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Abstract 

The neutral Higgs sector of the Minimal non Minimal Supersymmetric Stan

dard Model is considered. By effective potential and R.G.E. supported method; 

an upper bound of the lightest Higgs is analysed. From the request of per

turbativity of the coupling in the superpotential, adding the leading stop top 

contributions, the absolute bound of ~ 130 GeV for 90 GeV < m, < 180 GeV 

and M, '" 1000 GeV is derived. The interesting dependence on m, for tanf3 -> 1 

is discussed . 



The Minimal Supersymmetric Standard Model [1] (M.S.S.M.) is a simple and attractive 

phenomenological alternative to the Minimal Standard Model (M.S.M.), where the disturb

ing problem of the divergent radiative corrections to the Higgs mass is solved in a elegant 

way, with a minimal content of particles. It has the nice feature that, although three neutral 

(and two charged) Higgs bosons appear in the spectrum., an upper bound exists for the mass 

Mh of one (the "light") scalar. At tree level, this reads 

(1) 

and one expects that radiative corrections will not modify the bound drastically. In fact, 

the existing calculations at one loop [2] show that in the MSSM there will always be a 

relatively light scalar of a mass of order O(v), where v = JVf + vi ~ 174 GeV (VI,2 are the 

vevs of the two doblets HI, H2 in the model). 

The existence of an upper bound of O( v) on the lightest Higgs mass is a general property 

of SUSY models [3]. To fix more quantitatively the precise value depends strongly on the 

model and the introduction of the radiative corrections is very important for this purpose, 

In particular it is very interesting to study the modifications induced by minimal extensions 

of the MSSM. With the introduction of one additional Higgs singlet field N it is possible to 

form a superpotential 

(2) 

which can generate in a "natural" way, via the vev x =< N >, a term ~ J1-HI H2 whith 

J1- = AX ~ O(Mw), difficult to explain in the MSSM [4]. The price that one has to pay is 

the appearance of the extra parameters x and k (necessary to avoid the appearance of one 

unwanted Goldstone boson) and of two extra (a scalar and a pseudoscalar) Higgs bosons. 

Quite interestingly, in the neutral scalar sector a bound for the lightest Higgs mass can still 

be obtained. The derivation of the bound at tree level is relatively simple, and it has been 

provided by a number of authors [5J. It reads: 

2 

M~ ::; (9; cos 2 2(3 + A 2 sin 2 2(3)v 2 (3) 

where M; = 9;/2 v 2 and tan (3 = v,/vJ, so that, in order to give a quantitative number, some 

information on A is now necessary. In general, one derives bounds on A from renormalization 

group equation (RGE) (and request of a perturbative treatment) arguments. Once an upper 

3 



bound on ). is assumed, limits on Mh are consequently derived, that are intuitively still of 

O( v) i.e. equal to M, or a few more Ge V. 

One can also evaluate radiative corrections to the bound in the model. Naively, one 

would expect the appearance of a "leading" correction ~ m: / M;)og Mt/m; (m" M; are the 

mass of the top and of the stop), like in the MSSM case, leading to a rising of the bound when 

m, gets larger. On the contrary as shown in a recent paper by J.R.Espinosa and M.Quiros 

[6J, the plot of the upper bound of Mh versus m, is strongly dependent on the value of 

tan,6 and in particular for tan,6 -+ 1 it shows a pronounced decrease with m" contrary to 

the intuitive expectation. This seems very interesting from the phenomenological point of 

view. Therefore, I have studied in this paper this model with the method of the effective 

potential [7J to compare the results with those of ref. [6J based on a pure RGE approach. 

