———

ISTITUTO NAZIONALE DI FISICA NUCLEARE

Sezione di Trieste

INFN/AE-92/13

3 aprile 1992

C. Bortolotto, A. De Angelis, N. De Groot and J. Seixas
NEURAL NETWORKS IN EXPERIMENTAL
HIGH-ENERGY PHYSICS

Servizio Documentazione
dei Laboratori Nazionali di Frascati

NEURAL NETWORKS
IN EXPERIMENTAL HIGH-ENERGY PHYSICS

C. BORTOLOTTO, A. DE ANGELIS

Istituto di Fisica dell'Universita' di Udine and INFN Trieste
Via Fagagna 208, 1-33100 Udine, Italy

N. DE GROOT

NIKHEF
Amsterdam NL-1009, The Netherlands

and

J. SEIXAS

CERN
Geneva CH-1211, Switzerland

ABSTRACT
During the last years, the possibility to use Artificial Neural Networks in experimental High Energy
Physics has been widely studied. In particular, applications to pattern recognition and pattern classi-
fication problems have been investigated. The purpose of this article is to review the status of such
investigations and the techniques established.

Keywords: Neural networks; Classification problems; Optimization problems; Taxonomy; Nonlinear sepa-
rators.

To be published in International Journal of Modern Physicsa C

INTRODUCTION

During the last decade the interest on neural networks has been increasing steadily and their
field of application is nowadays growing fast as their ability to solve intricate pattern recognition
problems is shown to be more and more powerful. In High Energy Physics (HEP), however, the
interest on these systems has been up to now somewhat restricted, mainly because conventional
data aquisition and analysis methods work quite well. This situation is bound to change with
the next generation of accelerators: higher energies mean higher multiplicities and thus the next
generation of HEP experiments will have to deal with an"unparalleled wealth of information both
on-line an off-line. Treating vast amounts of data requires an increase in speed of data processing,
which makes massive parallelism unavoidable and, clearly, neural networks a natural tool.

It is important to emphasize that the term “neural” is in this context somewhat misleading.
Although neural nets are collections of basic units connected between themselves in a certain way,
the resemblance to a real brain stops here: the basic units have very little to do with actual neurons
and even in the best cases the rate of firing imposed to these basic units by far exceeds the one
found in real neurons. The main point is that in neural nets information processing tends to be
parallel (and in some models asynchronous and stochastic), rather than sequential, clocked and
deterministic as in conventional computers systems. Also, information storage is distributed across
the network rather than siored in specific memory location. Since there is no separation between
CPU and memory units one avoids the von Neumann bottleneck: in this resides all the power of
neural networks.

It is also worth mentioning that although presently existing models should be used as a guiding
line to the network designer, practical applications can (and should) be attacked in general with a
much more broad minded approach. Implementation in hardware of a real neural system becomes
more and more difficult with the increasing number of units involved, and so one should always
contemplate the possibility of trading architecture complexity for neuron complexity.

The paper is organized as follows: in Section 1 we shall introduce some basic facts about neural
systems and in Sections 2 and 3 we shall describe two well known models: Hopfield nets and back-
propagation nets. Together with the description of the techniques, some current applications are

presented. Finally we conclude and present some prospects for the future development of neural
nets in HEP.

1. Basics

1.1, Neural Networks as Compuling Machines

Before embarking directly on the subject of neural networks (NN) let us first make a lightning
detour on generalities of computing machines (Ref. 1). A computing machine is a black box which
interacts with a given environment £ receiving from time to time inputs I(¢) and delivering from
time to time some outputs O(t). The machine is, of course, composed of internal parts which,
by the action of the inputs, will change their state during the history of the apparatus. Thus, to
fully characterizse a computing machine one needs to define two functions. First, an input/output

function

o(t) = F(1(), Q) (1.1)

which characterizes the output delivered by the machine at a later time ¢’ as a function of the
input received and of the internal state of the machine Q(t). However, as the input is received the
internal state can also change, and so we also need to know the change of state function

Q(Y) = G(I(2), (1)) (1.2)

If the possible number of states through which a machine can pass is finite we say it is a finite
state machine; otherwise we say it is an infinite state machine. In all the cases we will consider in
this paper, time is a discrete variable and so expressions (1.1-2) can be rewritten in the form

O(t +1) = F(I(1), Q(1)) (1.3)
Q(t+1) = G(I(1), (1) (1.4)

Let us now introduce the formal neuron (Ref. 2), a very simple computing machine, represented
as in Fig. 1.

e 3

Fig. 1.

It has a certain number of input lines I),,(m = 1,2,..., M) and a simple output line. These lines
can be either be excitatory (I, = 1, represented as ——) or inhibitory (Im = 0, represented as
——o). The change of state function is constant and the input/output function is a theta function

O(t+1)=0 (i Im(t)—ﬂ)

that is, a formal neuron only gives an output (“fires”) when the sum over all the lines I,,, is greater
or equal than a given threshold n. Some specific examples of formal neurons are given in Fig. 2.

OR AND NOT

Fig. 2.

Formal neurons can be connected between themselves to produce more elaborated computing
machines, in the sense that the outputs from some units can be considered as inputs to other units.
Furthermore it is clear that any finite collection of formal neurons is a finite state machine.

The converse is also true (Ref. 2): given a finite state machine it is possible to construct a
net of formal neurons that is equivalent to that machine. This means that given the (boolean)
functions F' and G it is possible to construct a net of formal neurons that will represent those
functions. So, designing a net is equivalent to finding a function representation.

In practical situations, however, the representation of the functions F and G is in general not
known. Therefore one has to devise methods to construct it or, at least, give the best approximation
to the desired representation. Adaptive neural networks (ANN) as we will see in subsequent sections
provide a solution to this problem in the form of an iterative process that converges to the right
representation of the F' and G functions. This iterative process — also called learning — corresponds
thus to the search of fixed points in the space of all possible functions.

