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ABSTRACT 
Du ring t h e last. ),CIlrS, the possibiJjty to use Art ificial Neural Networks in experimental High Energy 

Physics has b ee n widely studied. In particular, applications to pattern recognition and paUern classi
fication problems ;lllve been investigated . The purpose of this article is to review the status oC such 
investigatio ns and the techn.iques established. 
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INTRODUCTION 

During the last decade the interest on neural networks has been increasing steadily and their 
field of application is nowadays growing fast as their ability to solve intricate pattern recognition 
problems is shown to be more and more powerful. In High Energy Physics (HEP), however, the 
interest on these systems has been up to now somewhat restricted, mainly because conventional 
data aquisition and analysis methods work quite well. This situation is bound to change with 
the next generation of accelerators: higher energies mean higher multiplicities and thus the next 
generation of REP experiments will have to deal with an"unparalleled wealth of information both 
on-line an off-line. Ttesting vast amounts of data requires an increase in speed of data processing, 
which makes. massive parallelism unavoidable and, clearly, neural networks a natural tool. 

It is important to emphasize that the term "neural" is in this context somewhat misleading. 

Although neural nets are collections of basic units connected between themselves in a certain way, 

the resemblance to a real brain stops here: the basic units have very little to do with actual neurons 
and even in the best cases the rate of firing imposed to these basic units by far exceeds the one 
found in real neurons. The main point is that in neural nets information processing tends to be 
parallel (and in some models asynchronous and stochastic), rather than sequential, clocked and 
deterministic as in conventional computers systems. Also, information storage is distributed across 
the network rather than stored in specific memory location. Since there is no separation between 
CPU and memory units one avoids the von Neumann bottleneck: in this resides all the power of 
neural networks. 

It is also worth mentioning that although presently existing models should be used as a guiding 
line to the network designer, practical applications can (and should) be attacked in general with a 

much more broad minded approach. Implementation in hardware of a real neural system becomes 
morc and more difficult with the increasing number of units involved, and so one should always 
contemplate the possibility of trading architecture complexity for neuron complexity. 

The paper is organized as follows: in Section 1 we shall introduce some basic facts about neural 
systems and in Sections 2 and 3 we shall describe two well known models: Hopficld nets and back

propagation nets. Together with the description of the techniques, some current applications are 
presented. Finally we conclude and present some prospects for the future development of neural 

nets in HEP. 
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1. Basics 

1.1. Neural Network. a. Computing Machin .. 

Before embarking directly on the subject of neural networks (NN) let us first make a lightning 
detour on generalities of computing machines (Ref. 1). A computing machine is a black box which 
interacts with a given environment E receiving from time to time inputs J(t) and delivering from 
time to lime some outputs O(t). The machine is, of course, composed of internal parts which, 
by the action of the inputs, will change their state during the history of the apparatus. Thus, 10 

fully characterise a computing machine one needs to define two functions . First, an input/output 
(unction 

O(t') = F(I(t), Q(t)) (1.1) 

which characterizes the output delivered by the machine at a later lime t' as a function of the 
inpul received and of the internal state of Ihe machine Q(t). However, as Ihe input is received the 
internal state can also change, and so we also need to k.now the change of state function 

Q(t') = G(I(t), Q(t)) (1.2) 

If the possible number of states through which a machine can pass is finite we say it is a finite 
state machinej otherwise we say it is an infinite state machine. In all the cases we will consider in 
this paper, time is a discrete variable and so expressions (1.1-2) can be rewritten in the form 

ott + 1) = F(I(t), Q(t)) (1.3) 

Q(t + 1) = G(I(t), Q(t)) (1.4) 

Let us now introduce the formal neuron (Ref. 2), a very simple computing machine, represented 
as in Fig. 1. 

-~--o 
i ~ 

Fig. 1. 

It has a certain number of input lines Im(m = 1,2, . .. , M) and a simple output line. These lines 
can be either be excitatory (1m = I, represented as ---+ ) or inhibitory (1m = 0, represented as 
--0). The ch8-nge of state fu nction is constnnt and the input/output function is a theta fundion 

that is, a formal neuron only gives an output (Ufires") when the sum over all the lines 1m is greater 
or equal than a given threshold n. Some sp~cific examples of formal neurons are given in Fig. 2. 
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OR AND NOT 

Fig. 2. 

Formal neu~ons can-be ~orinected between themselves to produce more elaborated computing 
machines, in the sense that the outputs from some units can be considered as inputs to other units. 
Furthermore it is clear that any finite collection of formal neurons is a finite state machine. 

The converse is also true (Ref. 2): given a finite state machine it is possible to construct a 
net of formal neurons that is equivalent to that machine. This means that given the (boolean) 
functions F and G it is possible to construct a net of formal neurons that will represent those 
functions. So, designing a net is equivalent to finding a function representation. 

In practical situations, however, the representation of the functions F and G is in general not 
known. Therefore one has to devise methods to construct it 01, at least, give the best approximation 
to the desired representation. Adaptive neural networks (ANN) as we will see in subsequent sections 
provide Ii solution to this problem in the form of an iterative process that converges to the right 
representation of the F and G functions. This iterative process - also called learning - corresponds 
thus to the search of fixed points in the space of all possible functions. 

One should notice that it is not guaranteed off-hand that the methods provided by ANN give 
always the morc economical or even the best solutions to the problem being studied. Very often 
the design of the net for a practical problem is largely a matter of trial and error. On the other 
hand, as we will show in some examples, non adaptable nets (NAN), like the nets of formal neurons 
we have described a.bove, can also give quite good solutions in some well defined problems, with 
the additional advantage that they are much easier to implement in hardware. 

1.2. Architecture 

As we saw in the last section a neural net is an ensemble of very simple computing machines 
(neurons) connected among themselves with some definite architecture. The connections between 
the neurons can have some resistivity. This resistivity specifies how much the signal sent from 
unit i to unit i will influence the response of unit i, that is, it specifies the weight of unit i in the 
response of unit i. Therefore we associate with each link between two neurons i and i a weight 
Wij' For the same inputs I j on a given neuron i different sets of weights Wij will produce different 
outputs. This means that the input/output relation for the whole network is coded in the particular 
set of weights chosen. 

In the nets of formal neurons we introduced in the last section the Wij could only take the values 
+1 (excitatory), -1 (inhibitory) or 0 (no connection) and these weights did not change during the 
history of the net. However, as we said above, we will be also interested in cases in which the 
values of the weights can change dynamically during the execution time of the machine. The nets 
for which this holds are called ANN and the prescription as how to change the value of the weights 
is called a learning rule. In the case the weights are kept fixed the net is said to be non-adaptive. 

In adaptive networks we will not be interested in neurons as simple as the formal neurons. In 
Fig. 3 we depict a typical neuron for those nets. Its environment e is the ensemble of the neurons of 
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Fig. 3. A schematic representation or a neuron. 

the network which might be connected with it. We call "fan-in" the number of connections which 
excite or inhibit a given unit. Similarly we call "fan-out" the number of units directly affected 
by a given unit. As a first step of processing in neuron i, the net input netj = LjElnput Wi;!j is 
calculated. where Wi; represents the weight of the connection between unit i and unit i, and Ij is 
the magnitude of the input coming from unit j. In general, the input Ij is equal to the magnitude 
of he output OJ of unit i and so, unless otherwise stated, we will make no distinction between 
them. 

As for the (input/)output function 0; and change of state (activation) function A;, several 
recipes can be found in the literature. However, the analogy to the physiology of the actual 
biological Deuron tends to enforce units whose output follows closely the biological behaviour 
(also, for instance, linear units often give somewhat trivial results). It is known that neuronal 
response tends to saturate when the input level is sufficiently high or sufficiently low. As a result 
the activation values (which, are sometimes equal to the output of the unit) are taxen to follow 
the sigmoid shape depicted in Fig. 4, which is known empirically to describe the behaviour of the 
actual neuron. 

Finally we will introduce some basic concepts for the architecture or the network, that is, the 
pattern of connectivity for the neurons involved in the particular system under study. Here we 
have essentially two different approaches, corresponding to two essentially distinct models: 
(i) Layered networks, in which we have the units organized in layers (see Fig. 5) the simplest (and 

most limited) example being the perceptron introduced by Rosenblatt (Ref. 3,4). In this case 
there are only two layers, the input layer and the output layer, with each neuron of the input 
layer connected to the neuron of the output layer. However, as has heen shown by Minsky and 

Inputs .r-....,-----, 

)~[ _-t=_lActi~i~nl_l-=-r~put_ 

Weights Sum Sigmoid Threshold 

Fig. 4. Operations within a neuron. 
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Fig. 5. Feed-forward and feed-back architecture. 

