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ABSTRACT 

We construct Uq(u(l,l)) covariant creation and annihilation operators 

for q on the unit circle and consider the corresponding ladder and singleton 

representations. 

PACS classification: 11.30.Ly 



1. Introduction 

We consider the quantum universal enveloping (QUE) algebra Uq '" Uq(gl(2)) with 

Uq(sl(2)) generators q±H, E, F, satisfying the commutation relations (CR) 

(Ua) 

[E, F] = [H] (Ub) 

and central subgroup { qflN, n e 2 }. The coproduct is underformed for the Cartan 

generators q±H, q±N, while for E and F i't has the form 

(1.2) 

The counit (or trivial representation) E is an algebra homomorphism Uq(gl(2)) ~ a: 
defined as 0 on the Lie algebra type generators E and F and as 1 on the group type 

elements qflH and qflN. The antipode S is an antihomomorphism of Uq satisfying 

(1.3) 

We now assume that Iql = 1 (q "# ±l) and introduce the antilinear antiinvolution * 

satisfying (q* = q- l and) .• 

* * E =-F(~F =-E) (104) 

and hence 

S 0 * = * 0 S. ( 1.5a) 

Defining the star operation to satisfy [I] 

(AI8>B)*=B*I8>A* , A, BeUq , (Ub) 

we obtain that it is also a coalgebra antihomomorphism, 

(Ue) 
. , 
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(where (J is the permutation in U~2, (J (A~B) : = B~A). 
Our complex QUE algebra equipped with such a conjugation will be identified 

with its "q-deformed noncompact real form" Uq(u(I,I)) for Iql = 1. We point out that 

the above star operation is usually not considered (cf. [2],[3]) because the 

unconventional property (1.5b) is being (implicitly) rejected. 

The objective of the present paper will be to construct the singleton and the ladder 

representations of this QUE algebra that will be obtained as q-deformation of the 

corresponding representations of sp(2,JR) '" su(1,I) (cf. [4],[5]). The latter being the 

simplest among the simple noncom pact Lie algebras, this paper will be a first step to 

studying a relevant class of q-deformed representations of higher rank Lie algebras (like 

sp(4,JR) - cf. [6]) which may be viewed as deformations of relativistic symmetries. 

We shall briefly recall the construction of the singleton and the ladder 

representations in the "classical" (q = 1) case. Let x belong to the Lie algebra u(I,I), 

i.e. be a 2><2 complex matrix characterized by 

* (1 0) x 't3 = - '"'3 x , '"'3 -
- 0-1 

(1.6) 

(where x* is the hermitian conjugate of x), and let {a*,a} and {b*,b} be two 

(mutually commuting) pairs of Bose creation and annihilation operators: 

[a,b] = 0 = [a,b*] [a, a*J = 1 = [b, b *] . (1.7) 

Then the ladder representation is an (infinite dimensional, reducible) unitary lowest 

weight representation of uO ,1) defined by 

x -7 J::(x) . - (a* -b) x 
( b

a* ) (1.8a) 

in particular the su(1, 1) generators are 

(1.8b) 

J:: (x) acts in the Fock space!}' of a(*) and b(*). By definition, !}' contains a 

distinguished vacuum vector 10> such that 
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a 10> = 0 = b 10> (=? F lO> = 0, H 10> = 10», 

(1.9) 

<01 a* = 0 = <01 b* , <010> = 1; 

the vector 10> is determined from these properties up to a phase factor. The irreducible 

components of the ladder representation are singled out by the (integer) eigenvalues of the 

central element 

* * N=aa-bb . (1.10) 

The singleton representation is obtained for a = b by replacing (1.8) and (1.9) by 

, 1 
, a 10> = 0 = (H - 2) 10> . (1.11) 

2. Uq(u(l,l)) covariant creation and annihilation operators 

We demand thatthe pair (a * ,- b) (of the type appearing in the construction (1.8) 

of the ladder representation of u(1,l)) transforms covariantly under Uq(u(l,l)). In other 

words, it satisfies essentially the same CR with the Uq(gl(2)) generators as the 

Uq(su(2)) - covariant creation operators of Pusz and Woronowicz [7] (see also [8] where 

both cases q real and Iql = 1 have been considered): 

* [E, a ] = 0 , 

* * Fa - qa F = - b , 

H * * H+l qa =aq , 

qNa* * N+I = a q 

-[E, b] = a*q-H 

F b = q- Ib F 

qHb = b qH-1 

qNb = b qN+l 

(2.1 a) 

(2.1 b) 

(2.1c) 

(2.1d) 

The corresponding transformation properties of the conjugate pair (a ,b *) are deduced 

from (2.1) by hermitian conjugation taking into account (1.4). 

The q-deformed Bose CR that are covariant under (2.1) (when Iql = 1) are 

* * a b = q b a (2.2) 
" 
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We are again looking for a Fock space representation of tbe deformed CR (to be 

determined) with a vacuum vector satisfying (1.9). According to the general idea that 

Cartan generators remain stable against deformation, we define the hermitian number 

operators Na and Nb that annihilate the vacuum and satisfy 

(2.3) 

(cf. (1.8b». It would be plausible to suppose that the deformed CR between the creation 

operators a * and b * are still homogeneous, i.e. 