One should notice that it is not guaranteed off-hand that the methods provided by ANN give
always the more economical or even the best solutions to the problem being studied. Very often
the design of the net for a practical problem is largely a matter of trial and error. On the other
hand, as we will show in some examples, non adaptable nets (NAN), like the nets of formal neurons
we have described above, can also give quite good solutions in some well defined problems, with
the additional advantage that they are much easier to implement in hardware.

1.2. Architecture

As we saw in the last section a neural net is an ensemble of very simple computing machines
(neurons) connected among themselves with some definite architecture. The connections between
the neurons can have some resistivity. This resistivity specifies how much the signal sent from
unit 7 to unit 7 will influence the response of unit ¢, that is, it specifies the weight of unit j in the
response of unit 1. Therefore we associate with each link between two neurons i and j a weight
w;j. For the same inputs I; on a given neuron i different sets of weights w;; will produce different
outputs. This means that the input/output relation for the whole network is coded in the particular
set of weights chosen.

In the nets of formal neurons we introduced in the last section the w;; could only take the values
+1 (excitatory), -1 (inhibitory) or 0 (no connection) and these weights did not change during the
history of the net. However, as we said above, we will be also interested in cases in which the
values of the weights can change dynamically during the execution time of the machine. The nets
for which this holds are called ANN and the prescription as how to change the value of the weights
is called a learning rule. In the case the weights are kept fixed the net is said to be non-adaptive.

In adaptive networks we will not be interested in neurons as simple as the formal neurons. In
Fig. 3 we depict a typical neuron for those nets. Its environment £ is the ensemble of the neurons of

i

i

net; | A; |0

/j-—--

In—"'

G

unit |

Fig. 3. A schematic representation of a neuron.

the network which might be connected with it. We call “fan-in” the number of connections which
excite or inhibit a given unit. Similarly we call “fan-out” the number of units directly affected
by a given unit. As a first step of processing in neuron i, the net input net; = 3¢, . wijIj is
calculated, where w;; represents the weight of the connection between unit j and unit ¢, and I; is
the magnitude of the input coming from unit j. In general, the input I; is equal to the magnitude
of he output O; of unit j and so, unless otherwise stated, we will make no distinction between
them.

As for the (input/)output function O; and change of state (activation) function A4;, several
recipes can be found in the literature. However, the analogy to the physiology of the actual
biological neuron tends to enforce units whose output follows closely the biological bchaviour
(also, for instance, linear units often give somewhat trivial results). It is known that neuronal
response tends to saturate when the input level is sufficiently high or sufficiently low. As a result
the activation values (which, are sometimes equal to the output of the unit) are taken to follow
the sigmoid shape depicted in Fig. 4, which is known empirically to describe the behaviour of the
actual neuron. .

Finally we will introduce some basic concepts for the architecture of the network, that is, the
pattern of connectivity for the neurons involved in the particular system under study. Here we
have essentially two different approaches, corresponding to two essentially distinct models:

(i) Layered networks, in which we have the units organized in layers (see Fig. 5) the simplest (and
most limited) example being the perceptron introduced by Rosenblatt (Ref. 3,4). In this case
there are only two layers, the input layer and the output layer, with each neuron of the input
layer connected to the neuron of the output layer. However, as has been shown by Minsky and

Inputs
N Excitation F Activation — loutput
” C> |

Weights Sum Sigmoid Threshold

Fig. 4. Operations within a neuron.

(i)

%)
wi]
B X,

Fig. 5. Feed-forward and feed-back architecture.

Papert (Ref. 5) two layers only are not enough to encode all possible input/output functions.
Thus, the layered networks presently used have at least three layers — input layer, middle or
“hidden” layers and output layer. This type of architecture is often associated to a pattern of
connectivity where the output of units on a given layer act only as inputs to units on layers
above their own (the so-called feed-forward networks).

Hopfield-type networks in which every unit is connected to all other units without any particular
hyerarchichal structure (see Fig. 5). So, this kind of networks is in principle a generalization of
the ones previously introduced. In practice this type of architecture is quite often associated
with a fixed (in the sense of non-adaptable) pattern of connectivity, and so the network does
nothing more than to “recall” patterns which have been previously stored “by hand”. The
major advantage of the Hopfield-type networks stems from the fact that in some well defined
conditions the whole machinery of Statistical Mechanics can be applied allowing for a careful
study of problems like determining, for instance, the number of patterns which can be stored
and retrived with a given error.

As we saw, a basic fact about any model of neural networks is that information is stored in the
particular choice of weights w;; which has been taken. So, during the history of the network not
only the neurons can change their internal state, but also the weights can change by a learning
procedure. In the next section we will look more closely at this dynamics.

1.3. Dynamics

So far we have analysed the basic components of a neural neiwork. We will now turn our

attention to the actual interplay of the various elements of the network during the history of the
system. Here we must distinguish between two phases in this history:

(i)
(i)

The learning phase during which the weights are modified according to a chosen learning rule.

When the learning phase is over, the network is ready to be used. Now we enter a phase in which
we should be able to retrieve information which has been stored using the learning algorithm.
Notice that the redundancy introduced in the network by the large number of connections
present implies that even if some of these connections do not work, or some error is present on
input, we still expect the network to give the right — or an approximation to the right — answer.

In the next two sections we will see how these different phases are realized on the two most

Fig. 6. A generic neural network updating.

widely used models, the Hopfield model and the back-propagation model.

2. Hopfield-type Neural Networks

A Hopfield-type (Ref. 6) neural network is a N-dimensional dynamic system that evolves at
discrete time steps. Each neuron i at time {, has a binary state z;(t), which takes, for example,
the value +1 when the neuron fires and —1 when it is quiescent. In such a way, the state of the
whole network at time £ can be described by a binary “state vector”:

z(1) = (z1(1), z2(2), ..., 2N (1))

where N in the number of neurons in the network, and by a weight matrix [w;;] where w;; > 0
represents an excitatory influence of neuron j on neuron 4, while w;; < 0 represents an inhibito-
ry influence. As usual, if w;; = 0 there is no connection between neuron j and neuron i. A
“local threshold” ©; is associated with each neuron i. The neuron i fires at time t' = ¢+ 6, accord-
ing to a probability which is a function of the integrated input received, compared to the threshold
Q;:

N
Prob(z;(t') = +1) = Q(Z wijzi(t) — ©;)

(see Fig. 6) where g is a sigmoid function as shown in Fig. 7. In general the function g is also a
function of a parameter T called temperature, which represents the width of the region in which
g increases from near 0 to near 1. T is then a measure of the stochasticity of the process: T'= 0
corresponds to the deterministic limit of the step function (bold line in Fig. 7).

