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quantum versions of the highest weight DS gauge transformations. 
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1. The quantum DS reduction of .;/(2) Verma modules to Virasoro Verma modules was considered 
by two of the authors in [lJ. The main tool in that work was a kind of quantum gauge transfor­
mation which translates, in an explicit fashion, the singular vectors of ;1(2) into Virasoro singular 
vectors. This letter is a generalization of the method of [IJ to the case of .;/(3). 

There are two different reductions of .;/(3) - to the W3 algebra [2J of Zamolodchikov (Z) or 

the W~2) algebra [3J of Polyakov-Bershadsky (PB), best described in the general scheme of de 
Boer-Tjin [4 J. After setting the notation and emphasising the connection between the classical 
highest weight DS gauge [5J, [6J and the work [4J we proceed to define the relevant quantum gauge 
transformations. With their help we illustrate on a few examples how the reduction of the singular 
vectors of Verma modules is accomplished. In particular we recover the subclass of W3 singular 
vectors obtained in [7J and its counterpart for Verma modules of W~2). The details are left for a 
more systematic work in preparation. For general information we refer to the reviews [8J, [9J. 

2. Here we set some notation and recall a few facts about the affine Lie algebra A~') (see [10J,[11 J). 
The positive roots of A2 are the simple ones al> a2 and the highest root a3 == a, + a,. The 

Cartan - Killing form on A2 is (X, Y) '" tr(XY). Denote by (e,j) ._, 2 '" (a" aj) the Cart an 
I,J- , 

matrix and by (e,j) - its inverse. The Cart an-Weyl basis consists of eO, f", a '" 1,2,3, and 
h' '" [e', I'J, i '" 1,2, generating the subalgebras n+ ,n_ and h of A2 '" n+ (j) h (j) n_ respectively. 

The algebra A~') with the derivation d added admits the decomposition N+ (j) H (j) N_ where 
H is the Cartan subalgebra consisting of d, h and the central element, which will be assumed to 
be a fixed complex number k, different from -3. The sub algebras N+ and N_ are generated by 
{e6, e8, In and {/J, IJ, e:,} respectively. A A~') Verma module is built by the action of L on 
a highest weight state V~, annihilated by the elements of N+. The projection of the weight>. on 
h* is denoted by X; (X, a,) + (X, a2) + (>., ao) = k. Denote M. '" (>. + p, a.), i '" 1,2,3, and 
v-' '" k + 3; (p, aj) '" 1, j '" 0,1,2. 

If some of the conditions 

(1) 

i", 1,2,3, hold, then the Verma module of highest weight>. is reducible. The highest weights of the 
embedded modules are obtained by the shifted action of the affine Weyl group on >. (to be denoted 
by w" . >.) . In particular the simplest series of singular vectors correspond to the simple roots 
al ,a2 ,ao (Le., (>. + p, a) '" m, ,m2 , or, l/v - M3 , respectively, are positive integers). Explicitly 
the corresponding singular vectors are given by 

(2) 

In general decomposing the relevant element of the affine Weyl group into simple rellections 
wo, W" W2, (Wj == w"; ,j '" 0,1,2 ), one can write down expressions for the singular vectors [l1J. 
As an illustration consider the weights for which M, '" m - ~, m E IN. Then there is a singular 
vector corresponding to the root a '" ao + a3 + al 

(3) 

The above formula is a monomial of the generators raised, in general, to complex powers acting 
on V~. Nevertheless these monomials can be rewritten as ordinary (integer power) polynomials of 
the elements of the subalgebra N _. Note that formally the first (counted from the right), the first 
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two, the firs t three, etc., factors of these monomials also give singular vectors , but only formally, 
since the corresponding operators are not elements of the universal enveloping algebra. 

For the elements of the chiral algebras we will use both the notation in terms of modes An and 
currents A(z) == LnE~ An z-n-~A. We assume that all Kac-Moody currents X(z) have ilx = l. 
The (anti)commutation relations of the modes are equivalent to the singular part of the operator 
product expansion (OPE). The normal product of two fields (AB)(z) will be defined as the zero 
order term in the expansion of A and B. We have used the computer program of [12] for the more 
tedious OPE computations. 

