where soft breaking terms can be varied independently. 

When radiative corrections to the bound of eq.(I) are computed [5J, two important 

effects are generated. The first one is a substantial increase of the upper bound, essentially 

due to the top-stop contribution to the Coleman Weinberg [6J effective potential, that 

contains a quartic top mass dependence. The most dramatic consequence of this is that , 

for M, co: 150 GeV, M, co: 1 TeV, the new bound becomes now co: 120 GeV, that is out of the 

reach of LEP2 with integrated luminosity of 500 pb-1 and .JS = 190 GeV [7J. The second 

remarkable effect is the fact that both the numerical value of the improved bound and other 

important phenomenological features (like the possibility that the CP odd "pseudoscalar " 

becomes lighter than HI) become now different within the previous large class of " Minimal" 

models [8J , that would be of paramount importance in case of future Higgs(es) discovery. 

A few years ago it was shown [9J that another class of models exists for which, at least 

over an interesting region of the parameter space, a bound for the lighthest scalar Higgs 

mass can be simply and elegantly computed. Such are those models where an extended 
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gauge symmetry generated by the exceptional group E 6 , embedded into a supersymmetric 

minimal spectrum of 27 -plets with fermions of the conventional (quarks and leptons) type, 

is broken down by Hosatani type mechanisms [10J to either a rank 6 or a rank 5 low energy 

residual gauge group (for an exhaustive discussion of the various theorical details we defer 

to the existing literature [11]). 

In both cases, Haber and Sher [9J derived bounds at tree level for the lightest scalar that 

are only slightly higher than the corresponding bound for Minimal SUSY models eq.(l). 

In particular, for the simplest rank 5 case with a minimal content of particles (two Higgs 

doublets and one Higgs singiet in the third generation acquiring vevs Vl,V2,V3 ) that is 

usually called (minimal) "I model, the result 

MH , :::: 108 GeV (2) 

was found (similar values obtaining for the rank 6 case). 

To see how one can possibly obtain a bound like that of eq.(2) and also for better 

understanding the philosophy of our paper, a quick review of its derivation and of the 

role of the parameters of the scalar sector of the models is requested. The latter ones are 

the coupling constant >., that multiplies the trilinear term of the original supersymmetric 

superpotential (E6 invariance forbidding any other possible e.g. bilinear supersymmetric 

term), and the parameters of the SUSY breaking sector, i.e. the scalar mass terms 1'1, 1'2,1'3 

and another soft breaking mass term >'A. 

After imposing the three conditions of minimum and replacing the scalar mass terms 

by the related vevs one is left with four free parameters, since it is still possible to relate 

v; + vi to M; • : 
2 1 (2 2)( 2 2) 1 2 2 

M z = 2 9L+9. VI +V2 = 29zV (3) 

A possible choice of the four parameters is given, for instance, by the set : 

Alternatively, one can use the Z' mass: 

(4) 

·We identify the physical Z,Z' states with the mathematical Zo 1 Zo gauge eigenstates. Given the existing 
bound on MZ'I this makes no practical difference 
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(g~ is the extra U(I) coupling, and in practice g~ = gy ) and the mass of the single (CP 

odd) pseudoscalar of the model: 

(5) 

to replace V3 and AA , which is often done when numerical analyses are presented. The 

neutral CP even sector of the model contains three physical states H
" 

H 2 , H 3 • To obtain 

the expression of the physical masses one has to diagonalize a 3x3 mass matrix M2 whose 

six independent elements [m 2]i; = a;; = a;i can be cast in the form: 

2 AAvlV2 
ai; = ai;Va + {3i; for (i, j) # (3, 3) and a33 = 1'33Va + ---=--=. 

V3 
(6) 

where (a,{3)i; and 1'33 do not depend on V3, and their explicit expression is given for instance 

in ref.[9]. As it was pointed out by Drees [12], the determination of a bound for the lightest 

Higgs mass is strongly affected by the value of the ratio AA/va. The values AA ~ Va 

correspond to a certain region in the parameters space, that we shall refer to for simplicity 

as the "Haber-Sher's region", where the bound of eq.(2) can be derived without enforcing 

extra assumptions on the non purely gauge couplings ofthe model. Conversely in the "Drees 

region", where AA is not ~ V3 , the derivation of a bound needs extra assumptions on the 

A parameter. Invoking reasonable renormalization group equations (RGE) arguments (and 

assuming M, ~ 40 GeV), Drees was able to fix a somehow higher value for the bound in 

tIlls region, qualitatively equal to M H , :::; 170 Ge V, and, strictly speaking, this should be 

considered as the true bound of the model ( at least , for the assumed M, value). 