If a discrete time dynamics and T' = 0 are assumed, the time evolution of the system is described
through the dynamic equation:

N
zi(t+1) = Sign[Zw,-J-zj(t) - 0y] (2.1)
J=1
where
+1, if y > 0;
Sign(y) = { -1, if y <0;
unde fined, if y=0.

If the weighted sum over all the neurons j connected to neuron i is greater than the threshold ©;,
then i fires and its state becomes +1. If the weighted sum is less than ©;, i turns off and its state

o
X

Fig. 7. The probability of firing as a function of integrated input for different temperatures T,

becomes —1. If the sum equals ©;, the convention is that the neuron 7 maintains its previous state.
The weights w;; and the thresholds ©; are the network parameters.

There are two major ways to implement the updating of the states: parallel-synchronous and
sequential-asynchronous. In parallel updating all neurons are updated at the same time, then this
kind of dynamics is described by the dynamic Eq. (2.1), where each new state z;(1+ 1) of 2 neuron
i is computed as a function of all non-updated states z;(t) of the other neurons. In contrast, in

an orderly sequential iteration, where neuron i updates its state immediately after neuron i — 1,
Eq. (2.1) should be replaced by

i-1 N
zi(t+1) = Sign[z wijzi(t + 1)+ Zw;,-zj(t) - 9y]
gl Jj=i

Not all sequential iterations are ordered: the neurons states can be updated in random order.
Sequential updating usually applies in statistical mechanics and is more natural for disordered
systems (Ref. 7), where there is no clock to control the simultaneous updating. On the other hand
delays in signal transmission are relatively large. Dynamic rules between these two extreme cases
are possible. Since the information about the updating of a neuron might not have enough time to
arrive at the next one, this effect could be modelled by parallel synchronous updating of randomly
chosen blocks of neurons (block-sequential updating). Different models imply different dynamics,
but parallel and sequential updatings present analogies (Ref. 8). Sometimes, the components of the
state vector assume the values 0 and 1 instead of —1 and +1. Equation (2.1) is then substituted
by

N
2i(t+1) = H[Y wijz;(t) - ©)]
J=1
where H is the Heaviside funciion
+1, if y > 05
H(y)={01 if y <0;
unde fined, if y=0.

In the following sections, we will present two kinds of problems in which a feed-back neural
network model works well: associative memories (Hopfield model) and the track finding prob-

lem (Ref. 9), showing the successes and the limits of this kind of approach.

2.1. Hopfield Model

Our goal will be now to obtain a neural network working as a memory in which the access
to information is made through attributes of the item to be retrieved. As we mentioned in the
last section in a learning session a set of M input patterns is presented to the network, and by
some means they become associated with M output patterns. Denoting the input patterns by
{;N = ({f‘f, ,Efvj;') and the outputs by EEUT = (E%UT,. ..,fgyT), during the learning phase
a mapping must be established from the inputs to the outputs. The learning session is followed
by a test session, during which the network is expected to recognize all the input patierns it was
taught. Moreover, if during the test a noisy or partial input is presented, one would like an output
“close” to the correct one to be associated. These features are referred to as the memory being
associative or content-addressable, adaptive and noise-tolerant.

Since a Hopfield network has neither input nor output layers, the p-th input and the correspond-
ing output pattern are “simulated” respectively by the initial state z(?)(0) and the final state z(F)(t)
of the whole network. Then, if the network is initialized with an initial state z(P)(0) = {;N at
the dynamic Eq. (2.1) is demanded to produce the final state, for t large, z)(t) = E}?UT, for
p=1,..., M. This is done by making each z(P)(t) a fixed point (Ref. 10) of the dynamic Eq. (2.1),
ie., z(®)(1) = 2P (1 4 1).

The set of all initial configurations of neurons which lead to a given memory state is called
“basin of atiraction” (Ref. 10) of that memory state. It is clearly desirable to have a large enough
basin of attraction around every pattern to be stored, to assure that all input patterns sufficiently
close to it will be drawn to the associated fixed point by the network dynamics. This enables the
reconstruction of stored information from a deteriorated or partial description. Different patterns
correspond to different states of activation of the neurons. A partial pattern activates only some
of the neurons. Interaction between the neurons then allows the set of active neurons to influence
the others, completing thereby the state and generating the pattern that best fits the partial one.

The weight adaptability in the Hopfield model is simulated through Hebb’s rule (Ref. 10,11) :
one starts with no connections among the neurons and then increments the value of the connections
according to the rule:

Aw;; = Awj; = 96

where 7 is a positive learning coefficient and £ is the pattern to be stored. If there are M patterns
to be stored (E(l),f(z), «.., €M), the weights derived from this learning rule are

M

1

Wi = 2) & (2.2)
p=1

with w;; = 0. By following Hebb’s rule and by making a few exira assumption about the number

of stored patterns and their statistical properties, the £(P) will be attracting fixed points of the

Eq. (2.1). This will be shown in the next section.