3. We briefly recall the classical situation [5J, [6] . One considers the matrix operator ",oz + A(z) 
with A(z) = J"(z) t'f- + e"(z) t~ + G;i hi(z) t6, where t:±, a = 1,2,3 and tb, i == 1,2 is the Cartan­
Weyl basis of 51(3) and summation over repeated indices is assumed. The functions e"(z), J"(z), 
and hi( z ) together with the constant", are coordinates on the dual ;/(3)* of ;/(3) and they close a 
classical (Poisson bracket) KM algebra. The first step in the Hamiltonian reduction of the classical 
KM algebra is to impose a set of first class constraints on the e's, corresponding to a subalgebra 
nO of the nilpotent algebra n+. The second step is to factor out the gauge group generated by 
these constraints. The result is a new phase space with coordinates described by gauge invariant 
functions on the constrained space and Poisson bracket inherited from that on ;1(3)* . 

The action of the group is given by the coadjoint representation Ag(z) = g- l(Z) A(z) g(z) + 
"'g-'(z) og(z) , g(z) = 1 + L b"(z) t'i-, where the sum is over t'i- E nO. The factorisation is done 
by fixing the gauge, i.e., performing a gauge fixing transformation with parameters b"(z) being 
proper functions of the unconstrained currents and their derivatives. 

Let us recall the two ways of reducing ;/(3)*, corresponding to the two inequivalent embeddings 
of sl(2) into 51(3). In the case of the principal embedding the constraints are 

e3 (z) = o. (4) 

There are three gauge fixing conditions and hence two surviving gauge invariant functions. This 
corresponds to the splitting of the adjoint representation of 51(3) into a spin 1 and a spin 2 
representation of 51(2). Choosing the highest weight gauge one has hi -> 0, JI - f' -> 0, f' + /' -, 
Ul, f3 -> U, , with the gauge invariant functions Ui = Ui(f", hi) being 

(5) 

thus providing the generating functions of the classical analogue of the Zamolodchikov W3 algebra 
(the (Z) case for short) . The gauge fixing transformation is 

3 

g(z) == 1 + ~ b"(z)t'i- ' with bi(z) = Gii hi(z) , i = 1,2 , (6) 
a=1 

and b3 (z) is a function of r, hi, ohi, i = 1,2, which we will not specify. 
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The other embedding gives the classical analogue of the wi2
) algebra (the (PB) case). The 

constraints are 
(7) 

Applying the highest weight gauge transformation 

(8) 

one gets e' --+ 0, h3 --+ 0, and 

h1 _ h2 --+ 11~ = h' _ h2 , 

_0 .. + - 11 
~ ~1/2 - , 

(9) 

The four gauge invariant polynomials 11; (corresponding to the four 81(2) representations - of spin 

0, ~, t. and 1, in the adjoint representation of 81(3)) generate the classical (Poisson) algebra wi2
). 

4. In the BRST formalism one needs a pair of fermionic ghost fields ba , ca for eaclt constraint. 
They have OPEs ba(z) cb(w) == :-::! + ... and db. + de. == 1. We cltoose db. = 0 and de. = 1. 

First we will consider the reduction leading to the W3 algebra of Zamolodchikov (Z) [2] asso­
ciated to the principal embedding. The BRST charge is 

3 

Q = 2:(e" Ca )_l - W(c1 c2))_, - C6 - c5· (10) 
a::;;; 1 

Following the general sclteme of [13], [4] let us introduce the "hatted" currents katz) == 
Xa(z) + f$" (bll c",)(z) , where the summation indices a, (3 correspond to the constrained generators 
ea ,a = 1,2,3. Explicitly 

P = 13
, 

,,1 = e1 + (b3 c2), ,,2 = e2 _ (b3 c1) , eJ = e3 
, (11) 

1.1 = hI + 2W c1 ) _ (b2c2) + (b'c3) , 

The OPEs among the fields j, I. are the same as among the corresponding unbatted ones with the 
only difference that k is shifted to k + 3. 