Papert (Ref. 5) two layers only are not enough to encode all possible input/output functions. 
Thus, the layered networks presently used have at least three layers - input layer, middle or 
"hidden" layers and output layer. This type of architecture is often associated to a pattern of 
connectivity where the output of units on a given layer act only as inputs to units on layers 
above their own (the so-called feed-forward networks). 

(ti) Hopfield-type networks in which every unit is connected to all other units without any particular 
hyerarchichal structure (see Fig. 5). So, this kind of networks is in principle a generalization of 
the ones previously introduced. In practice this type of architecture is quite oCten associated 
with a fixed (in the sense of non-adaptable) pattern of connectivity, and so the network does 
nothing more than to "recall" patterns which have been previously stored "by hand". The 
major advantage of the Hopfield-type networks stems from the fact that in some well defined 
conditions the whole machinery "f Statistical Mechanics can be applied allowing for a careful 
study of problems like determining! {or instance. the number of patterns which can be stored 
and ret rived with a given enor. 

As we saw, a basic fact ahoul any model of neural networks is that information is stored in the 
particular choice of weights W;j which has been taken. So, during the history of the network not 
only the neurons can change their internal state, but also the weights can change by a learning 
procedure. In the next section we will look more closely at this dynamics. 

1.9. Dynamic. 

So far we have analysed the basic components of a neural network. We will now turn our 
attention 10 the actual interplay of the various elements of Ihe network during the history of the 
system. Here we must distinguish between two phases in this history: 

(i) The learning phase during which the weights are modified according to a chosen learning rule. 

(ii) When the learning phase is over, the network is ready to be used. Now we enter a phase in which 
we should be able to retrieve information which has been stored using the learning algorithm. 
Notice that the redundancy introduced in the network by the large number of connections 
present implies that even if some of these connections do not worle, or some error is present on 
input, we still expect the network to give the right - or an approximation to the right - answer. 

In the next two sections we will see how these different phases are realized on the two most 
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Fig. 6. A generic neural n et.work updat.ing. 

widely used models, the Hopfield model and the back-propagation model. 

2. Hopfield-type Neural Networks 

A Hopfield-type (Ref. 6) neural network is a N-dimensional dynamic system that evolves at 
discrete time steps. Each neuron i at time t, has a binary state Zi(t), which takes, for example, 
the value +1 when the neuron fires and -1 when it is quiescent. In such a way, the state of the 
whole network at time t can be described by a binary "state vector": 

where N in the number of neurons in the network, and by a weight matrix [Wij] where Wij > 0 
represents an excitatory influence of neuron i on neuron i, while Wij < 0 represents an inhibito
ry influence. As usual, if Wij = 0 there is no connection between neuron j and neuron i. A 
"local thre:Jhold" 0j is associated with each neuron i . The neuron i fi res at time t' = t + ot, accord
ing to a probability which is a function of the integrated input received, compared to the threshold 
0;: 

N 

Prob(z;(t') = +1) = g(L W;jZj(t) - 0;) 
j=l 

(see Fig. 6) where 9 is a sigmoid function as shown in Fig. 7. In general th e function 9 is also a 
function of a parameter T called temperature, which represents the width of the region in which 
9 increases from near 0 to ncar 1. T is then a measure of the stochasticity of the process: T = 0 
corresponds to the deterministic limit of the step function (bold line in Fig. 7). 

If a discrete time dynamics and T = 0 are assumed, the time evolution of the system is described 
through the dynamic equation: 

where 

N 

z;(t + I) = Sign[L W;jZj(t) - 0;] 
j = l 

{ 

+ 1, 
Sign(y) = - I, 

undefined, 

if y > 0; 
if y < 0; 
if y = o. 

(2.1 ) 

If the weighted sum over all the neurons i connected to neuron i is greater than the threshold 0 i , 

then i fires and its state becomes +1. If t he weighted sum is less than 0 i , i turns off and its state 

8 



9 
1 

:.---_-c::--

o x 

Fig. 7. The probability of ruing AS a funclion of integrated input for different temperatures T. 

becomes - 1. If the sum equals 0i. the convention is that the neuron i maintains its previous state. 
The weights Wjj and the thresholds 0. BIC the network parameters. 

There are two major ways to implement the updating of the states : parallel-synchronol.&.! and 
3cqueniial-a.8ynchronou". In parallel updating all neurons are updated at the same time, then this 
kind of dynamics is described by the dynamic Eq. (2.1), where each new state z;(t + 1) of a neuron 
i is computed as a function of all non-updated states Zj(t) of the other neurons. In contrast , in 
an orderly sequential iteration, where neuron i updates its state immediately after neUIon i-I, 
Eq. (2.1) should be replaced by 

i-I N 

z;(t + 1) = Sign[L W;jZj(t + 1) + L W;jZj(t) - 0;] 
i;:::.l j;::;i 

Not all sequential iterations are ordered: the neurons states can be updated in random order. 
Sequential updating usually applies in statistical mechanics and is more natural for disordered 
systems (Ref. 7), where there is no clOCK to control the simultaneous updating. On the other hand 
delays in signal transmission are relatively large. Dynamic rules between these two extreme cases 
are possible. Since the information about the updating of a neuron might not have enough time to 
arrive at the next one, this effed could be modelled by parallel synchronous updating of randomly 
chosen blocks of neurons (block- .. quential updating). Different models imply different dynamics, 
but parallel and sequential updatings present analogies (Ref. 8) . Sometimes, the components of the 
state vector assume the values 0 and 1 instead of - 1 and +1. Equation (2.1) is then substituted 
by 

N 

z;(t + 1) = H[L W;jZj(t) - 0;] 
j;;l 

where H is the Heavi3ide /unction 

{ 
+1, 

H(y) = 0, 
undefined, 

if y > 0; 
if y < 0; 
if y = O. 

In the following sections, we will present two kinds of problems in which a feed-back neural 
network model works well: associative memories (Hopfield model) and the track finding prob-
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lem (Ref. 9), showing the successes and the limits of this kind of approach. 

2.1. Ropfield Model 

Our goal will be now to obtain a neural network working as a memory in which the access 
to information is made through attributes of. the item to be retrieved. As we mentioned in the 
last section in a learning session a set of M input patterns is presented to the network., and by 
some means they become associated with M output patterns. Denoting the input patterns by 
~: N = (el:', ... , ef.f,) and the outputs by e~UT = (ep"UT, ... , e~~T), during the learning phase 
a mapping must be established from the inputs to the outputs. The learning session is followed 
by a test session, during which the network is expected to recognize all the input patterns it was 
taught. Moreover, if during the test a noisy or partial input is presented, ODe would like an output 
"close" to the correct orie to be associated. These features are referred to as the memory being 
associative 'or content-addressable, adaptive and noise-tolerant. 

Since a Hopfield network has neither input nor output layers, the p-th input and the correspond
ing output pattern are "simulated" respectively by the initial state ",(p)(O) and the final state ",(p)(t) 

of the whole network. Then, if the network is initialized with an initial state ",(p)(O) = e: N at 
the dynamic Eq. (2.1) is demanded to produce the final state, for t large, ",(p)(t) = {~UT, for 
p = 1, ... , M. This is done by making each ",(p)(t) a fixed point (Ref. 10) of the dynamic Eq. (2.1), 
i.e., ",(p)(t) = ",(p)(t + 1). 

The set of all initial configurations of neurons which lead to a given memory state is called 
"ba.in of attraction" (Ref. 10) of that memory state. It is clearly desirable to have a large enough 
basin of attraction around every pattern to be stored, to assure that all input patterns sufficiently 
close to it will be drawn to the associated fixed point by the network dynamics. This enables the 
reconstruction of stored information from a deteriorated or partial description. Different patterns 
correspond to different states of activation of the neurons. A partial pattern activates only some 
of the neurons. Interaction between the neurons then allows the set of active neurons to influence 
the others, completing thereby the state and generating the pattern that best fits the partial one. 

The weight adaptability in the Hopfield model is simulated through Hebb's rule (Ref. 10,11) : 
one starts with no connections among the neurons and then increments the value of the connections 
according to the rule: 

!!'W;j = !!'Wj; = ry{;ej 

where 1] is a positive learning coefficient and £ is the pattern to be stored. If there are M patterns 
to be stored (e(1),{(2), .•. ,e(M»), the weights derived from this learning rule are 

(2.2) 

with Wi; = O. By following Hebb's rule and by making a few extra assumption about the number 
of stored patterns and their statistical properties, the e(p) will be attracting fixed points of the 
Eq. (2.1). This will be shown in the next section. 