(2.4) 

where f = f (q) is an yet undetermined function of q. The E-invariance of (2.4) is 

automatic, since (2.1b) implies q E b* = b*E. Eq. (2.1a) gives [b*, F] = qHa, so 

that 

(2.5a) 

(2.5b) 

Thus, invariance with respect to F requires 

(2.5c) 

Normalizing the creation and annihilation operators by the condition 

<Ola a*IO> = I = <O lb b*IO>, (2.6) 

we obtain from (2.5) and (2.3) 

f = q . (2.7) 

For this value of f, (2.5) and its hermitian conjugate become equivalent to 

b*b = [H-I] a a* - [H] a*a (2.8a) 

b b* = [H] a a* - [H+I] a*a (2.8b) 

or, taking once more into account (2.3), to 
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0: = ± 1 (obviously, A+ = A:). Now, it turns out that the commutation relation of, 

say, A+ with E (which can be obtained from (2.1), (2.3) and (Ll», depend on 

whether A+ is expressed in terms of (a*,a) or (b*,b);weobtaininthefirstcase 

(2.1Oa) 

with 

(2.1Ob) 

and in the second case 

(2.1Oc) 

Consistency of (2.1Oa) and (2.1Oc) then requires 

(2.1Od) 

which, in turn, implies 

[E, A+ 1 = 0 . (2. 11 a) 

Combining this with the representation independent equality 

[E, A_l = 0 , (2.11b) 

and taking into account the relations conjugate to (2.11a,b), one concludes that A+ and 

A_ are Uq(u(I,I» invariant operators; therefore, one may choose 

Aa = Co. 1 , 0: = ± (2.12a) 

The normalization condition (2.6) then dictates that 

A = 1 = A + - (2.12b) 

As a byproduct we obtain from (2.1Od) and (2.12b) 

E (=C) = a* b* q-Na , (2.13a) 

so that 
F (= - E*) = - qNa b a . (2.13b) 
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Moreover, from 

(see (2.9) and (2.12b)), one immediately obtains 

(2.15a) 

(2.15b) 

Note that the CR (l.lb) follows from (2.13) because of the q-number relation 

[x+ 1] [y+ 1]-[x] [y] =[x+y+ 1]. (2.16a) 

Since also 

q -Y [x] - q -x [y] = [x - y] , (2.16b) 

we can write down the Uq(u(l, I)) invariant "particle minus antiparticle q-number 

operator" [N 1 (cf. (2.3), (2.15) and compare with (1.10)) as 

[ N] - -Nb * -Na b*b -q aa-q (2.17) 

3. Ladder representations of Uq(u(l,l)) 

For generic q ( i.e., q not a root of 1), the eigenvalues N of N label the 

irreducible components :F N of,the Fock space representation. Unitarity (Hilbert space 

positivity) restricts in this case N to zero. Indeed, the norm square of an eigenvector of H 

where '¥No is a lowest weight vector of the form 

IS 

II '¥ 112 = [m+INI]! 
Nm [m]! 
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N 2: 0 
N ::; 0 

, (3.1) 

(3.2) 

(3 .3) 



If [k] > 0 for 1 ~ k ~ [ INI]. then positivity of (3.3) would imply positivity of [n+ INI] 

for all positive n. This is impossible. however. since for q = exp it (t real. t '" 0 ) the 

function 
sin vt 

[v] = sin t (3 .4) 

cannot be positive for all positive v. For N = 0 the vectors 'POrn form an orthonormal 

basis and the representation of Uq(u(I.I)) is unitary. 

Let now q be a root of 1. We consider the cases of an even and an odd root 

separately. 

If p is the (minimal natural) number such that 

qP = - I =) [p] = 0 (3.5) 

then the lowest weight vector 'PNo has zero norm for INI ~ P (its norm being [INI]!). 

For INI < P the space 3" N has a (p-INI)-dimensional invariant subspace spanned by 

Em 'PNo. m = 0.1 •...• p-INI-l. If. in addition. 

[2] = q + q- I = 2 cos rr/p ~ q 
±irr = exp-
p 

(3.6) 

then the finite dimensional representation of Uq(u(1.1)) in this subspace is unitary. The 

unitarity property fails for q an odd root of I. since e.g . 

[m+l] < 0 for 

4. A q-singleton representation 

. 21t 
q = exp I;;c-

Lm+1 (3.7) 

In order to avoid fractional powers of q in considering a q-deformed singleton we 

shall first rescale the generators (viewed now as forming a (Chevalley) basis of 

Uq(sp(2.1R)) ). setting 

[2] [E.F] = [H] • [H.E] = 4 E • [H.F] = - 4 F (4.1) 

[ H. a *] = 2 a *. [H. Ii] = - 2 Ii . (4.2) 

We shall assume further the following Uq(sp(2.1R)) covariance properties for the 
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* -components of the doublet (a ,- a ) (cf. (2.1), (4.1) and (4.2)): 

[E,a*] =0 , -[E, aJ=a* q- H (4.3a) 

* 2 * -Fa-qaF=-a, F - - 2 - F a =q a . (4.3b) 

All these CR together with the Uq(sp(2,lR»-invariant deformation of the canonical CR 

[a, a*] = 1 (valid for q = 1), 

are satified for 

E=( 0 q - 2 ) 

-1 0 

where N is the "particle number": ' . 

* * [ N, a ] = a , [ N, a] = - a , N 10> = 0 . 

(4.4a) 

(4.4b) 

(4.5) 

(4.6) 

The Uq(sp(2,lR» generators are expressed in terms of a*, a and N as follows (see also 

[9]): 

H = 2N+1. (4.7) 

The resulting Fock space representation of Uq (sp(2,lR» splits into two "q-singleton" 

representations with lowest weight vectors 10> and a *10>, respectively. 
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