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ABSTRACT 

Motivated by some speculations on a possible new phase of QED we study the 

modifications of the electromagnetic coupling in the presence of a strong external magnetic 

field. The anisotropy of the space induced by the applied field is explicitly taken into account. 

The result is described in terms of an isotropic logarithmic factor, as generally expected, plus 

a directional tenn showing an unusual linear dependence on the external field. This last term 

is the most important in the limit of strong static fields and it always tends to reduce the 

effective coupling. The present calculation provides more general grounds to an analogous 

statement already derived in a previous analysis. 

PACS numbers: 12.20.Ds, 25.75.+r 



1. Introduction 

It is well known that the coupling constants of gauge theories can be regarded as 

running parameters which depend on the energy scale of the processes one is dealing with. In 

a similar fashion, the study of particle propagators in the presence of external fields naturally 

leads to the introduction of effective coupling constants geff(FJ.l.v) as functions of the 

background field configuration [1]. Recently, the observation of narrow e+e- peaks in heavy

ion collisions at OSI [2,3] has attracted much interest on the strong field dependence of the 

effective fine structure constant o.eff [4]. In principle, an appropriate choice for the external 

field configuration and strength could drive o.eff from the perturbative regime CXeff<<l to the 

strong coupling scenario o.eff-l, were QED is supposed to have a new confining phase [5-8]. 

As pointed out by some authors [9,10] this new phase would actually explain the main 

features of the anomalous electron-positron peaks observed at OS!. 

The running of CXeff in a constant background field has been studied in [4] using the 

Schwinger's "proper time" formalism [11] and it was soon found that the structure constant 

exhibits a negligible logarithmic increase, so tiny that it cannot corroborate the new phase 

hypothesis. A similar conclusion was also drawn in [1]. However we think that the problem 

still deserves some clarification. In particular, more care must be devoted to the role played 

by the presence of preferred directions, which are necessarily introduced by the background 

fields. As we shall see, anisotropy has some important consequences which cannot be 

described by means of a single effective coupling constant. In fact, we find that the strong 

field dependence of the photon propagator is dominated by the presence of non logarithmic 

terms which heavily depend on the direction of the exchanged momentum. Since in a strong 

electric field it is possible to have vacuum instabilities which would give rise to a complex 

effective coupling, we shall take the background field such that it is purely magnetic in a 

suitable frame. The effect of this field configuration is in any case to reduce the 
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electromagnetic couplings, so that the main conclusion of Ref. [4] about the new phase of 

QED is unaffected. 

2. Effective couplings in the long wavelength limit 

In this section we provide a first evidence suggesting that the dominant effect of a 

strong magnetic field is a sizeable reduction of the electromagnetic couplings. The argument 

is a simplified version of the considerations presented in [12]. More general and rigourous 

results will follow in the next section. For the moment Qur computation is based on the so 

called Euler-Heisenberg Lagrangian which is known to describe the non linear effects of QED 

in the long wavelength limit [13]. This effective Lagrangian can be given the following 

integral representation [14] 

(1) 

with: 

e [(A 2)112 Jl/2 a=-:t+(j +1' 
m2 

(2) 

(3) 

where .r and (j are the fundamental invariants of the electromagnetic field, 1'=(E2-B2)12 , 

(j=E·B.When the vectors E and B are mutually parallel the invariants a and b have a simple 

physical meaning, namely: 
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eE eB 
a~, b=z. m m 

In tenns of L' one can write the electric polarization P of the vacuum as [14] 

(4) 

(5) 

moreover, if we expand L' in powers of E and we keep only the lowest order terms, it 

follows that P is a linear function of E, Pi=Xij(B)Ej , so that one can define the dielectric 

penneability tensor Eij=8ij+Xij(B). Starting from eq. (I), a simple algebra gives 

E" = ~. + ?f~)2 [_ ~ 8. + (OL ~\nn] 
lJ J 1m2 ob2 lJ oa2 ob2 r J (6) 

where n=BIB and all the derivatives are taken at E=O (and consequently b=eB/m2): 

OL = m
4 f- d11 C!.3·" [11b coth(11b) - 1J oa2 81t2 11 

o 
(7,a) 