2.1.1. Dynamics of the Hopfield model

To analyze the time evolution of a dynamical system and to prove the existence of stables
states, a classical method is to associate to the system a time-varying energy funclion which is
defined in terms of the current state of the system. In this case the minima of the energy function
correspond to stable states for the dynamic system, i.e., fixed points for the dynamic Eq. (2.1).
Hopfield (Ref. 6) observed that by adopting the dynamic rule (2.1) and assuming symmetric weights
wi; = wj; and wy; = 0, like in Hebb’s rule, one has precisely the equation describing a Spin
Glass (Ref. 12) system at zero temperature relaxing towards equilibrium, when one flips one spin

10

at a time. There are in fact some common features between Spin Glasses and Hopfield Neural
Networks: both are characterized by a great number of variables, each of them can assume one of
two possible values, and interacting in a complex and not uniform way. Due to this analogy, the
weights are often called “bonds” and denoted with J;;, while the state of a neuron i at time ¢ is
often represented by an “Ising Spin” S;(t). From that, an energy function can be defined

1 N N N
E(t)=~3 30N wiizi(t)zi(t) - Y ©izi(t) (2.3)

i=13=1 i=1

Because of the symmetric form of w;; and the asynchronous updating of the neuron state (one
at a time), Hopfield showed (Ref. 6) that E is a monotonically decreasing function: the dynamic
process evolves until a stable state (fixed point) is reached, corresponding to a local minimum of
the energy function (2.3). In such a way, each pattern to be stored corresponds to a minimum of
E. Since the energy function resulting from the Spin Glass model has many local minima (Ref. 12)
one can also obtain a large storage capacity. Each local minimum is surrounded by a “basin of
atiraction” if the system state corresponds to an energy value in a local minimum basin, then
the system evolves towards the associaied patiern. In this way, each input z(P)(O) determines the
choice of one minimum, and recalls the pattern £(P) = z(P)(t) to which they are sufficiently closely
associated. That is, if the input z(P)(0) has a large enough “overlap”

1 N
m(p)(O) =5 z :.-(ﬁ)flgp)
i=1

with the network state £(P), then the dynamics should produce the final state z(")(t) = ¢(), When
the noise level is too high, i.e., the initial overlap m(?)(0) is too small, the network relaxes to some
spurious states that are not near the right output pattern. Moreover, for the choice of the weights
given by Eq. (2.2) and ©; =0 for i = 1,..., N, the enecrgy function (2.3) can be rewritien as

M
E(t) = -3 3 (mP @) + ;M

where m(P)(1) is the overlap of the network state z() at time ¢ with the pattern ¢(P). Up to an
additive constant, E is now given as the negative sum of squares of the overlap. Then a minimum
of the energy function corresponds to a maximum overlap.

Intuitively, it would seem that at some point the network would become saturated, i.e., that the
number of coefficients would become insufficient to uniquely specify all the memory configurations.
When the number of stored patterns M is limited to (Ref. 13)

N
&
~ 4log N

where N is the size of the pattern (number of neurons), one can statistically show (Ref. 13) that
the stored patterns are just the local minima of the energy function. When M exceeds this upper
limit, a lot of these minima turn into spurious states and the network ability to store memory
patierns is drastically reduced. This is a rather small number in comparison to the maximum
number of patterns the network can represent (2%). The problem becomes worse if the patterns
are more correlated. In fact, if the patterns are not orthogonal the memorization may be not
perfect (Ref. 10). Furthermore, Hopfield model is based on the symmetry of the synapses (links).
This restricts the model to aulo-associative recalls only, i.e., an input pattern is associated with
itself and the main goal is pattern completion. In order to perform hetero-associative task, Hopfield

11

introduced asymmetric synapses but did not provide a corresponding energy function and therefore
could not retrieve hetero-associative memory pairs completely.

Hopfield dynamic model is essentially a T = 0 Monte Carlo (Ref. 7,14) dynamics. Starting from
an arbitrary initial configuration, the system evolves by a sequence of single-spin flips, involving
spins which are misaligned with their instantaneous molecular fields. This process monotonically
decreases the energy function (2.3), and leads to steady states, which are the local minima of (2.3).
A natural generalization of this model to a system with noise is to adopt single-spin dynamics at
a finite temperature T = B~! (Ref. 15), using the formalism of “simulated annealing” (Ref. 12), so
that the updating rule becomes probabilistic and Eq. (2.1) is substituted by

P({zi(t + 1)}{=; t)})—HP(z.(t+ 1)|{z,(t)}) = H[1+ ~2pzi()Hi)-1

where P({z;(t + 1)}|{z;()}) is the probability for neurons to have the values z;(1 + 1) at time
t + 1, given the network configuration {z;(t)} at time ¢, and

N
= ﬂ Zw,-,-:c,—(t)

For symmetric coupling w;; = wj; one can also show (Ref. 16) that Eq. (2.3) tends to a stationary
Gibbs distribution:
P({z(t+1)}) x e PEM)

therefore the standard methods of equilibrium statistical mechanics can be successfully applied.

2.1.2. Associative memories in HEP

An interesting way to think of associative memory is to think of data in pixel format, like
an image. An image consists of a set of on and off pixels. Suppose we connect all the on pixels
together with reinforcing coefficients. If we turn off some of them, the other ones will turn them
back on. Thus this image is “stored” in the pixel array. In this way multiple capacity and efficiency
is actually a very active field of research.

There are two potential uses in HEP (Ref. 17). One is in interrogation of HEP data bases. The
information in HEP events could be represented in pixel format. If we are looking for events with
certain characteristics but don’t care about what other characteristics they may have, we simply
specify these characteristics to the network, and if an event fulfilling them is stored in the network,
it displays the event. The other use is in storing patterns for patterns recognition problems, such as
storing templates for a template matching track finding algorithm. One would present an observed
hit pattern to the network to see if it corresponds to one of the stored templates.

2.2. Oplimization Problems

The analogies between statistical mechanics and the Hopfield model result in an interesting
application of this type of neural networks in optimization problems.

The energy function minimized by a neural network can be any function expressible in terms
of the states of the neurons. For this reason, the Spin Glass model is also a good model for solving
optimization problems, i.e., problems where one seeks simultaneous satisfaction of a maximum
number of consiraints among hypotheses with a minimum resulting cost. If every hypothesis
is assigned to a neuron of a neural network, then a contradiction between two hypotheses can
be expressed by a negative connection between the corresponding neurons (Ref. 18). There are
several “near-optimel” solutions, each of them can be associated with a local minimum of the

12

Fig. 8. Definition of segment lengths 7;; and angles e,-,-,-; between segments (from Ref. 20).

energy function. In such a case, the energy function can be interpreted as a cost funciion that
must be minimized.