2.1.1. Dynamics of the Hopfield model 

To analyze the time evolution of a dynamical system and to prove the existence of stables 
states, a classical method is to associate to the system a time-varying energy !'Unction which is 
defined in terms of the current state of the system. In this case the minima of the energy function 
correspond to stable states for the dynamic system, i. e., fixed points for the dynamic Eq. (2.1) . 
Hopfield (Ref. 6) observed that by adopting the dynamic rule (2 .1) and assuming symmetric weights 
Wij = Wji and Wii = 0, like in Hebb's rule, one has precisely the equation describing a Spin 
Gla,u (Ref. 12) system at zero temperature relaxing towards equilibrium, when one flips one spin 
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at a time. There are in fad some common features between Spin Glasses and Ropfield Neural 
Networks: both are characterized by a great number of variables, each of them can assume one of 
two possible values, and interacting in a complex and not uniform way. Due to this analogy, the 
weights are often called "bond." and denoted with J;j, while the state of a neuron i at time t is 
often represented by an "bing Spin" S;(t). From that , an energy function can be defined 

1 N N N 

E(t) = -2" LLW;jZ;(t)Zj(t) - L0;z;(t) 
i=l j=l i=l 

(2.3) 

Because of the symmetric form of Wij and the asynchronous updating of the neuron state (one 
at a time), Hopfield showed (Ref. 6) that E is a monotbnically decreasing function: the dynamic 
process evolves until a stable state (fixed point) is reached, corresponding to a local minimum of 
the energy ~unction (2.3): In such a way, each pattern to be stored corresponds to a minimum of 
E. Since the energy function resulting from the Spin Glass model has many local minima (Ref. 12) 
one can also obtain a large storage capacity. Each local minimum is surrounded by a "ba"in of 
attraction ": if the system state corresponds to an energy value in a local minimum basin, then 
the system evolves towards the associated pattern. In this way, each input z(p)(O) determines the 
choice of one minimum, and recalls the pattern e(p) = z(p)(t) to which they are sufficiently closely 
associated. That is, if the input z(p)(O) has a large enough "overlap" 

N 

m(p)(O) = ~L z;(O)d
p
) 

i:::::l 

with the network state e(p), then the dynamics should produce the final state z(p)(t) = e(p). When 
the noise level is too high, i.e., the initial overlap m(p)(O) is too small, the network relaxes to some 
spurious states that are not near the right output pattern. Moreover, for the choice of the weights 
given by Eq. (2.2) and 0; = 0 for i = 1, ... , N, the energy function (2.3) can be rewritten as 

N M 1 
E(t) = -- "(m(p)(t))' + -M 

2 L..J 2 
p=l 

where m(p)(t) is the overlap of the network state z(t) at time t with the pattern e(p). Up to an 
additive constant, E is now given as the negative sum of squares of the overlap. Then a minimum 
of the energy function corresponds to a maximum overlap. 

Intuitively, it would seem that at some point the network would become saturated, i.e ., that the 
number of coefficients would become insufficient to uniquely specify all the memory configurations. 
When the number of stored patterns M is limited to (Ref. 13) 

M< N 
- 410gN 

where N is the size of the pattern (number of neurons), one can statistically show (Ref. 13) that 
the stored patterns are just the local minima of the energy function . When M exceeds this upper 
limit, a lot of these minima turn into spurious states and the network ability to store memory 
patterns is drastically reduced. This is a rather small number in comparison to the maximum 
number of patterns the network can represent (2 N ). The problem becomes worse if the patterns 
are more correlated. In fact, if the patterns are not orthogonal the memorization may be not 
perfect (Ref. 10). Furthermore, Hopfield model is based on the symmetry of the synapses (links) . 
This restricts the model to auto-a,,.,ociative recalls only, i.e., an input pattern is associated with 
itself and the main goal is pattern completion. In order to perform hetero-associative task, Hopfield 
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introduced o.symmetric synapses but did not provide a corresponding energy function and therefore 
could not retrieve heteIo-associative memory pairs completely. 

Hopfield dynamic model is essentially aT = a Monte Carlo (Ref. 7,14) dynamics. Starting from 
an arbitrary initial configuration, the system evolves by 8. sequence of single-spin flips, involving 
spins which are misaligned with their instantaneous molecular fields. This process monotonically 
decreases the energy fun ction (2.3), and leads to steady states, which are the local minima of (2.3). 
A natural generalization of this model to a system with noise is to adopt single-spin dynamics at 
a finite temperature T = {3-' (Ref. 15), using the formalism of "simulated annealing" (Ref. 12), so 
that the updating rule becomes probabilistic and Eq. (2.1) is substituted by 

N N 
P({z,(t + l)}l{zj(t)}) = II P(z,(t + I)I{zj(t)}) = IIp + e-2pr ;(I)H;t' 

where P({z,(t + I)}I{zj(t)}) is the probability for neurons to have the values z,(t+ 1) at time 
t + 1, given the network: configuration {Zj(t)} at time t, and 

.fM N 

H, = N :E W'jZj(t) 
i;::;l 

For symmetric coupling W'j = Wj' one can also show (Ref. 16) that Eq. (2 .3) tends to a stationary 
Gibbs distribution: 

P({Z(t + I)}) ex e-PE(I) 

therefore the standard methods of equilibrium statistical mechanics can be successfully applied. 

2.1.2. Associative memories in HEP 

An interesting way to think of associative memory is to think of data in pixel format, like 
an image. An image consists of a set of on and off pixels. Suppose we connect all the on pixels 
together with reinforcing coefficients. If we turn off some of them, the other ones will turn them 
back on. Thus this image is "stored" in the pixel array. In this way multiple capacity and efficiency 
is actually a very active fi eld of research. 

There are two potential uses in HEP (Ref. 17). One is in interrogation of HEP data bases . The 
information in REP events could be represented in pixel format . If we are looking for events with 
certain characteristics but don't care about what other characteristics they may have, we simply 
specify these characteristics to the network, and if an event fulfilling them is stored in the network, 
it displays the event. The other use is in storing patterns for patterns recognition problems, such as 
storing templates for a template matching hack: finding algorithm. One would present an observed 
hit pattern to the network to see if it corresponds to one of the stored templates. 

2.2. Optimization Problems 

The analogies between statistical mechanics and the Hopfield model result in an interesting 
application of this type of neural networks in optimization problems. 

The energy function minimized by a neural network can be any function expressible in terms 
of the states of the neurons. For this reason, the Spin Glass model is also a good model for solving 
optimization problems, Le. , problems where one seeks simultaneous satisfaction of a maximum 
number of con" troint" among hypotheses with a minimum resulting CO!t. If every hypoth esis 
is assigned to a neuron of a neural network, then a contradiction between two hypotheses can 
be exprcsscd by a negative connection between the corresponding neurons (Ref. 18). There are 
several "near.optimaIU solutions , each of them can be associated with a local minimum of the 
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Fig. 8. Definition of segment lengths Tij and angles 9 ijjl bet.ween segments ((rom Ref. 20). 

energy function. In such a case, the energy function can be interpreted as a CO$t function that 
must be minimized. 

An example of optimization problem that can be treated with a neural network, is the track 
finding problem (Ref. 9). It will be described in the next section. 

2.2.1. The tracI finding problem 

A typical pattern recognition problem in experimental HEP is that of reconstructing tracks of 
charged particles in gaseous detectors (Ref. 9). The typical detector measures a set of N space 
points i along the tracI, which may be curved by a magnetic field. From each of these points a set 
of segments i ..... j will be defined subject to these conditions: 

• A segment i --+ j connects two points i and i in the set, with i ::F j . 
• The length Tjj of each segment is less than some a maximum value Rcu,. 

Thus, each point can be thought as interacting only with the points within a radius R,ulo 
to form possible track segments. A natural choice is to represent each possible segment with a 
neuron (Ref. 19,20). 

On a track, no point should have more than one directed segment entering or leaving it, and no 
point should appear more than once. For this reason, inhibitive connections are imposed between 
neurons violating these constraints. 

The reinforcing connections will be set up such that the joining together of short segments 
of similar direction will be favored, in order to ensure a smooth tracK. To define an appropriate 
cost function for this network, two measurements are needes: length of the segments and angles 
between adjacent segments, indicated in Fig. 8 (from Ref. 20). 

In order to "code" this problem onto a neural network (Ref. 19,20), each segment i ..... j can he 
represented by a binary neuron ii, the state of which is 'Zii = 1 if the segment i -+ j is part of the 
track} and zii = 0 if this is not the case. An energy function is to be minimized} that favours pairs 
of neurons with similar slopes} with paths as short as possible} and inhibits bifurcations of tracks. 