Starting from the Higgs superpotential (2), the tree level scalar potential is: 

VF = ).2[INI2(IHd2 + IH212) + IHI H212J + elNI' - ().kHt H 2N· 2 + h.c.) 
2 2 

V = g, (IH 12 - IH 12)2 + LIH+ H 12 
, D 8 I . 2 2 I 2 

and we have assumed the usual expression of the soft supersymmetry breaking term: 

(4) 

(5) 

(6) 

VSB = m~IHt12 + m;IH212 + m;"[NI2 - (A).)'NH1H 2 + h.c.) - (~AkN3 + h.c.) (7) 

where, in absence of explicit CP violation, ). and k are real. Minimizing the potential 

introduces the real vevs VI, V2 and x. The extra vev x is not strongly constrained from 

experiment ( differently from the vev associated to the breaking of one extra U(l) group 

[8]); the most interesting bound comes from the lightest chargino mass: 

M,har9ina :::: AX > 45Ge V (8) 

that implies values of x ~ O(v). However, when drawing the plot of Mh versus x one finds 

an increase with x wich is saturated for x »v, see fig.[IJ, so that it is convenient, to perform 

a calculation of the maximum, to work in the limit x -+ 00 . 

The tree level matrix elements m~j of the neutral scalar fields (ReHt , ReH2 , ReN ) after 

imposing the minimum conditions are: 
2 2 

2 -2 -2). ,6(k A) g,v t mll = mll + mlJ = x tan x + ). + -2- (9) 
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2 2 
2 ·2 -2 >. t{3(k A) g.V2 m 22 = m 22 + m 22 = x co x + >. + -2-

2 

m~2 = m~2 + m~2 = ->.x(kx + A>.) + 2VIV2(>.2 _ gZ) 
4 

m;3 = m;3 + m;3 = 2>.2XV2 - 2>.kvlx - >.A>,vI 

2 • 2 - 2 k2 2 kA 'A VI V2 m33 = m33 + m33 = 4 x - kX +" >.--
x 

(10) 

(11) 

(12) 

(13) 

(14) 

where the terms m2 are of order O(x) and m2 of order O(v). In the limit x »V and allowing 

the soft term A to be at most of order O(x) the lightest Higgs mass results up to terms 

O(v/x): 

(15) 

M 2 2 {3 ,2 2 . 2 {3 4 >.
4 

[ k. {3 b. {3J2 zcos2 +Avsm2 -4_ ap l->:sm2 -2sm2 

where Ak = kax and A>. = >'bx ( to have a positive spectrum b :::; 2, a :::; 3, see ref.[9]). This 

expression has a maximum for: 

• k 1 b z=------
- >. - sin 2{3 2 (16) 

This means that at tree level the bound on Mh becomes: 

g2 
M~ :::; M; for >.2 < .; and tan{3» 1 (17) 

g2 
M2 < >.2V2 for >.2 > 2. and tan{3 --t 1 

h- 2 (18) 

One sees here a major difference with the MSSM and a possible way out in the case of a 

not uncovered very light Higgs. The bound (17) is the same result as that of the MSSM 

whereas eq. (18) requires a careful evaluation of the coupling>. ( it's interesting to note 

that in the case in which the extra Higgs is associated to an extra gauge group U(I) the 

dependence on >. disappears automatically in the maximization of M h , see ref.(9]). 

Consider now the introduction of the leading radiative corrections, corning from the top 

stop sector. For the upper bound only the corrections to the elements (11), (12), (22) are 

required becouse the maximum at tree level contains only the first term on the right side 
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of eq.(15). The field dependent masses which one must introduce in the effective potential 

are: 

2 h" m t = t V 2 , 
,- 2 + 2 + g. (' 2). A' - h (' A) m = m80Jt m t 8 VI - V 2 I L.l. = t AXVl - tV 2 

with h, the top Yukawa coupling and m:of" A, the soft mass SUSY breaking terms. 

radiative corrections to each element are: 

, 3 [( g: 2 2 ) 2 t, 2] 6mn = --, -V, + >'h,A,x tan{3 Z + g.>'h,V1X - 2 327r 16 m 

3 9 2 9' t, 2 9 2 9 2 

6m;2 = -3 2 [((2hz - ....!. )....!.V1V2 - >.hZA,x)Z + 2-
2 

(>'h'V2X(2hZ - ....!.) - ....!.h,A,vtl] 
27r 4 4 m 4 4 

, 2 _ 3 [( 9: 2 2h2 2 'I, 'A (3)Z 4h4 2(1 MtR um22 ---2 -v,-9z ,v' +"', ,x cot + ,v,og-2-+ 
327r 16 m, 

M2 t,2 . 2 

'log ~) - "4-h,A,V2(2h2 - 9.)] 
m 2 rri2 '4 , 

(19) 

(20) 

(21) 

The 

(22) 

(23) 

(24) 

here I have used the simplification log (Mini Mi.) :e 2t, 21m2 and the position Z = log (MtjM;)+ 

log (Mt)M;). . . 