An example of optimization problem that can be treated with a neural network, is the track
finding problem (Ref. 9). It will be described in the next section.

2.2.1. The track finding problem

A typical pattern recognition problem in experimental HEP is that of reconstructing tracks of
charged particles in gaseous detectors (Ref. 9). The typical detector measures a set of N space
points 1 along the track, which may be curved by a magnetic field. From each of these points a set
of segments i — j will be defined subject to these conditions:

e A segment i — J connects two points i and j in the set, with i # j.
e The length r;; of each segment is less than some a maximum value R y;.

Thus, each point can be thought as interacting only with the points within a radius Ry,
to form possible track segments. A natural choice is to represent each possible segment with a
neuron (Ref. 19,20).

On a track, no point should have more than one directed segment entering or leaving it, and no
point should appear more than once. For this reason, inhibitive connections are imposed between
neurons violating these constraints.

The reinforcing connections will be set up such that the joining together of short segments
of similar direction will be favored, in order to ensure a smooth track. To define an appropriate
cost function for this network, two measurements are needes: length of the segments and angles
between adjacent segments, indicated in Fig. 8 (from Ref. 20).

In order to “code” this problem onto a neural network (Ref. 19,20), each segment i — j can be
represented by a binary neuron ij, the state of which is z;; = 1if the segment i — j is part of the
track, and 2;; = 0 if this is not the case. An energy function is to be minimized, that favours pairs
of neurons with similar slopes, with paths as short as possible, and inhibits bifurcations of tracks.

Time evolution of the network in Ref. 20 is shown in Fig. 9.

We evaluated the performance of this approach to the track finding problem (Ref. 21), as
recently proposed in the literature. The result was that this neural network approach produces
solutions of good quality for modest size problems (number of tracks 5-7, number of points per
track around 10). Typical results show “confusion” in regions where tracks were very close together,
leading to incorrect or illegal solutions. In fact, the final solution often violates the constraint that
there should be no bifurcation in the tracks. To remove these spurious solutions, a greedy heuristic
procedure (Ref. 22) was needed, which examines all track points with more than one segment
entering or leaving and removes those segments which correspond to a larger cost.

13

Noweep=40

Fig. 9. Segments at different evolution stages (from Ref. 20).

An attempt to apply this method to real data from a the TPC of the DELPHI detector at LEP
gave rather poor results: only a fraction of tracks were recognized, and at high costs (memory,
CPU consumption).

The method is not competitive with other conventional methods for the track finding prob-
lem (Ref. 23). The real interest of this neural network approach lies in the future possibilities of
implementing it in parallel hardware (Ref. 20), for fast on-line triggers.

Considerable effort was put into trying to optimize the performance by varying the form of
the synaptic weights (Ref. 24). In particular, one will probably never obtain perfect performance
without somehow incorporating curvature information. In this case, a possible choice for the
synaptic weights is:

Wikl < fijricos™ ajjprcos” Bijri

where ;i is the angle between the segments i — j and k — [placed tail to tail, §;;x; is the angle
between radial vectors to the midpoints of i — j and k — I, n = 100, fi;xr = +1if 7 = k (the two
segments are tail to head), fij;y = —1if 5 =1 or i = k (the two segments are tail to tail or head
to head) and fijx = 0 otherwise. Also in this case the parallel implementation provides the best
results (Ref. 24).

A further extension of the method presented is described in Ref. 25.

2.2.2. Secondary vertex trigger

The possibility to use a Hopfield neural network as a beauty trigger was investigated in the
literature (Ref. 26,27), for the case study of the SVX vertex detector of the CDF experiment at
FNAL.

One method on triggering on beauty are the detection of secondary vertices from the beauty
decay. The ISAJET (Ref. 28) Monte Carlo was used to generate bb events and QCD background.
The bb particles are allowed to decay into their secondary decay products.

The neural network approach used in this case is similar to that used for the track finding above

14

presented. Also in this case the neurons reinforce each other to the degree that the angles of their
segments are similar, but the reinforcing connections are
wijrt o exp(—A67;;, — BA$?)

where A and B are positive constants, 6;;x; is the absolute angle in D — ¢ space (D is the distance
of closest approach to the origin and ¢ is the azimuthal angle of the track) between the segment
i — j and the segment k — [, and A¢ is the difference between the ¢ intercepts (D = 0) of the
two neurons. A leakage term causes the neurons without reinforcement connections o decay to
gero. Initially, all neurons are activated and as the network evolves only those segments which
have neighbors of similar orientation remain activated.

Encouraging results are found on the possibility of tagging the presence of beauty via the
deteclion of secondary vertices.

2.2.3. Other applications
A review of other applications of Hopfield-type neural networks is presented in Ref. 29,

2.3. Non-adaptive Networks

As we said in the introduction, NAN have the immense advantage of being easier to implement
in hardware. This simplicity has, of course, to be payed for: non-adaptive systems are unable to
tackle situations for which they were not designed for, and so they can only be used in problems
where the input/output functions are completely defined. On the other hand, one trades dynamie
complexity for architecture complexity, which is not always possible.

However, they can be quite useful for some specific class of problems like calorimeter cluster
recognition and particle identification in Cherenkov detectors (Ref. 30). The basic idea behind
both problems is the same: how to classify points which are on a given pattern. In the case of
cluster recognition on reduces a spot to a single point which its center of gravity and contains all
the information (total energy deposited on the spot and size of the spot). In the case of particle
identification in Cherenkov detectors for every three points on a given output image one calculates
the center of the circle that passes by these three points; one gets, thus, a set of spots (composed
of possible centers for a circle created by a given particle) which can be reduced with the above
technique.