Time evolution of the network in Ref. 20 is shown in Fig. 9. 
We evaluated the performance of this approach to the track finding problem (Ref. 21), as 

recently proposed in the literature. The result was that this neural network approach produces 
solutions of good quality for modest size problems (number of tracKs 5-7, number of points per 
track around 10). Typical results show "confusion" in regions where tracKs were very close together} 
leading to incorrect or illegal solutions. In fact} the final solution often violates the constraint that 
there should be no bifurcation in the tracks. To remove these spurious solutions} a greedy heu.ri3tic 
procedu.re (Ref. 22) was needed} which examines all hack points with more than one segment 
entering or leaving and removes those segments which correspond to a larger cost. 
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Fig. 9. Segments at different evolution stages (from Ref. 20). 

An attempt to apply this method to real data from a the TPC of the DELPHI detector at LEP 
gave rather poor results: only a fraction of tracKS were recognized, and at high costs (memory, 
CPU consumption). 

The method is not competitive with other conventional methods for the track finding prob
lem (Ref. 23). The real interest of this neural network approach lies in the future possibilities of 
implementing it in parallel hardware (Ref. 20), for fast on-line triggers. 

Considerable effort was put into trying to optimize the performance by varying the form of 
the synaptic weights (Ref. 24). In particular, one will probably never obtain perfect performance 
without somehow incorporating curvature information. In this case, a possible choice for the 
synaptic weights is: 

where C>;jkl is the angle beiween ihe segmenis i -> j and k -> I placed tail io iail, {3;jkl is the angle 
between radial vectors to the midpoints of i -> j and k -> 1, n = 100, I;jkl = +1 if j = k (the iwo 
segments arc tail to head), I;jkl = -1 if j = I or i = k (the two segmenis are tail to tail or head 
io head) and I;j" = a otherwise. Also in this case the parallel implementation provides the best 
results (Ref. 24). 

A further exiension of the method presented is described in Ref. 25. 

2.2.2. Secondary vertex trigger 

The possibility io use a Hopfield neural neiwork as a beauty trigger was investigated in the 
literature (Ref. 26,21), for the case study of the SVX vertex detector of the CDF experiment at 
FNAL. 

One method on triggering on beauty are the detection of secondary vertices from the beauty 
decay. The ISAJET (Ref. 28) Monte Carlo was used to generate bb events and QCD background. 
The bb particles 8rc allowed to decay into their secondary decay products. 

The neural nclwork approach used in this case is similar to that used for the track finding above 
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presented. Also in this case the neurons reinforce each other to the degree that the angles of their 
segments are similar, but the reinforcing connections are 

Wijkl ex exp(-AO?jkl - Bl!.,,") 
where A and B are positive constants, 8ij", is the absolute angle in D - <p space (D is the distance 
of closes I approach 10 the origin and q, is the .. imuthal angle of the track) between lhe segmenl 
i --+ j and the segmenl k --+ I, and l!.q, is lhe difference belween lhe q, intercepts (D = 0) of the 
two neurons. A leakage term causes the neurons without reinforcement connections to decay to 
zero. Initially, all neurons are activated and as the network evolves only those segments which 
have neighbors of similar orientation remain activated. 

Encouraging results are found on lhe possibilily of tagging the presence of beauly via the 
detection of secondary vertices. 

2.2.3. Other applications 

A review of other applications of Hopfield-type neural networks is presented in Ref. 29. 

2.3. Non-adaptive Network. 

As we said in the introduction, NAN have the immense advantage of being easier to implement 
in hardware. This simplicity has, of course, to be payed for: non-adaptive systems are unable to 
tackle situations for which they were nol designed for, and so they can only be used in problems 
where the input/output Cunctions are completely defined. On the other hand, one trades dynamic 
complexity for architecture complexity, which is not always possible. 

However, they can be quite useful for some specific class of problems like calorimeter cluster 
recognition and particle identification in Cherenkov detectors (Ref. 30). The basic idea behind 
both problems is the same: how to classify points which are on a given pattern. In the case of 
cluster recognition on reduces a spot to a single point which its center of gravity and contains all 
the inCormation (total energy deposited on the spot and size of the spot). In the case of particle 
identification in Cherenkov detectors Cor every three points on a given output image one calculates 
the center of the circle that passes by these three points j one gets , thus, a sei of spots (composed 
oC possible centcrs for a circle creaied by a given particle) which can be reduced with the above 
technique. 

3. Feed-forward Neural Networks 

The problem in feed-forward (Ref. 31) neural networks is again to model some mapping be
lween inpul pattern z and output pattern y. The archilecture of this kind of networks is the one 

described in Section 1.2. for layered networks. There are 1 = 1, .. . , L layers with i = 1, ... , N. 
neurons per layer. Each neuron is connected to all neurons of the neighboring layers in a forward 
directed manner, so that the output of one neuron is connected to the inputs of neurons in the sub
sequent layer (feed-forward architecture). The output of each neuron is assumed to be a bounded 
semi-linear function of its inputs. That is, if oY-1) denotes the output of lhe j-th neuron of layer 

1 - 1 and Wij denotes the weight associated with the connection of lhe output of the j-th neuron 
to the input of the i-lh oOayer I, then the i-th neuron takes the value 

1 
Zi, if 1 = 1; 

0(') = N, 
, (" ('-1) ) ·fl L 9 L..J W;jOj - 0i 1 = 2, ... , . 

j = l 

(3.1) 

where g is a bounded, differentiable and non decreasing activation function. In most cases the 
activation function is the sigmoid logijtic function 

1 
g(a) = 1 + e-. (3.2) 
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Note that for this activation function, the output can not reach its extreme values of 1 or 0 without 
infinitely large weights. It is necessary to use a certain tolerance r in rending out the network output 
in situations in which the desired outputs are binary. A typical way to implement this is to read 
out as 0 all output values between 0 and 0 + T and as 1 all output values between 1 - T and 1. 
This is equivalent to adding another threshold function to each output neuron as shown in Fig. 4. 
The weights W;j have real values that can be positive (excitatory), negative (inhibitory) or zero 
(no connection). In this model, the outputs of neurons in different layers have different meanings. 
A set of "input neurons" are assembled in the first layer, and hence only in this layer there is 
the representation of the externally dictated patterns. "Hidden neurons" are assembled in one or 
more hidden layers. On these layers, the system is free to choose an internal representation of the 
input pattern. "Output neurons" constitute the last lay~r. This layer collects the representation 
of the output pattern ass~ci~ted to the input pattern received. The first and the last layer serve 
respectively as the input and output of the network. Input sets the first layer in an initial state. 
After its for~ard propagation through the network layers, the state of the last layer is read out 
as output. There is no meaning to stable state, however, every final state of the last layer is read 
out, whether it is ncar the right output pattern or not. This may pose the same difficulties as 
the spurious state of the Hopfield model. The feed-forward network described above is also called 
multi-layer perceptron. The perceptron has a long, interesting and instructive history, which is the 
topic of the next section. 

3.1. Perceptron 

The perceplron, proposed by Rosenblatt (Ref. 3,4) in the 1950s and 1960s, is a special case of 
feed-forward network with only one input layer, a single output neuron and no hidden layers. It is 
often called a one-layer network, referring to the single layer of weights connecting input to output. 
In this case, there is no internal representation of the input pattern, but only the coding provided 
by the external world is used. Conceptually, the percept ron may be described as a machine with 
an input channel for patterns, a NO/YES output indicator and a m~chanism to indicate if the 
machine response is correct or not (see Fig. 10). 

The input patterns belong to two possible classes, 10 and II, and one would like the perceptron 
to respond NO (0) to all patterns in 10 and YES (1) to all patterns in 11• This can be viewed as a 
classification task: the perceptron classifies all possible input to either It or not-II' Furthermore, 
the percept ron acquires this skill in a training stage, during which it adapts its parameter of 
decision if the given response is wrong. A first idea to implement such a machine is as a memory 
where the patterns are stored in two separate groups. This kind of implementation never makes 
a mistake on a previously seen pattern, but it is not able to take a decision on new patterns not 
presented during the training-memorization session. A better approach is to find the "features" 
that distinguish one class of patterns from the other and to use them in the classification task. 

/ / 
I, 

{ 0 
YES NO 

0 0 

REWARD 
0 

I. V 

Fig. 10. A schematic representation of the perccptro n a rchitecture. 
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Fig. 11. Computations of the perceptron'output. 