The reduced currents T(z) , W(z), commuting with Q can be obtained as a "quantization" of 
the gauge invariant differential polynomials (5). Namely, substitute all generators in (5) by their 
hatted counterparts (11), normal order the products (Le., replace hi (z)/1(z) by (hi jI)(z) , etc.), 
and identify", = ~ - 1 = k + 2. In modes this gives 

1 -1 -2 1 (ff) -I -2 C;i -; - . (1 ) - 3 
- Ln == In+! + In+1 + - Ln == 1 .. +1 + In+1 + -2 (h hJ)n + - - 1 (8h )n, 
V V V 

-3 1 (1 ) -I -2 -; -I -; -2 (If) 
aw W n =ln+2+ 2 -;;-1 (81 -81 )n+1+C2;(h I )n+1-Cu(h I )n+l+ aw W .. , 

(12) 

1 (1 ) ( _. -I _. - 2 ) 1 (1 )2 2 -, 2 - 2 + - - - 1 Cu (h' 8h ) - C2; (h' 8h) + - - - 1 (8 h - 8 h )n. 
2 V .. 6 V 
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The standard normalization [14] of the W current is recovered choosing aw = _V- 3 /
2 ';5c'41 22 for 

the overall constant. 
Mter appropriate identifications T(rf) and W(ff) reproduce the free field realization of [14]. 

Both (12) and their (ff) parts have the commutation relations of the Zamolodchikov W3 algebra 
with conformal anomaly 

(13) 

The expressions for the reduced currents were computed in [4] by directly solving the coho· 
mological "tic·tac·toe" set of equations and they coincide (up to some numerical misprints) with 
the so defined (12). 

The BRST operator implementing the constraints (7) is 

(14) 

The hatted quantities now read 

(15) 

The reduced quantum generators computed in [4] are again recovered according to the rules of 
quantisation of the classical expressions (9), this time identifying the parameter K. with K.(PB) == 
!; - 2 = k + 1. Using for simplicity in the expansions of the fields the dimensions inherited from 
the KM algebra (Le, 6 c - = 2 = 26 c+ , while the standard half· integer modes are recovered by a 
simple redefinjtion) one has 

C- /·2 (O'h0 2
) (8 0

') 
n = n+l + e n + e '" 

One readily cllecks that (16) generate the W~2) algebra with conformal anomaly 

6 
c" = 25 - - - 24 v . 

v 

(16) 

(17) 

5. We will consider modules f!A that are tensor products of a A~' ) Verma module with highest 
weight vector VA and ghost Fock module. To simplify notation we will avoid indicating explicitly 
tensor products, thus assuming that VA is annihilated by the positive modes of all bi(z) and the 

nonnegative modes of ci(z). Clearly any singular vector in the module of A~l) built on VA is 
a singular vector in f!A and furthermore we can use equivalently the hatted counterparts of the 
three generating elements of N_ to build these vectors, since (b i cj)o VA = o. The BRST charge Q 
annihilates all singular vectors. It is immediate that this is also true for the positive modes of the 
reduced generators (12) or (16), as well as for the zero mode Go. Let now v,v.A be some singular 
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vector of weight W· A (including also the vacuum state). For the zero modes in the (Z) case we 
have 

where 
1 '" = - - 1, 
v 

(3) - - -
awh~ = C1i C2j(ClI - Cu) (A - "'p,eti) (>. - "'p,etj) (A,etl), 

(18) 

(19) 

and they are invariant under the shifted action on A of the finite group generated by WOWI Wo and 
WOW2WO. This is equivalent to the well known invariance under a ",-shifted action of the finite Weyl 

group on the projected weights, i.e., if>.' - "'P = w(X - "'p) then h<;:) = h~), p = 2,3 and W is a 
word made of WI and W2 . 

In the (PB) case we have 

where 

h(PO) - .". (X X _ (PB ) ) ). - 2' K. p, ",(PB) = .!:. _ 2. 
v 

(20) 

(21) 

Now (21) are invariant under the shifted action of Wo on>. or equivalently - under a t",(PB) -shifted 

action on the projected weights -X of the reflection in the a3 direction, i.e., if -X' - t ",(PO) P = 

W"',(-X - t",(PB) p), then h'{B) = h'{,B) and q~ = q~,. In particular we can identify V~ with the 

highest weight state Ih~2) ,h~3)), or Iq~ ,h~PR)), of a W3, or a W~2) Verma module. 

