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ABSTRACT 

We prove that the number of periodic trajectories of arbitrary period T on the flow 

tangent to periodic trajectories in phase space of the same period T, is equal to the Euler 

number of the underlying phase-space. This results holds for systems with compact phase

space and isolated periodic orbits. 



In the last few years wel'l have developed a path-integral approach to classical Hamilto

nian mechanics (CPI). This is nothing else than the path-integral version of the operatorial 

formulation of classical mechanics of Koopman and J.von Neumannl'l . One advantage of our 

formulation is that it brings to light the well-known geometryl'l of classical mechanics, and 

it does so using the modern language of BRS and Supersymmetry invariances on the same 

lines of modern topological field theories 1'11'1. Koopman and von Neumann 1'1 put forward an 

operatorial approach to classical mechanics (CM) in 1931 in order to better compare it with 

quantum mechanics (QM). We will review now this formulationl'l for the reader not familiar 

with it. Let us start from Hamilton's equations: 

(1) 

where 4>a == (ql, ... ,qn,pI,· · ·,Pn), a = 1, · ··,2n, are coordinate on a 2n-dimensional 

phase-space M2n, H is the Hamiltonian and wab = _woo. is the standard symplectic 

matrix. Any probability density function u( 4>., t) on phase space has a time-evolution of 

the form 

(2) 

where t = -8.Hwab8b is the well· known Liouville operator which is the central element of 

the operatorial approach to classical mechanics"I. Equation (2) can be formally solved as 

(3) 

This is basically the operatorial version of Classical Hamiltonian mechanics. As the reader 

may guess , as there is an operatorial approach there must exist also a corresponding path

integral formulation like it happens in quantm mechanics. The simplest idea one can envision 

is to write a classical generating functional of the form: 

(4) 

where 4>~, are the classical solutions of Hamilton's equations. The delta· functional is forcing 

the system to lie on its classical trajectories and it can be rewritten as: 

(5) 

Fourier transforming the delta function on the RHS of (5). using an auxiliary field A. , and 
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exponentiating the determinant via anticommuting variables c" ,c"' we can re-write (4) as: 

(6) 

with the Lagrangian * 

(7) 

The associated Hamilton function is 

(8) 

Uusing standard techniquesl'l we can easily compute, from the path-integral (6), the equal

time (anti-) commutators of rP",>'., c· and c" and ,we find that 

(9) 

All other commutators vanish t. In particular, rP" and rPb commute for all values of the 

indices a and b. In terms of the q's and p's (which were combined into rP") this means 

< [q' ,Pi J) = 0 for all i and j. This shows very clearly that we are doing classical mechanics 

and not quantum mechanics. The operator algebra (9) can be realized by differential 

operators 

>." = 
. 8 _ 

-t 8¢" , Ca = 
8 

8e" 
(10) 

and multiplicative operators rP" and c" acting on functions 'U( rPa , c" , t) . Inserting the 

above operators into 7-l we obtain: 

-i:i . "b8 H8 . 8 ac" 8 H b 
f.=-tW b "+'8e"w Vc b c (11) 

It is clear from (11) that the Grassmannian part of 7-l gives zero if applied on distribution 

'U that do not contain anticommuting variables, while the bosonic part is (-i) times the 

Liouvillian: ill(c=o) = -ii. 

* For more details, expecially regarding the exira currents which we add in (6), see ref. [1] 
t Note that these are really commutators ['J and not Poisson brackets. 
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This confirms that our path- integral is the right one to reproduce the operatorial ap

proach of Koopman and von Neumann or, stated in a another way, we can say that the 

measure in the path-integral that produces the Liouville operator is just a Dirac delta on the 

classical paths. We did, somehow, the analog of what Feynman did for the Schroedinger oper

ator: he asked himself which was the weight in a path-integral that produces the Schroedinger 

kernel, and he found that it was e<l:p i Sj for the Liouvillian, instead, it is just a Dirac delta. 