In this case the ,machine is ex'peded to perform well with inputs for which it was not specifically 
trained, i.e., to he able to generalize. PerceptIon, as a pattern discriminating machine, lies between 
these two cases. II does not simply store the pallerns, but it is also limited to what can be done 
with no internal representation of the features and linear threshold relations between these features. 
Therefore, as a compensation for this limitation, a simple learning procedure results from these 
restrictions. This is what will be shown in the following section. 

3.1.1. Definition 

Let zp = (Zpll'" I ZpN) be a binary array, i.e., :Z:pi = 0,1 for i = 1, . .. I N I represents the binary 
coding of a pall ern p. This array is presented to the perceplron through the N units (neurons) 
that constitute its input layer, then it is forwarded into the single output unit that represents the 
NO/YES machine indicator. The output unit is a linear Ihre.hold element, which takes the value 
y = 0, 1 according to the rule 

N 

Y = H(L WiZi - 0) (3.3) 
i=l 

where 0 is the output threshold and Wi the "weight" ofi-th input on the output. This computation 
is shown in Fig. 1I. 

There is quite 8 lot that such a simple perceptron can do. For example, if Wi = 1 for i = 1,2 
and 0 = 1.5, the output unit will have the value y = 1 only in response to an input in which both 
binary e1ements are equals to 1. In this case, the logic AND is computed: 

2 

Z1:1:2 LWiZi - e y 
i-I 

00 0 1.5 < 0 0 
o 1 1 - 1.5 < 0 0 
1 0 1 - 1.5 < 0 0 
1 1 2 - 1.5 > 0 1 

Neuronal implementation of AND and OR (unction are shown in Fig. 12. 
But the most interesting thing is the adaptability of the weights Wi and threshold 0. The 

percept ron modifies these decision parameters to conform better its correct response. 
In the following, the perceptron output rule is assumed to be 

N 

y = H(LwiZi) (3.4) 
,;;1 
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Fig. 12. Neuronal implementation of AND and OR func tions . 

instead of rule (3 .3). This simplification does not affect the discussion, since e can be thought as 
the weight from an input unit that is always set to one. In this case, 0 can be learned just like any 
other weights. The perceptIon ability to determine a set of weights Wi that will ensure solution of 
an assigned task, will be demonstrated in the next session. 

3.1.2. PerceptIon learning rule 

To start the learning session, the perceptIon is initialized: all parameters are assigned some 
random value. Now, two groups II and 10 of input patterns nre prepared: II is constituted by 
the patterns for which the perceptron response must be 1, and 10 by the pattern that should elicit 
the opposite response. The set of these two groups of patterns is called the training 3et. Now, 
pick randomly a pattern from one of the two groups and present it to the perceptron. Eq. (3.4) 
determines the corresponding response of the output unit. Depending on this response, the weights 
are modified according to the perceptron learning rule, which can be stated as follows: 
(i) Correct responses generate no change. 

(ii) If the response is 0 while the right one is 1, then 

AWl = TJZj 

(iii) If the response is 1 while the right one is 0, then 

where 0 < 7J < 1 is the learning coefficient. This learning rule is easy to understand. If:l belongs 
to I, (10) and the weighted sum L: WiZi is positive (n egative) , the perceptron response is 1 (0) and 
all is well . Case 2 occurs when the sum is too small and then it must be increased. The Xi = 0 
does not affect the sum , then their weights can not be blamed for the bad response. Changing 
these weights might do harm in rdation to the other patterns and does no good in relation to the 
current one. Thus, the weights Wi to increase are only those associated to the Z i = 1. The opposite 
is achieved in the case 3. The previous learning rule can be expressed in a single updating equation 

AWi = 1)(t - Y)Zi (3.5) 
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where y is the output produced by the input z, while t is the desired one, or target. The most inter
esting aspect of this extremely simple rule is the existence of the associated perceptron contlergence 

theorem (Ref. 5). 

3.1.3. Perceptron convergence theorem 

Theorem 1. If there exists a solution w·, then the perceptron learning rule will converge to 
some solution w in a finite number of steps for any initial choice of the weights. 

How does the percept ron solve a classification problems? Each input pattern is translated into 
a N-dimensional Brray, with binary components. Hence, the patterns belonging to II and 10, can 
be represented as points in a N -dimensional space. The percept ron tries to find a hyperplane in 
this space separating the two sets II and 10 • In these terms, the theorem 1 can be reformulated as 

Theorem 2. If the scts II and 10 are separable, then the perceptron learning rule will separate 

them. 

Now, one can observe that the restriction on z that its components be either 0 or I, is not 
really necessary. Let z be an array whose components may take any real, positive or negative 
value. Since the weights updating, given by learning rule (3.5), is proportional to z, it may be 
overwhelmed by z too large or stalled by z too small. To solve this problem I instead of using z 
itself, the unit-length array :i can be used 

"(" ") (ZI ZN) h ,", Z = ZI,"" ZN = r;j'"'' r;T so t at Z = 1 

The problem of finding a separation between the two real sets I~ and I~ is not really different 
from the problem of separating the two binary sets II and 10 . In this case also, there exists a 
convergence theorem 

Theorem. 3. If there exists a unit solution w · and a number S > 0 such that E W;Zi > 6 for 
all :i E 1~ and E Wi'Zi < -6 for all z E 1~, then the percept ron learning rule will converge to some 
solution w in a finite number of steps for any initial choice of the weights. 

A more substa.ntial variation is obtained by allowing more than two sets of patterns. Let 
III 121 "" 1M be sets of patterns and suppose that there are vectors wi and 6 > 0 such that 

N N 

Z E 1j implies that L wf'z, > L wk'z, + 6 for all k t j 
;=1 i=1 

The percept ron convergence theorem generalized to this case assures that vectors Wj with the same 
property can be found by following the usual principle of updating 

N N 

If z E Ij and L wjiZj < LWkjZi for some k 
i=1 i=1 

wj must be increased and w; must be decreased 

Note that this generalization involves more than one single output unit in the output layer. 
The output layer must colled M output units, one unit for each class. 

Having a simple and transparent learning rule and an associated convergence theorem I the 
percept ron is quite impressive. However, Minsky and Paper (Ref. 5) demonstrated that there is 
a large class of tasks that perceptron is unable to perform. First of all , the convergence theorem 
starts with an "if", and then when there is no solution, the learning a1gorithm will not converge. 
Not every sets of points are linearly separable, hence the class of problems that can not be solved 
by the perceptron. A classic example of insolvable problem is the ezclu,ive-or (XOR) problem as 
shown in Fig. 13. 
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Fig. 13. No straight line can separate the solid points versus open points. 

In what follows, a heuristic discussion on a well known statistical approach to classification 
based on Bayes' rule (Ref. 32), is proposed. The aim is to find points of contact with perceptron 
and then to understand what are the extensions that enable perceptron to solve problems like XOR 
problem. 

3.1.4. Bayes' decision rule 

Suppose one picks a pattern from one of some possible classes Cjt with i = 1, .. . , M. Let the 
selection be based on some methods like, for example, tossing a coin in the case of two classes. 
Each class is thus selected with a priori probability P( Cj ), where, of course 

M 

:E P(Cj) = 1 
i;l 

The extracted pattern z is an array of random variables. Since each Xi has been chosen to try to 
separate the classes, then its distribution is presumably different from the patterns of one class 
than from the patterns of the other classes. Thus, for each Xii M conditional denJitieJ p(xdCj) 
exist , and for each pattern z, M joint conditional denJitieJ p(z!Cj)' Now, it is possible to compu te 
the a pOJtcriori denJiticJ using Bayes' rule (Ref. 32) 

p(CI2O) = p(2OICj)P(Cj) 
} p(2o) 

(3 .6) 

where p(2o) = E;~1 p(2OICj )P( Cj ) assures that E7:1 p( Cj 120) = 1. The Bayes' decision rule states 

Decide Cj if p( Cj 120 ) > p( Ck Iz) for all k i' j (3.7) 

In other words, if a particular z has occurred , this procedure looks for which Cj is the most likely 
and then asserts that z belongs to that OJ. This rule minimizes the probabiEty of error in such 
cases where all the a priori probabilities are known and there is no other information. There are 
serious practical obstacles in the use of Eq. (3.6) . A solution (Ref. 5) can be obtained by making 
the critical assumption tl1at the random variables Zi are statistically ind ependent over each class. 
For this hypothesis 

N 

p(2OICj) = II p(2O;lCj ) for j = I, ... , M 
j ::;: l 

Define 
Pj = P(Cj) 

P;j = p(2O; = llCj) 

q;j = 1 - P;j = p(2O; = 0ICj) 
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Now, suppose a Z has just been observed, the decision rule (3.7) will choose that Cj which maxi-
mizes 