The origin of the difference between the bounds in the two regions can be easily under­

stood if one uses a simplified procedure based on the assumption V3 ~ V" V2 ( no statements 

about AA/V3). The latter choice is phenomenologically motivated by the most recent bounds 

on the mass of the extra Z of the model, that can be derived either via direct CDF limits 

[13] or via indirect analyses of LEPI data [14]. [15]. both leading to the result: 

M z' ~ 300 GeV ~ 0.4 Va 

from wich Va ~ V" V2 already emerges (note that future negative searches of the extra Z 

at CDF and LEP2 would soon improve the previous bound by a factor 2 [16]). In this 

configuration, one can show that one "light" Higgs exists i.e. one whose mass, which does 
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not become of O( V3), is given by the following expression: 

[ 2 • f3 2 f3]2 
M 2 [f3 2 f3 f3 . 2 f3 f3 . 2f3 m 23 sm + m '3 cos ] 

H, = 11 cos + 22 sm + 12 sm - 2 
')'33V 3 

(7) 

In the Haber-Sher's region ,V3 ~ >.A, the negative contribution coming from the (1,3) and 

(2,3) non diagonal matrix elements of eq.(7) does never vanish. This brings a (negative) 

term of 0().4) that, when combined with the positive 0(>.2) contribution of the remaining 

matrix elements, produces a maximum becoming, in the limit tanf3 -+ 00, the bound of eq. 

(2). 

In the Drees region for >'A ~ O( V3) it is conversely possible for the previous negative 

contribution to vanish. This leaves a new bound that contains a positive quadratical 0(>.2) 

term and has also a tan f3 dependence. 

For >.2 < 91/2 + 9~/3 the maximum is the same as in the Haber-Sher's case and corre­

sponds to tanf3 = 00. 

But for >.2 > 91/2 + 9~/3, the maximum is obtained for: 

(8) 

and a numerical evaluation of this expression requires a RGE approach to fix a maximum 

value of >.. This led to a bound on MHl of qualitatively 170 GeV at the time of the original 

Drees derivation in which, we insist, the top mass was assumed to be of approximately 40 

GeV and the hypothesis >.2 / 47r s: 1 at the scale 1016 GeV was used. 

As one can see, the role of the ratio >.A/V3 is thus rather crucial in this game, since the 

difference between the two bounds is (from an experimental point of view) indeed dramatic. 

The aim of this paper is that of reconsidering the whole problem of the determination of a 

bound for M H" in the most general configuration in the parameter space for the 'f/ model, 

at the next one loop order of perturbation theory, particularly taking into account the fact 

that the top is now known to be heavier than ~ 90 GeV from the last CDF limits [17]. For 

sake of comparison with the previous tree level estimates, we shall still divide the parameter 

space into two regions, corresponding to whether the condition >.A/V3 ~ 1 is satisfied or 

6 



not, although in fact the "true" bound should always be derived in the Drees' region. t 

In pratice, the expected modification of the bound at one loop in the Haber-Sher's region 

is rather obvious if one believes that, in the large V3 lihlit , the exotic sector should simply 

decouple from the conventional one. In this case, the radiative corrections to the bound 

should simply come from the top-stop sector. The actual proof of this statement requires 

a number of technicalities, that have been given in a previous note [18J. The result is that, 

as expected, the one loop bound in the Haber-Sher's region becomes: 

2 2 [ 16g~ ] 3a Mi Ml 
MH , ~ M, 1 + --2 + 2 2 M2ln M2 9g, 211'Cw S w , t 

(9) 

showing that the full one loop correction is just the large tan,B limit of the corresponding 

correction in the case of the minimal SUSY models I. 

To evaluate the modification to the bound in the Drees' region, one has to start from 

the expression of the modified eq.(7) at one loop. This requires the explicit expression of 

the relevant matrix elements at that order. To perform the calculation, we have followed 

the effective potential approach [20J and we have first evaluated the contribution to the M2 

matrix that is obtained by considering all the fermion and sfermion content of the model 

(including the eleven exotic states). We have used the expressions of the masses of ref [21]; 

whenever this was possible, we have systematically neglected the various D-terms and/or 

terms of O(V/V3)' Within these approximations, the starting expressions of the various 

masses become : 

For the top-stop system: 

(10) 

(ll) 