The reader at this point may wonder why, to the get the Liouvillan, we had to cut off 

the Grassmannian part in (11). To understand that we have to explain which is the meaning 

of the full if. of eqn.(l1). This is explained in detail in ref.[I] and we refer the reader to that 

paper for details . There it is shown that the Grassmannian variables cB can be interpreted 

as "forms" , i.e., cB = d<l>B, in the cotangent space to phase space, w bile the cB are a basis in 

the tangent space to phase-space (i.e., they are a basis in the vector-field-space) . The whole 

Cartan calculus on phase-space (exterior derivative, inner products, etc) has been translated 

in ref.[I]' into a calculus based on these Grassmannian variables. It is then easy to prove ll] 

that if. is nothing else than the Lie-derivative l(dH)1 of the Hamiltonian flow;, precisely: 

1£ = -il(dH)' 

This Lie-derivative generates the time-evolution not only of distributions in phase-space 

e(<I>a) but also of general distributions (f(<I>B,~) which are forms in phase-space. When we 

restrict this Lie-derivative to act only on e( <l>B), then it becomes just the Liouvillian. 

In this paper we will exploit those features of this formulation of classical mechanics 

which are more similar to those of the so called Topological Field Theoriesl·](TFT). The 

TFT are field theories whose only non-zero observables are topological invariants of the 

space of fields on which they are defined. The main feature of these theories is that they 

are invariant under deformation of some metric defined in field space . This is reflected in 

the fact that the Hamiltonian is a pure BRS variation, and the measure in the path-integral 

is BRS-invariant . The BRS we talk about is the BRS associated to the local symmetry of 

deformation of the metric we mentioned above. We will not enter into more details of these 

theories but refer the reader to ref.[4]. Also our formulation of CM has the feature that the 

~ Here we have used the notation i
'] (dH)1 == ",ababHaa for the Hamiltonian vector field generated by the 

gradient of H, and /, denotes the Lie-derivative along some vector field v . 
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1f. is a pure BRS variation, in fact: 

ii = -irq, [Q,h]] (12) 

where Q = ic" Aa is a BRS charge, Q = ic..wab Ab an anti-BRS charge and h = (dH)1 the 

Hamiltonian vector field. The commutators we use are those defined in (9). Besides this 

feature anyhow we would need, to make our path-integral a TFT, that the measure in the 

path-integral (6) is BRS invariant. This is so if we choose, for example * periodic boundary 

conditions (pbc) i.e.: 

(13) 

where T is an interval of time to which we restrict the path-integral (6). So the path-integral 

which defines our theory is 

T 

Z~~[jl = J V</>aVAaVCaVCa e.,p i J dt Z + i</> (14) 

piJc 0 

Now, with these b.c., our theory is truly similar to a TFT. Of course this is not generic 

classical mechanics which is defined by (6) and which, differently from any TFT, has 

also observables which are not topological invariants of the theory. This is guaranteed 

by the measure not being BRS invariant. The theory instead defined by (14) has, as 

observables, only topological invariants of the phase-space manifold and we called it in the 

title "topological classical mechanics"(TCM). To learn more about this TCM, we refer the 

reader to ref.[S] where the analogy between TFT and TCM have been worked out in more 

details . In particular in ref.[S] we show what is the analog for TCM of the deformation of 

the metric in TFT, and why all observables from (14) are topological invariants. We do not 

want anyhow to repeat all that material here. 

* There are other choices of BRS invariant houndary conditions, for example: 

,pa(o) = kl ,pa(T) = k, , Co(O) = carT) = 0 

with k" k, constants. Onether choice is 
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The first topological invariant which we can calculate from (14) is Z~~[O] i.e., the 

generating functional with the current put to zero, i. e. the partition function for TCM. This 

was already done in ref.[5] but we will repeat it here with more details because it is the heart 

of the present paper. It is easy to see ll
,5) that Z~.'::'[O] can be written as 

T 

Z~~[o] = J TJ</n) •• TJc·TJc" ezp i J dt E 
pbc 0 

= J dln</>o dlnco K(<p3,cg,TI<p3,cg, O) 

where <po,co are the initial and final points (coincident) and 

(15) 

is the transition-probability between an initial configuration <Pi, Ci and a final one <Pf. cf' In 

(16) </>~l and G~l devote classical solutions of the equations of motion derivable from £ of 

(7), that are 

;po - w.b8bH = ° 
[8t S: - w·c8c8bH]cb = ° (17) 

Note that the solution Gel functionally depends on the path <Pel(t), as it clear in solving 

the second of equations (17). Also note ll
] that the variables c· have the same equation of 

motion as the Jacobi fields, S<p(t), which are defined as being the first variation around the 

classical trajectories. In fact, doing the first variation of the first of eqs. (17), we get 