3. Feed-forward Neural Networks

The problem in feed-forward (Ref. 31) neural networks is again to model some mapping be-
tween input pattern z and output pattern y. The architecture of this kind of networks is the one
described in Section 1.2. for layered networks. There are I = 1,..., L layers with ¢ = 1,..., N}
neurons per layer. Each neuron is connected to all neurons of the neighboring layers in a forward
directed manner, so that the output of one neuron is connected to the inputs of neurons in the sub-
sequent layer (feed-forward architecture). The output of each neuron is assumed to be a bounded
semi-linear function of its inputs. That is, if 05-'_1) denotes the output of the j-th neuron of layer
I — 1 and w;; denotes the weight associated with the connection of the output of the j-th neuron
to the input of the i-th of layer I, then the i-th neuron takes the value

z;, ifl=1
OEI) =

N 3.1
g(z w.-jo.('-'—l) -9;) ifl=2,...,L (3-1)
J=1

where g is a bounded, differentiable and non decreasing activation function. In most cases the
activation function is the sigmoid logistic function

1
l4-g=e

g9(a) = (3.2)

15

Note that for this activation function, the output can not reach its extreme values of 1 or 0 without
infinitely large weights. It is necessary to use a certain folerance 7 in reading out the network output
in situations in which the desired outputs are binary. A typical way to implement this is to read
out as 0 all output values between 0 and 0 + 7 and as 1 all output values between 1 — 7 and 1.
This is equivalent to adding another threshold function to each output neuron as shown in Fig. 4.
The weights w;; have real values that can be positive (excitatory), negative (inhibitory) or zero
(no connection). In this model, the outputs of neurons in different layers have different meanings.
A set of “input neurons” are assembled in the first layer, and hence only in this layer there is
the representation of the externally dictated patterns. “Hidden neurons” are assembled in one or
more hidden layers. On these layers, the system is free to choose an internal representation of the
input pattern. “Qutput neurons” constitute the last lay;ar. This layer collects the representation
of the output pattern associated to the input pattern received. The first and the last layer serve
respectively as the input and output of the network. Input sets the first layer in an initial state.
After its forward propagation through the network layers, the state of the last layer is read out
as output. There is no meaning to stable state, however, every final siate of the lasi layer is read
out, whether it is near the right output pattern or not. This may pose the same difficulties as
the spurious state of the Hopfield model. The feed-forward network described above is also called
multi-layer percepiron. The perceptron has a long, interesting and instructive history, which is the
topic of the next section.

3.1. Percepiron

The perceptron, proposed by Rosenblatt (Ref. 3,4) in the 1950s and 1960s, is a special case of
feed-forward network with only one input layer, a single output neuron and no hidden layers. It is
often called a one-layer network, referring to the single layer of weights connecting input to output.
In this case, there is no internal representation of the input pattern, but only the coding provided
by the external world is used. Conceptually, the perceptron may be described as a machine with
an input channel for patterns, a NO/YES output indicator and a mechanism to indicate if the
machine response is correct or not (see Fig. 10).

The input patterns belong to two possible classes, Ip and I;, and one would like the perceptron
to respond NO (0) to all patterns in Iy and YES (1) to all patterns in I;. This can be viewed as a
classification task: the perceptron classifies all possible input to either I; or not-I;. Furthermore,
the perceptron acquires this skill in a training stage, during which it adapts its parameter of
decision if the given response is wrong. A first idea to implement such a machine is as a memory
where the patterns are stored in two separate groups. This kind of implementation never makes
a mistake on a previously seen pattern, but it is not able to take a decision on new patterns not
presented during the training-memorization session. A better approach is to find the “features”
that distinguish one class of patterns from the other and to use them in the classification task.

YES NO
[e] (o]

Wi

Fig. 10. A schematic representation of the perceptron architecture,

16

VU117

™
J
.L

Fig. 11. Computations of the perceptron’output.

In this case the machine is expected to perform well with inputs for which it was not specifically
trained, i.e., to be able to generalize. Perceptron, as a pattern discriminating machine, lies between
these two cases. It does not simply store the patterns, but it is also limited to what can be done
with no internal representation of the features and linear threshold relations between these features.
Therefore, as a compensation for this limitation, a simple learning procedure results from these
restrictions. This is what will be shown in the following section.

3.1.1. Definition

Let z, = (zp1,...,2,~) be a binary array, i.e., zp; = 0,1fori =1,..., N, represents the binary
coding of a pattern p. This array is presented to the perceptron through the N units (neurons)
that constitute its input layer, then it is forwarded into the single output unit that represents the
NO/YES machine indicator. The ontput unit is a linear threshold element, which takes the value
y = 0,1 according to the rule

N
y=H() wz; - 0©) (3.3)
i=1

where © is the output threshold and w; the “weight” of i-th input on the output. This computation
is shown in Fig. 11.

There is quite a lot that such a simple perceptron can do. For example, if w; = 1fori=1,2
and © = 1.5, the output unit will have the value y = 1 only in response to an input in which both
binary elements are equals to 1. In this case, the logic AND is computed:

2
12 E wiz; — ©
i=1

00 0-15<0
01 1-15<0
10 1-15<0
11 2-15>0

- O o w

Neuronal implementation of AND and OR function are shown in Fig. 12.

But the most interesting thing is the adaptability of the weights w; and threshold ©. The
perceptron modifies these decision parameters to conform better its correct response.

In the following, the perceptron output rule is assumed to be

N
y=H() wz) (3.4)
i=1

L5

% i\
' / e
w, =4 : ——3P= AND
% N ——
i LW
W,=0.5
W, =+1
- —r
U LW/ \ T—

Wa=H @—«» - ——3 OR
el 2

Fig. 12. Neuronal implementation of AND and OR functions,

instead of rule (3.3). This simplification does not affect the discussion, since © can be thought as
the weight from an input unit that is always set to one. In this case, © can be learned just like any
other weights. The perceptron ability to determine a set of weights w; that will ensure solution of
an assigned task, will be demonstrated in the next session.