-
oL = ~f d11 d[ -..L coth(11b) + 11 + 11] 
ob2 81t2 112 2b 2 sinh2(11b) 3 

o 
(7,b) 

The problem is now reduced to find the asymptotic behaviour, for b~~, of oLloa2 and 

oLlob2. From eqs. (7,a,b) it is not difficult to recognize that 
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(8,a) 

Inserting eqs. (8,a,b) into eq. (6) we obtain: 

E"=[I_~ljaB2)11i_ . -+~eB non· 
1) 61t ulm4 J lJ 31t m2 1 J 

(9) 

Obviously, there. exists a closed relationship between the Voo component of the photon 

propagator and the dielectric tensor Eij; for k=(O,k) (static limit) and kL~O (large distance 

limit), the Fourier transform of !Lbo reads: 

Voo(k) = - 1 

k- E- k 
(10) 

The matrix Eij has the eigenvalues 

a a a eB 
1.,1= 1- 61t In(aB2/m4), All = 1- 61t In(aB2/m4) + 31t m2 (11) 

with eigenvectors perpendicular and parallel to B respectively. Such eigenvalues, in tum, 

correspond to the effective coupling constants al = a/Aland all=a/Ali' The last one 

describes a reduction of the effective coupling and this effect turns out to be the dominant one 

in a strong magnetic field. 
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, 
3. Beyond the long wavelength limit 

The most striking feature of eq. (II) is the presence of the term ~ ~ which tends to 

reduce the electromagnetic couplings in a strong magnetic field. The aim of this section is to 

conflrm the presence of such an effect via a computation of wider validity, which goes 

beyond the long wavelength limit discussed above. More precisely, we are going to compute 

the one loop vacuum polarization tensor Ol~v(k,B) to all orders in the external fleld B. This 

is achieved replacing the free electron propagator by the Green function SF(X,y;B), the 

"exact" electron propagator in a homogeneous magnetic field. A rather compact form for 

SF(X,y;B) is known from the old paper by Schwinger [11] on the so called proper time 

formalism. For B along the z direction one has [15]: 

SF(X,y;B) = <I>(x,y) G(x-y) (12,a) 

with 
: , 

G(X) = -l-f~ ds e-ism' ~ eio)Z 
(411)2 s Sin Z 

o 

x [m+...l. (r x, + --,Z- e·icr,z rx" Jl1 
2s sm z ~, (l2,b) 

<I>(x,y) = exp [-ie J: A(I,:>d~l 
(l2,c) 
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(12,d) 

In the fermion loop required for computing coJlv the phase factors 4>(x,y) appear in the 

combination 4>(x,y)4>(y,x)=l and one is left with the product of two translationally invariant 

functions G, whose Fourier transforms Ij depend on one momentum only. In the Euclidean 
- . 

space the function Ij(p) can be given the following integral representation [15]: 

Ij(p) = r ds exp [-s (m2+p; +tan~ z p~)l 
o 

X [(l+0"3 tanh z) (m-yp,) _ 1 yp"J 
cosh2 z 

(13) 

which should be inserted in 

(14) 

in order to get the strong field dependence of the photon propagator. However we find it 

useful to proceed in a simplified way first. To start with we approximate the propagator Ij(p) 

with a more compact form Ij.(p) which holds in the asymptotic region we are interested in, 

namely e~ » 1. This approximated Green function lja(P), once inserted in eq. (14), gives rise 
m 

to a simple expression which can be analytically integrated to obtain the asymptotic behaviour 

fth 1 
.. . eB 

o e vacuum po anzatlOn tensor as 2 -7~. 
m 

Let us now focus on the first step, that is, the strong field limit of eq. (13). Since the 

integrand is limited from the above as esB -7~, the leading contribution to Ij(p) comes from 

the region esB»l, where we can safely set tanh(esB)-l and were we neglect the term 

l/cosh2(esB) as well. As a result, the propagation function Ij(p) is cast into the form 

8 



(15) 