N N N 
P IT IT P II r ' (l-r;) P IT(p;j Jr· IT i Pij qij = j 1 Pi}qij = j -..' qij 

:&';:=1 :&';;;;;0 i=l *=1 q,) ;=1 

Since log is an increasing function, the decision rule (3.7) will select the largest of 

N N 
"P' " L..J z; log( -!L ) + (log Pj + L..J log q;;) 
i=1 qlJ i=l 

Because the term enclosed in parenthesis is a constant that. depends only upon the class Cj and 
not upon the observed z, it is possible to write decision (3.7) as 

N N 

Decide C j if L W;jZ; + 0 j > L w;,Z; + 0, for all k t- j (3.8) 
i=1 i=1 

and then 
N 

Decide Cj if L(w;j - w;,)z; - (0, - 0j) > 0 for all k t- j 
;= 1 

which has the form of the familiar linear threshold function. This suggests to design a layer-machine 
like that of Fig. 14_ 

Each pattern to be classified is collected from the first layer, while each element I:j of the 
second layer computes the "decision quantity" I: W;jZ; + 0 j . The single clement of the last layer 
simply decides which of its inputs is the largest_ If the a priori probabilities (weights W;j) are not 
known, they can be "estimated" in 8 training phase, during which a sequence of n patterns is 
considered and the number of "favourable" patterns is counted for each class. All these analogies 
with perceptron theory lead to a question: what happens introducing other layers between the two 
input and output layers of percept ron? 

Fig. 14. Layered machine implementing Bayes' decis ion rule. 

3.1.5. Multi-layer perceptron 

Since in put units and output units assume values in the same domain, one can think. of con
necting perceptrons together in such a way that the outputs of one are the inputs for the others. In 
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Fig. 15. A' linear separation between solid and open circles is possible. 

1960, 1961 Gamba (Ref. 33,34) described a type of perceptron in which each Zi is itself computed 
by the threshold function of Eq. (3.3) 

N N 

y, = H(E wkiH(E W;jZ~ - 0;) - 0,) 
i ::: 1 i:::1 

Gamba machines could be described as a two layers perceptIon. Indeed, Fig . 15 demonstrated that 
inserting a hidden layer of three neurons between input layer and output layer, with the weights 
and thresholds indicated, a perceptIon solution to the XOR problem is possible. 

In this way, the four points of two-dimensional space are projected in four points in three
dimensional space. These four points are now easily separable by a plane in the two desired 
groups. This demonstrates that adding hidden 1ayers increases the class of problems that are 
solvable by perceptron networks. 

A first question OTIC can ask. is: how many hidden units would be optimal for a particular 
problem? If too many are allocated, it is not only wasteful but could also negatively affect the 
performance of the network. In fact, since too many hidden units imply too many free parameters 
to fit specifically the training patterns, their ability to generalize to new "test" patterns would be 
adversely affected. On the other hand, if too few hidden units were allocated, then the network 
would not have the power even to represent the training set. There exis ts no satisfactory theoretical 
basis for determining the number of hidden units, which must often be decided by trial and error. 

Another more worrying problem is that, in this type of networks, the perceptron learning rule 
is not suitable. In single layer perceptron it is easy to identify the weight that is too strong or too 
weak. For multi-layer networKs it is not clear which of the weights is responsible for mistakes and 
successes. This problem appears to be solved by the recent introduction of the back·propagation 
algorithm by Rumelhart and Maclelland (Ref. 31). 

3.2. Back·Propagation 

In the back-propagation algorithm (Ref. 31) a training pattern is first forward propagated from 
input to output, aft.er which a certain measurement of the network output error is backward prop
agated from output to input. The general idea is to update the weights on the basis of two 
quantities: one depending on the input to that weight (like in the perceptron learning rule) and 
the other depending on the desired output (target) and the actual one. A natural choice for ihe 
second quantity is simply a difference between target and actual output, i.e., the output error. An 
updating rule having these characteristics is 

(3 .9) 
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This is called Widrow-Hoff or 6-rule (Ref. 35). II can only be used in networks without hidden 
units.For each pattern PI the input zp produces the output 0pr which is compared with the desired 
onc, the target tpo If there is no difference, no learning takes place, otherwise, the weights are 
updated to reduce the difference (Ip; - op;). 

Given a training set of patterns pairs (zp,lp), the delta-rule attempts to adjust the weights 
so as to minimize the squares of the differences between the actual output op and the target tPI 

summed over the output units and all pairs of input/target patterns. Let 

(3.10) 

be the measure of the error on all input/output patterns p. The delta-rule implements a gradient 
descent in E wh'en the outputs are linear, that is to say 

N 

Opi = L WijZpj 
j::;1 

(3.11) 

The derivative of Ep with respect to the weight Wij can be computed, using the chain Iule, as the 
product of two quantities: the derivative of the error with respect to the output multiplied by the 
derivative of the output with respect to the weight 

The first quantity tells how much the output of the i-th unit affects the error and 
quantity tells how much this output is changed by changing W;j. From Eq. (3.10) 

Moreover, from Eq. (3.11) 

then, one can write 

Since 

the second 

(3.12) 

(3.13) 

it is possible to conclude that the delta-rule implements an approximation to gradient descent in 
E, since the weights are changed after each pattern p is presented. Nevertheless, if the learning 
coefficient 11 is sufficiently small, the delta-rule implements a very close approximation to gradient 
descent in E and then it finds a set of weights minimizing E. A choice of 'I too large manifests itself 
by oscillations around the minimum, leading to a non-convergence of the minimization process. 

The important contribution due to Rumelharl, is how to implement Eq. (3 .9) in hidden units, 
for which there are no target values directly available, and for not linear outputs. Rumelhart 
proposed a generalUed version of Eq. (3.9), called generalized della-rule. Define the net lolal 
output 

N 

netpi = E WijOpj 

j=1 
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where Opj = 'Xpj if j is an input unit. Thus, a semi-linear unit is one in which 

and 9 is differentiable and not decreasing. To get the correct generalization of delta-rule 

Using the chain rule 

From Eq. (3.14) 

If 6p ; is defined as" 

aEp 
tlpWij ex: --a

Wi; 

8netp i -a--:;::: op; 
Wij 

, . _ _ aEp 
°P' - 8netpi 

Eq. (3.16) has the same form of Eq. (3.13) . Moreover 

By Eq. (3 .15), the second factor of the previous derivative is 

(3.15) 

(3.16) 

(3.17) 

To compute the first factoI, one must distinguish between the two cases that i is an output unit 
or not. In the first case 

and from the definition (3.17) of 6p ;, then 

(3.18) 

from any output unit i. If i is not an output unit 

then 
6p; = (I)p.w.;)g' (netp;) (3.19) 

• 
Eq. (3.18) and (3.19) give a recursi .... e procedure to compute 6pi l by a ba ck-propaga tion of the error 
signals through the network. These results can be summarized in three equations. First, the 
weights updating has the same form of delta-rule in Eq . (3 .9) 

°No tc that, s ince Opi :;::: netpi wh en the output o r unit i is lin c l\t, this definili on o f 6pj is con!>ist ent w ith that o f 

Eq. (3.12). 
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The other two equations specify the error signal, determined recursively starting from the output 
unit 

if i output unitj 

otherwise. 

In the next section I a discussion on practical application of this generalized delta-rule is presented. 
The implementation of the generalized delta-rule results in two phases, denoted by forward 

and backward propagation (Ref. 31). First, the weights are initialized with small random values. 
During the forward propagation, the input is propagated forward through the network. to produce 
the output, that will be compared with the target to compute the error signal. A backward 
propagation follows. during '.Vhi~h the error signal for a hidden unit (for which there is no target 
directly availabJ~) is computed recursively in terms of the error signal of the units directly connected 
and the weights of these connections. In this way. the larger the difference between output and 
target and the larger the error signals. The updating of the weights is then made with respect of 
these error signals. 

Since the derivative of the activation function is used in the error signal computation. the 
discontinuous threshold function on which the percept ron is based, is not good. Moreover, a linear 
activation function is not sufficient either, because in this case only linear separation is achieved. A 
nonlinear, continuous activation function is then necessary. like. for example. the logistic function 

1 
g(netp') = :-:----::=-: l+e nef,; 

It is easy to demonstrate that the derivative or this function with respect to its total input netpit 

is given by 

This derivative reaches its maximum for Opi = 0.5 and, since 0 < Opi < I, approaches its minimum 
as Opi approaches zero or one. Since the weights updating is proportional to this derivative, weights 
will be changed more for those units whose output is near 0.5, i.eo, not yet on or off. 