6. Now we introduce quantum analogues of the highest weight gauge fixing transformations, 
which will be used as a tool to transform KM singular vectors into W algebra ones. Starting 
with the two simplest vectors in (2), corresponding to the simple roots ail a 2 of A2 , it is clear 
that it is sufficient to have projections of the "full" quantum gauge transformation along "simple 
root directions". Thus in the (Z) case the two (projected) transformations are a straighforward 

generalization of the All) case [1], i.e., 

i = 1,2. (22) 

where 

n(i)(u) = : expipi(u):, l
u 

I " j , 
ipi(U) = Cij 0 du h(_)( -u), (23) 

the subscript (- ) denotes the holomorphic part of the field and the : : indicate that in the expansion 
of the exponent the generators of the gauge transformation u( = eb ) should come to the right of 
the modes of ip, i.e., more explicitly, 

n(i)(u) = 1 + C · .;"j u + .!:. ((C hi )2 - C · hi ) u2 + ... I] - 1 2 IJ - 1 I, -2 

(24) 
k- l 

= Ln~iuk, where k ", ( i) - ~ (_ I)k+I- I ", (i ) C . . h' j .,,(i ) - 1 
''' - k - L..J '''' - I IJ - k+l' J~o - . 

k ; O 1; 0 
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In the (PB) case the transformation in the 01 direction is the identity (obvious since G+(z) = 

j1(z)) while in the 02 direction it is 

'RP) = ' exp el e2 , = ~ ~ (el )k(e2 )k 
o -lOC-~k! -1 o · (25) 

k=O 

The quantum transformations have the following properties: 

n(;) keeps all KM singular vectors invariant and maps the states vi ; ) = (/3)' VA, into the 
kernel of the BRST operator. n(;) intertwines KM and W algebra generators. 

More precisely the last property in the (Z) case takes the form (no summation in i) 

-nU) (h3 + 2 1 \ ,; TT(;) 1 ~ ((_; UT 1 (' , 1 (~" 1)\ (aL) IV . a - - } JO "t = - L....., e aw lin' -p - - 1. T - ""vi i -} -p 
v v 2 V 

p=l 

(26) 

where £1 = 1, £2 = -1. Its proof is rather lengthy, though straighforward, and will be given in 
the detailed account of this work. The idea of the proof is roughly the same as in [1] - moving 
the gauge generator u( = eb) to the right produces the free field part (ff) of the reduced generators 
while the remaining parts arise when we move to the right the "gauge parameters" (the modes of 
n in the expansion in u). 

In the (PB) case the intertwining property is 

(27) 

proved by straightforward computation. 
Comparing (6) and (8) with (24) and (25) respectively, one sees that the latter can be viewed as 

some "quantizations" ofthe projections of the classical gauge transformations (taken in an arbitrary 
representation). As in [1] one can consider alternatively the operators (23) with u identified with 
an auxiliary 51(3) generator t~ instead of eo' 
7. Having the quantum gauge transformations now we can describe how the KM singular vectors 
get transformed into W algebra ones. Again the arguments are generalization of the ones in [1]. 

Let us start with the case when the singular vector corresponds to a singl" simple root 01 or 
02, as in the first equality in (2). In the (PB) case we have 

or 

the first being a trivial identity while the second is obtained by applying repeatedly the relation 
(27) and using that 'RP) leaves the KM singular vectors invariant. (Recall that our moding of G± 
(16) differs from the standard one.) Thus we can identify the KM singular vector VWo ,'A, i = 1, or 

i = 2, with a singular vector (given explicitly by the r.h. sides of (28)) in the W~2) Ve~ma module. 
In the (Z) case iterating the intertwining relation (26) and using the properties of'RY) one 

gets 

if M; == (A + P, OJ) E IN , (29) 
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with 

where the second sum is over all {M, > Pk > ... > PI > O} and we have denoted 

d') -t,t-p -
rr~:i(t - a)((>. + p,o,) + a - t) 

v(t + (>. + p,oo)) 

(30) 

(31) 

The W~ singular vectors in the r.h.s. of (29) were obtained in [1] using the method of "fusion" [15]. 
Iterating (26) for any t = 1,2, ... , M, , one actually recovers also the basis elements of the matrix 

system equivalent to O~,) V>. . Note that in our approach the proof that O~,) V>. is annihilated by 
the positive modes of the W3 currents is stralghtforward. 