The next step is the insertion of eq. (15) into eq. (14). For the sake of simplicity we compute 

only the 0144 component of the polarization tensor (moo in the Minkowski space) since it is 

strictly connected with the effective charges discussed in the previous section. Moreover we 

focus our attention on the case k II B where the maximum deviation from the logarithmic 

increase of the couplings is expected. We get: 

(16) 

with S=SI+S2 and kl=k2=O. A simple calculation gives: 

(17,a) 

where the factor proportional to B comes from the Gaussian integration over Pl. The 

techniques required for the integration of (17) can be found in [16] and it is possible to 

express 0144 in terms of a one parameter integral representation: 
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1 

e2 f x(l-x)Oc! - k~) + m2 

(044(k,B) = - eB dx ------"'-----"---
41t2 m2 + x(l-x)k2 

o 
(17,b) 

According to eq. (17,b) the (044 component of the vacuum polarization tensor does not 

vanish as k2-"70. In the following we shall recognize the origin of this drawback. For the 

moment we blindly regularize eq. (l7,b) by subtracting (044 (O,B): 

(OR44 (k,B) = (044 (k,B) -(044 (O,B) . 

With this prescription one obtains: 

1 

roR44(k'B)=~eBf dx 
41t2 

o 

In the limit of small k , eq. (19) gives: 

2 x(l-x)(~ - k2
) 

m2 + x(l-x)k2 

(J 8) 

= 

(20) 

in perfect agreement with the result derived in the previous section from the Euler-Heisenberg 

effective Lagrangian. 
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I As promised above, we now compute O)ILV using the fuJI integral representation (13). 

Once again we start from the 0)44 component with k II B, so that here k2 =k42 + k3 2 . A 

lengthy but simple algebra gives: 

x[ m
2 

+ S1
S2 (k2 - JS)+ eB ] 

s tanh(esB) s3 tanh(esB) 4 s sinh2(esB) 
(21) 

where the last contribution comes from the term y p 11 cosh2(z) which was neglected in 

deriving the asymptotic propagation function y,,(p) (see eq. (13) and (15». In the strong field 

limit eB/m2 » 1, one can verify that the only effect of the new term is to make 0)44(0,B)=O as 

required. This completely justify the naive prescription (18) together with eqs. (19) and (20). 

Moreover, it is worthy to cast 0)44(k,B) in a form which explicitly exhibits charge 

conservation. This constraint is satisfied when 0)44 is proportional to the combination 

k4k4 -044k2=k42 - k2. To show this let us arrange the factor (k42 - k32) as 

k42_k32 = 2(~2_k2)+k2. With this splitting the unwanted contribution to the vacuum 

polarization tensor takes on the form: 

x [ m2 + s1
s

2 k2+ eB ] . 
s tanh(esB) s3 tanh(esB) s sinh2(esB) 

(22) 
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The integrand shows a unique singularity for s~O of the form ds/s2 which is eliminated 

by a suitable Pauli-Villars regularization. Then, by means of techniques analogous to those 

presented in Ref. [16], the regularized integral is found to be vanishing and we are left with 

the simple expression: 

which holds for any value of B. In particular, the strong field limit tanh(esB)=1 gives both 

eqs. (19) and (20). 

So far we have examined the C044 component of the vacuum polarization tensor 

only. However, the remaining components can be worked out in a similar manner. Since no 

new idea is involved in their computation, we simply state the final result for the full tensor 

~v(k,B) without any restriction on the direction of k. By exploiting charge conservation as 

for eq. (23), cof!v(k,B) turns out to be: 

(k B) - ~ B f~ d· f~ d [2 SlS2 lr2 sinh(eslB)sinh(es2B) k 21 B] COf!V , - e sl S2 exp -sm - -- "1l - e 
41t2 S sinh(esB)" 

o 0 

[
2 S1s2 (k k -8" ],-2) 2 sinh(eslB)sinh(es2B) (k k - t. k2) 

X 3 1I f! IIv f!v" l1 +. J. f! J.v f!v.1 S tanh(esB) s smh3(esB) 

+ slsinh(2es2B)+S2sinh(2eslB) (k k k k _ 8" k2 _ 8.1 ],-2) ] 
2 . 2 1If! .1v+ .1f! IIv Ilv.1 f!V"1I 

2 s smh (esB) (24) 

where 

8~v =1 if Jl=v=0,3 and 8~v =0 otherwise, (25,a) 
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BAv =1 if jl=v=I,2 and BAv=O otherwise. (25,b) 

A careful inspection of eq. (24) shows that only the longitudinal components of the vacuum 

polarization· tensor exhibit the unexpected linear dependence on the external field strength as 

eB/m2»1. Finally, we remark that the standard perturbative series is obtained by expanding 

the hyperbolic functions in powers of eB. 