(12) 

t Assuming VJ > Vl, V2 as from the previous discussion, the two different regions can be classified from the 
approximate expression, valid under this assumption, of the ratio 

AA 25 1 tan,8 Mi. 
-:;;; = 18 9"1 + tan,82 M;, 

showing that the Drees' region does correspond to a substantially heavy (Mps ;::: Mz') pseudoscalar. 
:The f~ct that the bound :.;emains finite i.e. the rad,iative correction is not of O(av3) is not occasional but 

is the consequence of a general "screening" property valid for a large class of SUSY models [19J . 
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with ht the top Yukawa coupling and Mi the corresponding soft mass Susy breaking (we 

shall assume, as it is usually done, that Mi =O(TeV)) . Analogous expressions can be given 

for the b, b system, whose contribution turns out to be negligible at realistic tan,8 values 

and will therefore be omitted in this first evaluation . 

The quark exotic sector contributes with: 

M2 
h - h2v 2 

I. 3 

M2. 
5 m' + h2v 2 

- - klv2 
hn I. h 3 36 "3 

M~ 
[j 

= m' + h2v 2 
_ _ kg2v 2 

hL I. 1.3 9 "3 

(13) 

(14) 

(15) 

where hI. is the exotic Yukawa coupling which in principle can be large an,d mi. the soft 

mass; in eq.(14),(15) k is a finite number that does not contribute appreciably to the result 

III any case. 

The contribution of the other scalar mass sparticles for which the mixing is negligible 

i.e. ii = (ii, ie, e, eC
) is : 

M ' 2 + 2 + 5 2yi 2 
f; = mj; mj; '6 g" 1 V3 

with 1';i the extra U(l) hypercharges [22]. 

(16) 

Starting from eq. (10)-(16), inserting them in the effective potential written as usually 

in the form [6] 

( 2) 1 4 [ M2 3 ilV Q = --StrM In - - -] 
647r2 Q2 2 

(17) 

and reevaluating the minimum conditions , one arrives at the one loop expressions of the 

M2 matrix elements. 

The results of our procedure are shown in the next formulae. One sees that the formal 

V3 dependence of the tree level expressions is retained, and one can still write: 

(1) _ (1 ) ,8(1) (. .) -I- ( ) 
aij - aid v3 + ij 2, J ;- 3,3 (18) 

(1) _ (1) 2 «1) 
a 33 - 133 V3 + v33 (19) 

where (cr.,,8,I)ij do not depend on V3 (and 833 ~ l/va ). In particular, we find (the upper 

I-index denotes the complete quantity at one loop; the same quantity without upper index 
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is meant to be the tree level expression, with renormalized couplings): 

(1) (1) (1) M2 a 11 a 12 = a 22 = 1 __ 3_h2In --.i.. (20) = 
a11 a12 a22 1671"2' Q2 

(1) 
a13 = 

3 2 2 M[ 
a13 + 87r2 h, >. VI In Q2 (21) 

(1) 5 2 2 M[ 
(22) a 23 - a23 + 2471"2 h,9"V2 1n Q2 

(1) 3 4 Ml 
(23) f33 = f33 + -2hhln -2 + (D-terms > 0) 

471" Mh 
(3(1) 

(3g) = .5~~) = 1 11 
(24) = 

(311 (312 .533 

(3(1) 3 2 4 M[ 
(25) 22 - (322 + -2 V2 h, In M2 471" , 

(3(1) 3 2 M3 
(26) 13 = (313 + 1671"2 h,>' Av2ln Q~ 

(3(1) 3 2 M[ 
(27) 23 - (323 + 167r2 h, >.Av l ln Q2 

and in all the logarithms M[L = M[n == M[ is used. In eq.(23) we have called "D-terms" 

the sum of all the contributions of this kind coming from the corresponding terms in the 

sfermion masses. They will have little role in the numerical results, and we do not write 

down their explicit form. 

From the previous expression of the relevant matrix elements it would be possible to 

compute numerically the value of the light Higgs mass for any given choice of the parameters. 

For what concerns the determination of a bound, though, the approach is relatively simpler 

since one immediately realizes that the contribution to eq.(7) coming from the (1,3) and 

(2,3) non diagonal elements is still definitely negative and as such it can be neglected for this 

specific purpose. Since the exotic contribution is essentially contained in these terms, this 

means that for the specific determination of the bound it will still be possible to ignore it. 

This remarkable simplification allows us to concentrate our analysis on the reduced matrix 

Ml,;, i , j = 1 , 2 , and to look for its maximum in the considered region. 