3.1.2. Perceptron learning rule

To start the learning session, the perceptron is initialized: all parameters are assigned some
random value. Now, two groups I; and Iy of input pattierns are prepared: I, is constituted by
the patterns for which the perceptron response must be 1, and Iy by the pattern that should elicit
the opposite response. The set of these two groups of patterns is called the training set. Now,
pick randomly a pattern from one of the two groups and present it to the perceptron. Eq. (3.4)
determines the corresponding response of the output unit. Depending on this response, the weights
are modified according to the percepiron learning rule, which can be stated as follows:

(i) Correct responses generate no change.
(ii) If the response is 0 while the right one is 1, then

Aw; = nz;
(iii) If the response is 1 while the right one is 0, then

Aw; = —nz;
where 0 < 7 < 11is the learning coefficient. This learning rule is easy to understand. If z belongs
to Iy (Ip) and the weighted sum) w;z; is positive (negative), the perceptron response is 1 (0) and
all is well. Case 2 occurs when the sum is too small and then it must be increased. The 2; = 0
does not affect the sum, then their weights can not be blamed for the bad response. Changing
these weights might do harm in relation to the other patterns and does no good in relation to the

current one. Thus, the weights w; to increase are only those associated to the z; = 1. The opposite
is achieved in the case 3. The previous learning rule can be expressed in a single updating equation

Aw; =t — y)z; (3.5)

18

where y is the output produced by the input z, while £ is the desired one, or target. The most inter-
esting aspect of this extremely simple rule is the existence of the associated percepiron convergence
theorem (Ref. 5). :

3.1.3. Perceptron convergence theorem

Theorem 1. If there exists a solution w*, then the perceptron learning rule will converge to
some solution w in a finite number of steps for any initial choice of the weights.

How does the perceptron solve a classification problems? Each input pattern is translated into
a N-dimensional array, with binary components. Hence, the patterns belonging to I; and Iy, can
be represented as points in a N-dimensional space. The perceptron tries to find a hyperplane in
this space separating the two sets I; and Ip. In these terms, the theorem 1 can be reformulated as

Theorem 2. If the sets I) and I are separable, then the perceptron learning rule will separate
them.

Now, one can observe that the restriction on z that its components be either 0 or 1, is not
really necessary. Let 2z be an array whose components may take any real, positive or negative
value. Since the weights updating, given by learning rule (3.5), is proportional to z, it may be
overwhelmed by z too large or stalled by z too small. To solve this problem, instead of using =
itself, the unit-length array z can be used

-~ -~ -~ z -
Z= (zl,...,zN):(-lzll,...,]—:-l-) so that |z| =1

The problem of finding a separation between the two real sets I, and I, is not really different
from the problem of separating the two binary sets I} and Ip. In this case also, there exists a
convergence theorem

Theorem 3. If there exists a unit solution w* and a number § > 0 such that 3 w}&; > § for
all z € I; and Y w!z; < —é forall £ € I(',, then the perceptron learning rule will converge to some
solution w in a finite number of steps for any initial choice of the weights.

A more substantial variation is obtained by allowing more than two sets of patterns. Let
I, I,..., In be sets of patterns and suppose that there are vectors wj and § > 0 such that

N N
z € I; implies that Zw};z.- > Zw;iz; +éforallk#j

i=1 i=1

The perceptron convergence theorem generalized to this case assures that vectors w; with the same
property can be found by following the usunal principle of updating
N N
If z € I; and Z wJ‘-l-z,- < Zw:iz; for some k
w; must be inclrzalised and t:JElmust be decreased

Note that this generalization involves more than one single output unit in the output layer.
The output layer must collect M output units, one unit for each class.

Having a simple and transparent learning rule and an associated convergence theorem, the
perceptron is quite impressive. However, Minsky and Paper (Ref. 5) demonstrated that there is
a large class of tasks that perceptron is unable to perform. First of all, the convergence theorem
starts with an “if”, and then when there is no solution, the learning algorithm will not converge.
Not every sets of points are linearly separable, hence the class of problems that can not be solved
by the perceptron. A classic example of insolvable problem is the ezclusive-or (XOR) problem as
shown in Fig. 13.

19

A%

i
Fig. 13. No straight line can separate the solid points versus open points.

In what follows, a heuristic discussion on a well known statistical approach fo classification
based on Bayes’ rule (Ref. 32), is proposed. The aim is to find points of contact with perceptron
and then to understand what are the extensions that enable perceptron to solve problems like XOR
problem.

3.1.4. Bayes' decision rule

Suppose one picks a pattern from one of some possible classes Cj, with j = 1,..., M. Let the
selection be based on some methods like, for example, tossing a coin in the case of two classes.
Each class is thus selected with a priori probability P(Cj), where, of course

M
3 Pig)=1

The extracted pattern z is an array of random variables. Since each z; has been chosen to try to
separate the classes, then its distribution is presumably different from the patterns of one class
than from the patierns of the other classes. Thus, for each z;, M conditional densilies p(z;|C;)
exist, and for each pattern z, M joint conditional densities p(z|C;). Now, it is possible to compute
the a posteriori densities using Bayes’ rule (Ref. 32)

p(2]C;)P(C))
Cilz) = ——————== 3.6
p(Jl) p(z) ()
where p(z) = 23"{:1 p(z|C;)P(C;) assures that z:;ﬂzlp(C_,-]z) = 1. The Bayes’ decision rule states
Decide C;j if p(Cj|z) > p(Ck|z) for all k # j (3.7

In other words, if a particular z has occurred, this procedure looks for which Cj is the most likely
and then asserts that z belongs to that C;. This rule minimizes the probability of error in such
cases where all the a priori probabilities are known and there is no other information. There are
serious practical obstacles in the use of Eq. (3.6). A solution (Ref. 5) can be obtained by making
the critical assumption that the random variables z; are statistically independent over each class.
For this hypothesis

?(z|Cj) = Hp(z,-[Cj) forj=1,....M

Define
DPij :P(zi = IICJ')
¢i; =1 —pij = p(zi = 0|C;)

20

Now, suppose a z has just been observed, the decision rule (3.7) will choose that C; which maxi-

mizes
N N N
P; [T »is IT @i = Pi1Leia ™™ = BTTCEL)* [Tas
i=1

ri=1 ;=0 i=1 i=1 i

Since log is an increasing function, the decision rule (3.7) will select the largest of

N N
> =ilog(L) + (log P +) log i)
L)

i=1 i=1

Because the term enclosed in parenthesis is a constant that.depends only upon the class C; and
not upon the observed z, it is possible to write decision (3.7) as

N N
Decide Cj if Zw,-,—z.- +09; > Zw.—kzi + O forall k# 3 (3.8)

i=1 i=1
and then
N
Decide Cj if Z(w;,- —wig)z; — (O —©;) > 0forall k # 5

i=1
which has the form of the familiar linear threshold function. This suggests to design a layer-machine
like that of Fig. 14.