The learning coefficient 11 must be sufficiently small to better approximate the gradient descent 
procedure and to avoid oscillation. Nevertheless, a greater 1] implies a more rapid learning. One 
way to increase 1] avoiding oscillation danger, consists of including a momentum term in generalized 
delta-rule updating 

/J..Wij = 71(6,oj) + a/J..°ldw'j 

where 0 < a < 1 is the so-called momentum coefficient, which determines the effect of past weights 
updating on the current ones. 

In case of linear ou tput and no hidden layers, the error surface is concave with only one mini
mum, so the gradient descent procedure implemented by delta-rule, is guaranteed to find it. This is 
not the case with the generalized delta-rule, which suffers from the problems of hill-climbing proce
dures, i.e., the danger of getting stuck in some local minimum. In factI no convergence theorem 
of those mentioned befoIe regarding the single-layer perceptIon, exists for back-propagation. How
ever, in many problems the generalized delta-rule has demonstrated good performances in finding 
a solution. One of these problems is the parity problem. In this problem, one wants a c1assification 
scheme that differentiates input with an even number of l's from those with an odd number. This 
problem is a fairly difficult one, since changing any single input unit throws the output from one 
class to the other. The XOR problem is a parity problem of size two. Rumelhart studied this 
problem for different numbers of input units (Ref. 31). A solution found by the back-propagation 
procedure is shown in Fig. 16. 

A feed-forward network. solution requires at least N hidden units for input patterns of size N. 
In Fig. 16 , the unbroken lines indicate weights Wij = I, while the broken ones indicate Wij = -1. 
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Fig. 16. Solution t.o the parity problem found by the back-propagation learning. 

The number in the circles represent the threshold of the unit. The hidden units arrange themselves 

to count the number of 1 in the input. If there are m 1 in the input pattern, then the first m 
hidden units are on while the subsequent are of(', The hidden units are connected to the output 
unit with alternately +1 and -1 weights, so that the weighted sum of hidden units outputs is 1 if 
there are an even Dumber of 1'5 in the input pattern, otherwise is O. 

A certain number of theoretical analyses have heen performed to determine the capabilities of 
classifiers formed from multi-layer networks. Similar constructive proofs, developed independent
ly (Ref. 36,37,38), demonstrated that two hidden layers are sufficient to form arbitrary decision 
regions using multi-layer networks with step function. A cRreful mathematical proof (Ref. 39) 
demonstrated that using sigmoidal {unction in multi-layer networks with only one hidden layer, 
arbitrary decision regions can be approximated. This proof, however I is not constructive and does 

not indicate how many units are required in the hidden layer. 

3.3. OptimizationJ of Back-Propagation 

Although back-propagation with the generalized delta-rule has been very successful in a number 

of applications, it has a number ofdrawbacxs. First of all the algorithm is not guaranteed to find the 
global minimum of the energy function. Therefore the network may get stude in a local minimum. 
Next to this there exists no method of finding the optimal valu es for the network parameters. The 
number of hidden layers and hidden nodes, the temperature, the learning rate and the momentum 
term have to be determined by trial and error, thus leading often to non optimal values and slow 
convergence of the network. Finally back-propagation shows bad scaling behaviour. This means 
that when we increase the number of nodes, the computing time needed for training a network 

grows explosively, making the method useless for practical applications. 

To overcome these problems a number of refinements to back-propagation have been proposed. 
We discuss some of these suggestions that leave the concept of local computation in the network 
intact. 

3.3.1. Adaptive Back-Propagation 

In this section we discuss some strategies to speed up back-propagation (BP) by finding the 
optimal learning rate for every weight individually. The heuristics for this approach are given by 
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Jacobs (Ref. 40). 
(i) Every weight should have its own learning rate '1. The optimal learning rate for a certain weight 

might be bad for another one. 
(ii) The learning rate should be allowed to vary in time. As training goes on the error surface 

changes and so will the optimal learning rate. 
(iii) When the change of a weight has the same sign for consecutive steps, the learning rate for that 

weight can be increased. 
(iv) When the change ofa weight changes sign, the learning rate for that weight should be decreased. 

Three difi"erent algorithms based on these heuristics have been developed: 
Self-Adapting back-propagation (SAB) (Ref. 41), SuperSAB (Ref. 42) and the delta-bar-delta 
rule (Ref. 40). We give the recipe for one of them, namely SuperSAB and present the bench
mark results for the three algorithm •. 

In SuperSAB each weight Wij has its own learning rate flij. They are all initialized to a certain 
value T],'art- We define the increase factor '1+ and the decrease factor 11- for the learning rate. 
From here we take the following steps: 

(i) Set all '1;; to '1.,.". 
(ii) Do normal BP step n with a momentum term. 
(iii) For every W;;, as long as the weight change keeps the same sign, set 

n+l n 
f'Jij = '1+ • fJij 

(iv) If the weight change has a different sign: 
a) Undo the previous weight update 

b) S t 
n+l _ n 

e TJjj - fI- • fljj 

c) Set l>w;/l = o. 
A comparison of SuperSAB with SAB and standard BP has been made by Tollenaere (Ref. 42). 
The three algorithms were tested on a auto-association problem on a 10-10-10 network and on a 
set of random patterns on a 10-5-2 network.. On these examples SuperSAB was mostly significantly 
faster than standard BP with optimal '1 and Q . The speed of standard BP is also very sensitive to 
the choice of these parameters, where SuperSAB allows a wide range. 

SuperSAB is slightly more instable. In general normal SAB is performing worse than SuperSAB 
and is behaving in a less stable way. SuperSAB shows a much better scaling behaviour than 
standard BP. The values user for '1- and '1+ used in the test were 2.0 and 1.05. 

Tesls done with Jacobs delta-bar-delta rule show similar results. Standard BP with and without 
momentum term has been compared to delta-bat-delta with and without momentum term on three 
different problems. One is the well known XOR task, one is a 6·6-6 network with should perform 
a multiplexer task and the third one is a 3-1-8-8 binary-t<>-Iocal decoder (a three bit binary value 
should be converted to one bit set in a word ofB bits). For all algorithms and problems the network 
parameters were tuned to get a good performance. The delta-bar-delta method converged twice 
as fast as BP on the first problem, slightly faster on the second one and 9 times as fast on the 
third one. Also the delta-bar-delta method proved to be less sensitive to the choice of the network 
parameters. 

3.3.2. Other methods 

In addition to adaptive BP some other methods have been tried to improve the network con
vergence. One of the simplest is derived from the simulated annealing method in Boltzmann 
networks. The temperature and the learning rate of the networlc is not kept constant during the 
training phase, but are slowly decreased. This allows faster learning in the beginning and avoids 
oscillations at the end of the training phase. An example of such a method can be found in Ref. 51. 

Another method by Sam ad (Ref. 43) involves modifying the learning rule. In the delta-rule the 
weights are updated using the error on the destination node i and the actual value of the source 
node j (l>pw;; = ~p;op;) . In the hidden layer we can use the expected value of the source node 
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instead of the aclual one since we can compute it with 6pi = (L:k 6pk w.,)Opk. The alternative 
weight update rule becomes then: !:.pWi; = ~pi(Op; + 6p;). 

A comparison between the standard and alternative learning rule has been made for the XOR 
task with a different number oflayers (Ref. 43). In the test the alternative method converged twice 
as fast on a 2-10-1 network. This number is increasing dramatically with the number of hidden 
layers. The disadvantage of the alternative rule is that the errors 6pi need to be computed twice. 
Once to correct the source node value and once as the error on the destination node of a weight. 

3.4. Application.. of Feed-Forward Neural Network. to Cla.sification Problems 

The feed-forward neural network model is well suited for pattern classification tasks and thus an 
interesting tool for the classification of, e.g., events, in High Energy Physics experiments. Pattern 
classification (Ref. 9) in 'general can be defined as follows: 

Given an. object 0, one want.! to auociate thi! $pecific 

object with one of several classes C" . .. , CM. A class is formed by all those objects fulJ111ing 
certain criteria which define the class itself. First of all, the object must he described through 
a finite number n of quantities selected to be useful for distinguishing between classes. These 
quantities are the result of measurements with a tran!du.cer T, and computation based on this 
result. The n quantities form a pattern z, which can be seen as a point in an n-dimensional 
space: the pattern space P. In general, classes may share patterns, but the main interest is in 
disjoint classes. In such a term, the task of pattern classification consists of partitioning the 
pattern space P into disjoint regions, one region for each class. In many cases, the classification 
is not really done in P , but in another more convenient space F, called the features space. Each 
pattern z is transformed in an m-dimensional features vector z, where the transformation can 
be linear or non-linear. The major purposes of this transformation are 

• To reduce the dimension of the vector/space to be studied (m < n), without losing significant 
information. In fact, frequently some components of:l CRn be correlated in single datR, since 

the objects will only have a rather small number of significant features . 
• To obtain vector components which are better suited for pattern classification than the original 

ones. 
This transformation is performed by a feature! eztractor E, whose general aim is to reduce the 
complexity of pattern classification. Finally, a cla!sifier C splits F into disjoint regions that indicate 
the classes to which the patterns belongs. The entire process can be mathematically described by 
a set of mappings. Each object is associated to a point 0 in object space O. The transducer 
represents each 0 mapping it into a pattern :z: in pattern space P. A features extractor transforms 
each :z: into a point z in features space F. Finally the classifier maps each z into a class designator 
d in decision space D: 

0: 
o 

T 
--+ P : 

z 
F: 

• 
c 
--+ D 

d 

This division of the problem into representation, features extraction and classification is ar
bitrary and the entire process can be viewed as a single mapping from object space to decision 
space. 