To derive a maximum for the "reduced" component of eq.(7) we have proceeded as 

follows. First, we have computed the modified relevant quantity at one loop, i.e. including 

the (largely dominant) top-stop contribution, that coincides with the one appearing in 
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eq.(9). The modified one loop bound becomes therefore the following: 

2 M; [« 2{3 )2 g~ ( 2{3 )2) S>.2 2{3] 3a M:lnMl MH1 :<:::: ( 2{3)2 tan -1 + -2 4tan + 1 + -2 tan + 2 22M2 M2 
1 + tan 9gz gz 71'C,.,8,.,., 

(2S) 

The maximization of eq.(2S) follows from the same assumptions that were used at tree level, 

with one crucial difference coming from the extra positive term that always increases with 

M, as ~ M:. On the contrary, the contribution to the maximum coming from the first 

two terms on the r.h.s. of eq.(2S) decreases with M, for not too large M, values. This is 

due to the fact that, in order to maximize >., we shall follow the convention of imposing 

"perturbative saturation" i.e. >.2/471':<:::: 1 at the A = 1016 GeV scale. From the relevant 

RG E for>. and h,: 

(29) 

(30) 

where t = log Q / A, it follows then immediately that the value of >.( Q) decreases with h, in 

a way which is shown in Fig.[l] §. Since tan{3 at the maximum is related to >. from eq.(S), 

and h, is related to m, and tan {3 by the equation: 

M2 = h2v2 tan
2 

{3 
, '1 + tan2 {3 

(31) 

this means that at the maximum all the various parameters i.e., >., tan{3 and h, will be 

expressed in terms of M,. In particular, the>. dependence on M" that will crucial for our 

conclusions, is shown in Fig.[2J . 

One can now proceed in the following way. Of the three terms that appear in eq.(2S), 

the third one is clearly increasing with M,. The second 0(>.2) terms decreases with M,j 

this term would reproduce essentially the Drees' bound at tree level, and is numerically 

dominant for relatively small M, values. The first term increases with M" but remains 

relatively depressed compared to the second one for small M, values. This would exactly 

reproduce the Haber-Sher's bound for large M, values ( corresponding to tan{3 -> 00) when 

it becomes conversely dominant over the second one. 

The overall picture is represented in Fig.[3J, where we show the mass bound as a function 

of the top mass in the full line, which is the representation of eq.(2S) with the const,raint 

ITo derive this conclusion we have neglected in the RGE the effect coming from the exotic coupling hE, 
since the latter would give in any case negative contributions. 

10 



on tan,B of eq.(8) ~. The dotted line represents the upper bound of eq.(28) without the 

explicit contribution of the radiative correction oc M: and shows the importance of the 

latter expecially for large values of M,. Finally, the point-dotted line represents the radiative 

corrected upper bound in the Haber-Sher's region, eq.(9), showing that for large M, values 

the bounds, in the two regions, merge into one identical result. 

One seees that for M, :-s; 2Mw GeV there exists a bound for the model that would 

correspond to the modification of the Drees' bound and decreases with M" remaining 

always smaller than ~ (160GeV) for M, 2: 90 GeV. This would be in qualitative agreement 

with a general statement recently made by Kane et al. [24]. For larger M, values, the bound 

begins to increase with M,. Assuming the limit on M, derivable from the last LEP1 data 

M, :-s; 200 GeV, we obtain for this model the corresponding perturbatively saturated bound 

MH • :-s; 160 GeV (32) 

Thus, if the next LEP2 analyses failed to find a light scalar and set a qualitative limit 

M H • 2: M z , the model would predict a light scalar in a region that might be thoroughly ( 

and particularly well) investigated by future higher energy e+ e- linear colliders [25]. 
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FIGURE CAPTIONS 

Fig.l 

Values of >'(Mz) for variable h,(Mz ) calculated with the RGE of eq.(29),(30) with the 

saturation condition >"(A)/47l' = 1 and A = 1016 GeV. 

Fig.2 

Dependence of M, on >'(Mz) calculated after imposing the condition of eq.(9) on tan,8 

and the relation between>. and h, fixed by by the RGE shown in Fig.[ll. 

Fig.3 

Values of the light Higgs mass bound at variable M, for M, = 1 TeV. The full upper line 

represents the bound of eq.(28) with the constraint of eq.(8). The dotted line represents 

the same equation without the last contribution ex M,'. The point-dotted line shows the 

bound in the Haber-Sher's region, eq.(9). 
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