A remark is in order. In iterating (26) one can encounter examples when the I.h.s. vanishes at 
some step. For an illustration consider the case M' = M2 = 1, then one has to use (26) once, i.e., 
t = O. Now if v = 1 one checks using the explicit expression (12) for W_ 1 that W _ I VA = 0 and 
furthermore both sides of (26) in this case vauish due to numerical coefficients, thus not producing 
a nontrivial singular vector of W3 • This phenomenon has to do with the existence of exceptional 
W3 modules defined by indecomposable representations of {Lo, Wo} (see e.g. [16]) and we leave 
their analysis within our approach to a future investigation. 

Next let us consider the example when both Ml and M, are positive integers. In this case also 
composite singular vectors exist, i.e., we have that (lJ )Ml +M, (16 )M, v>. , (Is ),'vl1 + M, (lJ )Ml v>. 
and (16 )Ml (lJ )Ml +M, (lS)M, v>. together with the highest weight vector and the other two singular 
vectors discussed above form a hexagon of singular vectors. The reduction of such composite vectors 
proceeds by reduction of the separate factors. This is straightforward because (counting from the 
right) the first, the first two, etc. factors also produce singular vectors. For example in the (Z) 
case 

(32) 

while in the (PB) case one gets 

(33) 

i.e., again equalities of singular vectors. 
The last series in (2), i.e., the vectors originating from the affine (simple) root 00 do not 

survive under reduction. Indeed starting with the (PB) case one can express e~, = 1 + {Q(PB), bg} 
and using that Q(PB) annihilates the vacuum state we have 

(34) 

i.e., up to terms in the image of Q(PB) we recover the vacuum highest weight state which is in 
agreement with the invariance of (21). (Note that since the modes Hn, Tn,G~ , n > 0, G;:;. ,m ;::: 0, 
anuihilate the KM singular vectors V>. , Vw o'>" they also annihilate the Q - exact term in the r.h.s. 
of(34).) The result is even more trivial in the (Z) case, since e~, = {Q, bg}, and hence the whole 
singular vector is Q exact. 
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At the end we turn to the reduction of the general singular vectors (see (1)). Postponing the 
detailed analysis here we ouly illustrate the method on the example (3), where M, = m- ~ ,m E IN . 

The (PB) case is in complete analogy with the reduction of Al') [1]. One has to combine the 
results above for the singular vectors corresponding to the simple roots. Namely one transforms 
sequentially the factors of (3) starting from the left and using (28) for the (nonaffine) directions 
a, and a2. For the affine (ao) direction one uses (34) and recalling that the reduced generators 
commute with the BRST operator one gets 

(35) 

The first term in the r.h.s. provides a singular vector in the W~2) Verma module. One can make 
sense of the above monomial with G's raised to complex powers as one does in the KM case (e.g., 
for the vector in (3)), namely the structure is such that the middle generator is to an integer power 
while each successive pair (starting from the middle and going outwards) of surrounding generators 
have powers adding to an integer - commuting repeatedly from the middle outwards we get an 
ordinary polynomial. 

The (Z) case is more subtle. To be able to carry rigourously the analysis one has to make 
sense of (30) when M; is noninteger. For the analogous operator in the Virasoro case this was 
done in [17]. Let us assume that it is possible to make an analytic continuation of (30) to complex 
powers of the nonafline generators. Furthermore for the reduction in the affine direction we cannot 
use directly the argument above because raising the constraint e~ 1 = e~, = {Q, bg} to a complex 
power is now ill defined. On the other hand the invariance of (19) indicates that we should consider 
the group of generators corresponding to WOW2WO in the middle of (3) instead of considering the 
powers of e~, - which correspond to Wo0 Indeed casting the middle triple into an integer powers 
form and accounting for the properties of Q produces a sum of powers of the generator e:' l and 
of proper bilinear ghost combinations which add up to recover powers of its hatted counterpart 
.;:', = 1 + {Q,bb} (ef. (ll)). Thus we get again 1 + {Q, . .. } (up to a numerical coefficient) and 
hence for the full vector 

(36) 

where N is a constant. 
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