(18) 

which IS tbe same equation as that of the c·. So we can identify 

c·( t) ~ S<p"( t) and we can say that the motion of the c· is the tangent flow to the classical 

motion of the <Pel(t). The reader may be puzzled that in eq. (16) there are two Dirac deltas 

while in eq. (4) we only have one over the commuting variables. This puzzle is easily solved 

if one notes that in (15), once we integrate over co, only the Dirac delta over <P is left as 

in (4). Another puzzle which may worry the reader is in explaing how the Dirac delta over 

the c· managed to appear in (16). Let us look at the c", c. piece in (7) . It is a first order 

fermionic action very similar to the usual Dirac action. It is well· known 17) that for action of 

this type the quantum mechanical transition amplitude is given by a S-function containing 
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a solution of the classical equation of motion. This is due to the fact that for any Lagrangian 

of the form ;j,D"", where D is some first order differential operator, the integral over ;j, gives 

rise to a a-function a[D",,]. Thus only ""-paths with D"" =-= O,i.e., solutions of the equation 

of motion, contribute to the path-integral. This is what gives rise to the second Dirac delta 

in (16). A third puzzle for the reader may arise in explaining how the determinant which 

appeared in (5) magically disappeared in (16). The reason is very simple: in doing the 

Aa integration in the first line of (15), we obtained the Dirac delta of the equation of motion 

for q,B that is the Dirac delta appearing on the RHS of eq. (5) without determinant. The 

same thing we got for the variable ca by integrating away the CB ' In going then from the 

Dirac deltas of the eqs. of motion to the Dirac deltas of the solutions, we had to divide by 

the determinant for the bosonic variable, and multiply it for the anticommuting ones. These 

two determinants are equal and so they cancel each other producing eq. (16). 

Having now clarified the interpretation of the CB( t) as describing the tangent flow to 

the classi~al motion of the q,~l(t), let us read off the meaning of the Z~~[O] of eq. (15) with 

the help of eq. (16). Basically, being the K(-I') a product of Dirac deltas, Z~~[O] counts how 

many periodic trajectories of period T there are in cB(t),i.e. in the tangent flow; trajectories 

anyhow that are tangent not to generic trajectories in q,~l(t) but only to those periodic with 

the same period T. So, to summarize, we can say that Z~~[O] counts the number of periodic 

trajectories of period T in the flow tangent to the periodic trajectories in phase-space of the 

same period T. Operatively what one does is the following: first one builds all periodic 

trajectories of period T in phase-space, q,B( t), then constructs all tangent trajectories to 

these and select only those which are periodic of the same period T. This number is Z~~[O]. 

Let us now proceed to calculate Z~~[O] . We shall first compute Z~~[O] in the limit 

T --> 0 and we shall later show that Z~~[O] does not depend on T. The proof which we 

present here is the same we did in ref.[5]. We do it again here for completness. 

expand the solutions of eq. (17) for small T: 

q,~I(T) = q,o + hB(q,o)T + O(T2) 

C:l = cO + 8bhB(q,O)~T + O(T2) 

Let us first 

(19) 

where q,o, cO are the initial conditions and hB = wab8bH the components of the Hamiltonian 
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vector field . Inserting the expansion (19) into the K('I') of eq.(15) , we get: 

K(cP(j,co,TlcPo,cQ,O) = .s(2n)W(cPo)T) .s(2n)(8bh"(c/>o)cbT) 

= .s(2n)(h"(c/>o)) .s(2n)(8bh"(c/>o)~) 

= .s(2n)(h"(c/>o)) det[8bh"(cPo)] .s(2")(c(j) 

(20) 

One immediately sees that, for closed paths and short times T, the Kernel K( ·1· ) receives 

contributions only from the points where the vector field h" == W"b8bH vanishes,i.e., the 

points in which 8H = 0, as det w"b f 0, These are what are called, in Morse theory~8]the 

critical points of H . Let us indicate them with cP(p) and let us suppose for simplicity that 

H has only isolated and non-degenerate critical points. We can then rewrite (20) as: 

where the determinant in the denominator has appeared in transforming the Dirac delta 

.s(2")(h"(cPo)) appearing in (20) into the Dirac delta .s(2n)(cP(j - cP(p») appearing in (21). 