The radiatively corrected mass \s thell 

In agreement with the screening equation of ref. [3] ,valid in the large x limit, the radiative 

corrections of order O( ax) cancel and the corrected upper bound becomes: 

3 g' 
M~ = M; cos' 2{3 + >. 2V2 sin2 2{3 + 32,;.2V2[( 1~ cos2 2{3 + g; hZ sin2 {3 cos 2(3)Z + (26) 

A' • M2 M2 
L.l. 2 . 2? m t i i 

- 2- 2 (8h, sm {3 + g; cos 2(3) + 4-. (log -f- + log -+)] 
v m v m t m t 

A precise evaluation of the maximum of Mh goes through an analysis of the possible value of 

>.. It becomes necessary, for such purpose, to perform a careful analysis of the RGE [5] and 

of the parameter space involved in the numerical evaluation of the mass of the light Higgs. 

The R.G.E. promote the configurations in which the free parameters of the superpotential 

(2), k and >., are in the ratio 

(27) 
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as shown by the paper of P.Binetruy and C.A.Savoy (5]; at the same time a contourplot of 

Mh (radiatively corrected) on the (k, >.) plane shows that a long this direction the maximum 

is reached most quickly, see fig.(3]. So imposing this constraint, the RGE reduce to: 

(28) 

(29) 

(t = log ~.) , with g" 9 and g' the couplings of the gauge groups SU(3), SU(2), U(l). 

Fig.(5] gives the result of the numerical analysis in which I have imposed the constraint 

of perturbativity on >. e:sA
) ~ 1 with A ~ 310'6 GeV) and shown how >'(M.] strongly 

depends on the values of ht[Mz] setting a severe bound on it. 

In this way the dependence of Mh on mt is double; an explicit one, coming from the 

effective potential, and an implicit one in the running of the elements at tree level. Whereas 

the first one tends to increase the upper bound for growing mt, the second one, on the 

contrary, tends to decrease it. The relative weight of this two contributions depends on the 

values of tan{3 and the first is larger for tan{3 ~ 1, (the parameters space of eq. (17)), 

the second for tan {3 --> 1. In such a way there are two different pattern of Mh on mt, one 

increasing for tan f3 ~ 1, very similar to the values of the MSSM bound, another one strongly 

decreasing for tanf3 --> 1. At intermediate regions this two effects compensate, from which 

the relative flatness of the intermediate curves of fig.[5] emerges. Making the envelope 

of all the curves, Mh results always smaller than 130 GeV for 90GeV < mt < 180GeV, 

a result that shows a difference of ~ 8 percent from that obtained with the method of 

ref. [2]confirming the relative stability ot the outcome with respect to various reasonable 

theoretical imputs. 
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FIGURE CAPTIONS 

Fig.[l J Plot of Mh versus x from a numerical diagonalization of the 3x3 neutral mass 

matrix, radiatively corrected, for different values of >. [ k=0.5; Ak = A), = 100 GeV, see 

ref.[5J; m=1000 GeV; .6.=400 GeV; mt=150 GeV; tan{3 = 20 J. 

Fig.[2J The same as before but with k=0.6; tan{3=l 

Fig.[3J Contour Plot of Mh in the plane (k,>.); x = 1000 GeV; Ak = A), =1 00 GeV; 

m=1000 GeV; .6.=400 GeV; mt=150 GeV; tan{3= 1. The dotted straight line represents 

the fixed ratio>. 2 / k' = 2. 

Fig.[4J The same as before but with tan {3=20 

Fig.[4J Plot of >.2[M,J versus ht [M,J from the request of perturbativity at the scale 

A ~ 31016 GeV and with the constraint >.2/k'=2. 

Fig.[6] Plot of the upper bound (eq.(26)) versus mt with>' running (fig. [4]) for different 

values of tan{3. 
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