About representation there is little to say, since this topic is extremely problem dependent. 
Generally the purpose of this pre-processing is to perform a first reduction from a mass of raw 
data to just those informations that are thought to be useful for distinguishing between classes. 
Unfortunately, automatic procedures which use the a priori knowledge about the specific problem 
are not always available. Normalization of input data and suppression of detail which may obscure 
the classification, are performed to reduce noise. Finally, the processed data are formatted to a 
form suitable to subsequent analysis. 
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Instead, there are general methods of approach to features extraction and classification. The 
features should be invariant or at least insensitive to irrelevant variation, such as limited amounts 
of translation, rotation, scale change, etc. while emphasizing difference that are important for 
distinguishing between pattern of different types. Assume that a sufficiently large amount of 
information Zi has somehow been obtained and assembled in pattern z. Taken together, these 
quantities are supposed to contain the information needed for classificntion, but some of them 
can be unpractical to use or less important than others. Feature selection methods seek a small 
Dumber of Zi by obtaining a subset from the original one, by discarding irrelevant information 
while keeping the important features. Dimensionality reduction methods obtain a smaller number 
of Zi by forming, usually linear, combinations of the original ones. 

Once a set offeatures has been selecled, the only remaining problem is to design the classifier. 
The optimum classification is one for which all the patterns are associated to the proper class 
designator. Unfortunately, this is only possible in extremely simple situations. Besides that, a 
classifier that performs well on a set of patterns is not ensured to perform so well on a new set. 
This suggests that the classification problem has an important statistical component (Ref. 32) and 
that perhaps one should 100I for a classification procedure that minimizes the probability of error. 
In such terms, the pattern classification becomes a problem in statistical decision theory. The 
conventional Bayes' classifier (Ref. 32) characlerires classes by their probability density funclions 
on the input features and uses Bayes' decision theory to decide to which class the input belongs. 
To implement Bayes' classifier the a priori probabilities and conditional densities must be known 
and in most pattern classification situations this is not the case. Usually, however, sample patterns 
from each class are available and the necessaries probabilities can be estimated from the samples. 

In general, samples of training pattern can be used to design the features extractor and the 
classifier. After the training phase, new test patterns are used to evaluate the efficiency of classi~ 
fication. It is important to note that test data should never be used during training phase, since 
this produce an overly optimistic estimate of the real error rate. Test data must be independent 
data that are only used to asses the generalization, defined as the .error rate on patterns never 
seen before. The more complete is the training set and better results are achieved. Rather than 
focusing on amount of training samples, it is better to concentrate to the quality and represen· 
tativeness of them. A good training set should contain routine, unusual and boundary~condition 
cases. Gathering the best possible training data improves training and ensures the best possible 
result from the process. 

Feed-forward layered networks and their learning procedure are well suited for pattern classifi
cation (Ref. 31). The internal representation of input pattern into the hidden layers can be seen as 
a sort of features extraction. In this case, the features are the result of weighted sums and linear or 
non-linear threshold functions. The weights, which can give some indication on the importance of 
an input data for classification, are learned during a training phase. The learning is performed with 
supervision, since each training pattern is associated to a label specifying the correct class (target). 
Features themselves are subject to subsequent elaboration and forward propagation through the 
layers until a convenient features representation is reached. In the last layer the classification is 
then performed, using simple threshold functions. 

In the event classification problem, one tries to find an efficient mapping between some observed 
kinematical variables describing multiparticle production and well separable features. This map is 
learned using back-propagation on a set of training samples. After training, the network general
ization is t ested on an independent set. Both sets are generated with a Monte Carlo program. The 
procedure is then tested on different Monte Carlo models, to check its model independence (Re
f. 44). 

Public-domain software implementing the tuning of a feed-forward net is nowadays widely 
available (Ref. 45). Correspondingly, feed-forward nets have been applied to a large number of 
classification problems, in a "standard" way. We give below a summary of such applications. This 
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cannot be complete due to the growing interest on the subject. 

• Quark-gluon Jet separation in e+e- collisions 
(Ref. 44,45,46) Three-layer> Neural Network. No detector effects kept into account. Result. 
on quark/gluon jet "eparation and on bb - other quarks separation are "table 'With re"pect to 
the model u .. d for troining and testing the network {ARIADNE 3.1 {Ref. 47}, HERWIG 
3.4 {Ref. 48} and JETSET 7.2 {Ref. 49}}. Center ofma" energies of 29 and 92 GeV. 

(Ref. 50) Three-layer> neural network. Tested on .imulated data for the DELPHI detector 
at LEP. 

• b-quark tagging in e+e- collisions near the Z mass 
(Ref. 44) Three-layer> Neural Network. No detector effect • . 

(Ref. 51) Three-layer> network. Simulation of an average LEP detector, a. in Ref. 52. 

(Ref .. 53) Three-layer> network. Tested on .imulated data for the ALEPH detector. 

• General Ravour classification in e+e- collisions near the Z mass 
(Ref. 54) Separation into 4 cla"es : uu and dd {unrewlved}, .s, ce, bb. Four binary 3 layer 
network.. Measurement of the branching fractions on DELPHI 1990 data. 

(Ref. 55) Separation into 3 cla"es : uu , dd and 5S {unresolved}, ce, bb. Four layer network, 
with 3 output nod ... J,{ea.urement of the branching fraction. on ALEPH 1990 data. 

• W /Z classification in pP interactions 
- (R ef. 56) Separation of Wand Z decay. from QCD background u.ing simulated data in the 

ca ... tudy of the UA2 detector at the SppS. 3 layer> neural network. 

• b jets identification in pP interactions 
- (Ref. 26) 4 layer> neural network. Simulated data for the case study of the CDF detector at 

FNAL. 

• Electron identification in an electromagnetic calorimeter 
- (Ref. 57) Segmented calorimeter with 5 longitudinal sampling •. 3 layers feed-forward network 

with one input layer. 

• Particle identification in a Ring Imaging Cherenkov 
- (Ref. 58) 3 laye" neural nciwork. Used in simulated data from the DELPHI RICH. 

Some pattern recognit ion problems can be reconduced to pattern c1assification, by discretization of 
the output space. In such a way, feed-forward neural neis can be used to solve an analog problem 
after analog-to-digital conversion. This has the disadvantage of increasing the size of the output 
layer, with possible convergence problems. Some applications of such a technique are summarized 
below. 

• Pattern recognition in a straw chamber 
- (Ref. 59) 3 layer neural network with 14 output nodes, representing the angles of a track. 

Simula.ted data without noise. 

• Vertex finding in a drift chamber 
(Ref. 59,60) 3 layeT neural network with 20 output nodes l repre!enting the projection" on a 
coordinate azi •. Simulated data, plu. real data from a chamber used in E-735 at FNAL. 

4. Conclusions 

The study of the operation of brain has lead to artificial Neural Networks that, although using 
techniques far fIom the initial model of the study, can approximate arbitrarily complex functions. 

Neural Networks can implement massively parallel and highly interconnected algorithms. Their 
architecture promises to allow a significant increase of speed in data processing and the possibility 
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to store memory in the architecture itself. 
In this article, we have introduced the basics of Neural Networks, presented some simple exam

ples of applications (centered on the most interesting feature for HEP: the possibility of learning 
by examples), and finally we have shortly illustrated some of the current case studies. 

The use of Neural Networks in HEP has been shown to be especially fruitful when dealing 
with classification and optimization problems. The first case will imply in the next years the 
implementation of Neural Networks on dedicated hardware, today at the level of prototypes, for 
the use in fast on-line triggers. The application to optimisation problems will probably result in a 
new generation of off-line algorithms. 
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