Inserting (21) in (15) and performing the integrations, we obtain 

(22) 

where ip denotes the index!8] ofthe critical point (p), i.e. , the number of negative eigenvalues 

of the Hessian of Hat (p) (in local coordinates this Hessian has components 8"8bH). The 

result (22) has a well-known interpretation: it is the Morse theory representation of the 

Euler number X of the phase-space manifold on which the "Morse function" H is defined. 

We will not expand on these technical details here but refer the reader to ref.[8] and [9] . 

Basically the Morse theory says that , whatever is the function defined on a manifold, the 

number ~(p)(_1)ip, built out of the features of its critical points, is independent of the 

function and equals the Euler number X of the manifold. Thus we have found that 

(23) 

Of course the Euler number is defined for compact manifolds so we have to require that our 

phase-space is compact. 
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IT we remember that we had given a physical interpretation before to Z~!;;, then what 

eq. (23) tell is that: the number of periodic trajectories of arbitrary period T on the flow 

tangent to periodic trajectories in phase-space of the same period T, is equal to the Euler 

number of the underlying phase-space. 

Note that the result is independent of the period T provided that the period of the 

trajectories in the tangent flow and in the base space are the same. It is also somehow 

independent of the Hamiltonian we use, provided that this Hamiltonian has separate and 

non-degenerate critical points. We will expand on this point later on. Now we would like to 

return to the proof we presented because the reader may be puzzled by our approximation of 

taking T -> O. We will present a discussion of this point I') which is a little more sofisticated 

mathematically of the analog discussion of the "Witten index" 110). The reason being that the 

supersymmetry present in our formulation of Classical mechanics is slightly different than 

the one present in supersymmetric quantum mechanics l" ), and besides there are other subtle 

points of difference that the reader expert in this stuff should be able to notice. For the 

reader who may not be able to follow the next steps, we advise him to skip them and read 

only the last part of the paper. 

The argument we use was presented in ref.[9J and [5J. We mentioned before that 

Z~!;;[OJ can be considered like the partition function of our system. Actually it is some

thing like the "super-partition" function l" ) due to the pbc for the Grassmannian variables. 

We can in fact write 

(24) 

here the trace "Tr" is performed over a complete set of functions (or differential forms) 

'ifp( q,", c") or equivalentlyll( a set of antisymmetric tensor fields 'if"l .... "P( q,) p = 1 ... 2n which 

are the basis of an assigned Hilbert space. The number F which enters into (24) counts 

the degree of the of the respective differential form, hence (-jF = +1( -1) for p even (odd). 

Basically the factor (-jF enters in (24) because, due to the presence of the anticommuting 

variables, the basis functions 'if do not necessarily commute. Next, to evaluate (24), we 

need to introduce a scalar product for forms. This is done by choosing a metric g"b on 

phase-space. To evaluate the trace we need a basis and we decide to use the eigenfunctions 

of the Laplacian associated to this metric 6 g == d5 + 5d. Here d( 5) denotes the exterior 
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(co )derivative. Let {7f>lp)} denote a complete set of normalized eigenfunctions, then: 

2n 

Tr[( - t e-iTii] = ~) -I)P L < 7f>~P)le-Tlhl7f>~p) > (25) 
p=o 

where .6.g7f>~p) = A~P)7f>~P) ("i" labels the various eigenfunctions with the same degrees "(p)" 

as differential forms) and where the inner product < ·1· > refers to gab and lh is the 

Lie-derivative of the hamiltonian flow. The crucial point [10) is that the trace (25) receives 

contributions only from the 7f> with A = O. Infact for A =I 0 we can always build a 

"super-multiplet" (7f>,7f» of eigenfunctions with the same A but a different (-It .They 

are defined this way: 

(26) 

Since d + 5 commutes with lh we have that 

< 7f>lezp( -Tlh)l7f> >=< ~Iezp( -Tlhl~ > 

and therefore all contributions to (25) with A =I 0 cancel pairwise because 7f> and 7f> have 

the form number "p" different by one unit . Thus the RHS of (25) reduce to the sum over 

the A = 0 eigenfunctions which are the harmonic forms. This is equivalent [') to the trace 

in the various de Rham cohomolgy groups of the phase space M2n with values in the real 

numbers: HP(M2n,~): 