4. Concluding summary 

In this work we have discussed the the photon propagator in the presence of a 

strong and slowly varying magnetic field. In contrast with the common belief we have 

shown that the correction to the photon propagator cannot be absorbed in a logarithmically 

increasing effective coupling constant. Actually, the strong field dependence of the vacuum 

polarization tensor turns out to be dominated by non isotropic terms which gives a sizeable 

reduction of the electromagnetic couplings. In the first section of the paper, our statement 

has been supported by a simple calculation relying on the Euler-Heisenberg effective 

Lagrangian which describes the non linear effects of QED in the long wavelength limit, that 

is, for small exchanged momenta. In the strong field limit eB/m2» 1, the eigenvalues of 

dielectric permeability tensor Eij(B)have been explicitly estimated. One of them, with 

eigenvectors perpendicular to B, corresponds to a logarithmically increasing coupling 

constant. The other one, with eigenvectors parallel to B, shows an unusual linear 

dependence on the external field strength and describes the above mentioned reduction of 

the electromagnetic coupling. More general conclusions have been derived in the second 

section, where the exchanged momenta are l)ot assumed to be small. Starting from the exact 

electron propagator in a homogeneous magnetic field we have obtained a quite simple 
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integral representation for the one loop vacuum polarization tensor to all orders in the 

external field B. The limit of this representation, for eB/m2" 1, confirms the presence of the 

unexpected terms characterized by the linear dependence on external field strength. 

Moreover, as a by-product of our analysis, we have obtained a very compact approximation 

for the electron propagator in a high external field. Further comments on this approximation 

will be given in the appendix. 

In the literature, the strong field corrections to the effective fine structure constant 

CJ.eff have been discussed in connection with the anomalous electron-positron pair 

production observed in heavy-ion collision at GSI (the so called e+e- puzzle or Darmstadt 

effect). In principle, the unusual field environment induced by the colliding ions could drive 

CJ.eff up to the strong coupling regime Cl.err-l, where a new phase of QED is likely to occur. 

Such a phase would actually explain the main features of the anomalous e+e- peaks. Some 

evidence against this mechanism was provided in Ref. [4] where a negligible logarithmic 

increase of Cl.eff is predicted. Although our results differ to some extent from those of Ref. 

[4] we have to draw the same conclusions about the new QED phase, since the unexpected 

terms appearing in the vacuum polarization tensor does not describe any increase of the 

electromagnetic couplings. Obviously, the role played by time dependent background fields 

is still an open question [17]. 

Appendix 

It may be useful to give an interpretation of eq. (15) in terms of intermediate 

electronic states. The electronic Green function is SF(X,y) = G(y-x)¢>(x,y) so that in 

momentum space one gets: 

SF(p,q) = f dk g(k) ¢(p-k,q-k) (A. I) 
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Moreover in the particular gauge Al =A3=Ao=O, A2= Bz, the actual expression for the 

Fourier transform of the phase is: 

while in Minkowski space it results: 

The actual integration, indicated in eq. (A.l) yields 

This expression shows poles for pa=p~+m 2, whose position is independent of B. 

Remembering that both (1+<J3)12 and (m-y PII)l2m are projectors and that they commute 

among themselves it appears evident that the residuum of SF decomposes into the product 

of the wave functions corresponding to the lowest level of a spinor in a static and uniform 

magnetic field. So one can conclude that the limit leading to eq. (15) has the effect of 

pushing all the electronic Landau levels to infinity keeping only the the first one which is, in 

fact, independent of the magnetic field. 
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