2n 

Z~: = L( -1)PTrHP[e-T1h
] (27) 

p=o 

The RHS of eq. (27) has a well-known interpretation in terms of the Lfschetz coincidence 

theorem['), namely the RHS of (27) is the Lefschetz number[') LeJ[ezp(-Tl,,)] of the map

ping induced by ezp( -Tlh) on phase-space. The general Lefschetz theorem[') ,for an ar

bitrary map "I" of some manifold into itself, expresses alternating sums like (27) in terms 

of local data of the fixed points of the mapping itself. It can be shown that Lef[Z] is 

always integer and that it does not depend on the Riemannian metric chosen. Furthermore 

LeJ[I] is a homotopic invariant of I. This implies that, if I is homotopic to the identity 
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map, i.e. I ~ id , the traces of HP are simply given by the Betti numbers('J bl' which are 

the dimension of HP; 

(28) 

In our case I == ezp( -Tlh ) is generated by the continuos time evolution and so I is in fact 

homotopic to the identity (with T playing the role of the homotopy parameter). Therefore 

eq. (27) becomes 

2n 

Z~:[OJ = ~) -1)Pbl' = X (29) 
p=o 

In the last step we have used the standard definition of Euler number('J. The result (29) co-

incides with the result (23) . Since I ~ id for any value of T, the relation above shows that 

Z~: does not depend on T, that is what we wanted to prove. 

As we mentioned before our classical path-integral has many features in common with 

the partition function (with pbc) of supersymmetric quantum mechanics on a curved man

ifold (lOJ. In fact both path-integrals evaluate the "Witten index". There are anyhow also 

crucial differences. In supersymmetric quantum mechanics the underlying manifold is a con

figuration space,i.e., to be able to "quantize" a particle in this space we need a Riemannian 

structure in order to write down a Schrodinger equation or a quadratic term !gab~a~b in 

the action. On the other hand, from the classical mechanics point of view, M2n is a phase

space, i.e., we have to require a symplectic structure in order to write down Hamilton's 

equation of motion. At first sight it seems surprising that in evaluating (15) , it does not 

matter whether we use the classical or the quantum mechanical propagation kernel K(·I·). 

In both cases KCI·) is given by an integral over the space of loops oflenght T, with different 

actions, however. Since for the particular observable that is Z~: ,the value of T may be 

chosen freely, we can take T -> 0, in which case the loops can effectively be identified 

with the points of M2n. In this situation the form of the action in loop-space does not 

matter anymore and, in particular, quantum effects are irrelevant. This is a tipical feature 

of TFT ('J. We prefer anyhow the representation in terms of classical mechanics first of all 

because in that manner we are handling a physical system well known in the literature (the 

Lie-derivative of the classical Hamiltonian flow), second because the supersymmetry has a 

clear geometrical interpretation (llJ and third because, like in the case of this paper, it allows 

to give a physical meaning to the Witten Index, being in this case the number of trajectories 

we studied above. 
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The curious reader may now try to apply it to simple systems and see if it works *. Let 

us t ake the following two examples: 

1) Phase-space as the unit sphere: In polar coordinates 8, q" let us take the canonical , 
coordinates to be q = q, and p = cosB. With Hamiltonian H = 1- the orbits are: 

q = qo + poT,p = pO = constant 

Thus periodic orbit (q changing by 21m) require 

2,m bi 
Po = T ' qo ar trary 

These fill a finite number (2 int[;:])of latitude circles, while our argument would give X = 2. 

2) Phase-space as the torus : Let us take as coordinates q (0,211") and p (-1,1) and 

H = (~)sin(¥) . The motion is continuos and a similar calculation gives for the periodic 

orbit: 

1I"pO 211"n . 
cos( 2) = T' qO arbitrary 

Again there are 2 int[~J such tori, but our argument would give X = o. 

Why our argument so clearly fails? The reason is that for all integrable systems (like the 

two above) (almost) all periodic orbits are non-isolated while in the proof of our argument 

(see eqs. (21) (22» the condition was that the critical points (and so the periodic orbits) 

be isolated. Systems which present these features are chaotic systems which have periodic 

orbits that are isolated (marginally unstable) . Then, to explicitly test our argument, we 

need to find a solvable chaotic system and this may be hard to find. 
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