Each pattern to be classified is collected from the first layer, while each element 2,- of the
second layer computes the “decision quantity” 3 wi;z; + ©;. The single element of the last layer
simply decides which of its inputs is the largest. If the a priori probabilities (weights w;;) are not
known, they can be “estimated” in a iraining phase, during which a sequence of n patterns is
considered and the number of “favourable” patterns is counted for each class. All these analogies
with perceptron theory lead to a question: what happens introducing other layers between the two
input and output layers of perceptron?

Xy

se s
-

Fig. 14. Layered machine implementing Bayes’ decision rule.

3.1.5. Multi-layer percepiron

Since input units and output units assume values in the same domain, one can think of con-
necting perceptrons together in such a way that the outputs of one are the inputs for the others. In

21

Fig. 15. A linear separation between solid and open circles is possible,

1960, 1961 Gamba (Ref. 33,34) described a type of perceptron in which each z; is itself computed
by the threshold function of Eq. (3.3)

N N
Yr = H(Z lUkl'H(Z w,-j:r._,- = 0‘) = @k)
i=1 j=1

Gamba machines could be described as a two layers perceptron. Indeed, Fig. 15 demonstrated that
inserting a hidden layer of three neurons between input layer and output layer, with the weights
and thresholds indicated, a perceptron solution to the XOR problem is possible.

In this way, the four points of two-dimensional space are projected in four points in three-
dimensional space. These four points are now easily separable by a plane in the two desired
groups. This demonstrates that adding hidden layers increases the class of problems that are
solvable by perceptron networks.

A first question one can ask is: how many hidden units would be optimal for a particular
problem? If too many are allocated, it is not only wasteful but could also negatively affect the
performance of the network. In fact, since too many hidden units imply too many free parameters
to fit specifically the training patterns, their ability to generalize to new “test” patterns would be
adversely affected. On the other hand, if too few hidden units were allocated, then the network
would not have the power even to represent the training set. There exists no satisfactory theoretical
basis for determining the number of hidden units, which must often be decided by trial and error.

Another more worrying problem is that, in this type of networks, the perceptron learning rule
is not suitable. In single layer perceptron it is easy to identify the weight that is too strong or too
weak. For multi-layer networks it is not clear which of the weights is responsible for mistakes and
successes. This problem appears to be solved by the recent introduction of the back-propagation
algorithm by Rumelhart and Maclelland (Ref. 31).

3.2. Back-Propagation

In the back-propagation algorithm (Ref. 31) a training pattern is first forward propagated from
input to output, after which a certain measurement of the network output error is backward prop-
agated from output to input. The general idea is to update the weights on the basis of two
quantities: one depending on the input to that weight (like in the perceptron learning rule) and
the other depending on the desired output (target) and the actual one. A natural choice for ihe
second quantity is simply a difference between target and actual output, i.e., the output error. An
updating rule having these characteristics is

Apwij = N2y (‘p-‘ — 0pi) = N2p;bpi (3.9)

22

This is called Widrow-Hoff or §-rule (Ref. 35). It can only be used in networks without hidden
units.For each pattern p, the input z, produces the output op, which is compared with the desired
one, the target t,. If there is no difference, no learning takes place, otherwise, the weights are
updated to reduce the difference (,; — op).

Given a training set of patterns pairs (z,,1,), the delta-rule attempts to adjust the weights
so as to minimize the squares of the differences between the actual output o, and the target ,,
summed over the output units and all pairs of input/target patterns. Let

N
E=Y Bp=Y5) (i~ o)’ (3.10)
P P i=1]

be the measure of the error on all input/output patterns p. The delta-rule implements a gradient
descent in E when the outputs are linear, that is to say

N
Opi = Ew,—jzpj (3.11)
i=1

The derivative of Ej, with respect to the weight w;; can be computed, using the chain rule, as the
product of two quantities: the derivative of the error with respect to the output multiplied by the
derivative of the output with respect to the weight

dE, _ OE, doy
Bw,-,- . Bo,.- Bw.-,v

The first quantity tells how much the output of the i-th unit affects the error and the second
quantity tells how much this output is changed by changing w;;. From Eq. (3.10)

dE,
ﬁ = —(tpi — 0pi) = —bpi (3.12)
Moreover, from Eq. (3.11)
Jop; et
Bw,-,- ¥
then, one can write
8E,
'WL = 8piyp; (3.13)

Since 3B aE
—— e — _’L — . .
dw;; zp: dw;; Xp: brir;

it is possible to conclude that the delta-rule implements an approximation to gradient descent in
E, since the weights are changed after each pattern p is presented. Nevertheless, if the learning
coefficient 7 is sufficiently small, the delta-rule implements a very close approximation to gradient
descent in E and then it finds a set of weights minimizing E. A choice of 1) too large manifests itself
by oscillations around the minimum, leading to a non-convergence of the minimization process.
The important contribution due to Rumelhart, is how to implement Eq. (3.9) in hidden units,
for which there are no target values directly available, and for not linear outputs. Rumelhart

proposed a generalized version of Eq. (3.9), called generalized delia-rule. Define the net toial
outpul

N
netpi = Y W;j0p; (3.14)
§=1

23

where o,j = zp; if j is an input unit. Thus, a semi-linear unit is one in which
opi = g(nety;) (3.15)

and g is differentiable and not decreasing. To get the correct generalization of delta-rule

dE,

Apwij =
i

Using the chain rule
BEP _ 8EP Bnet,,,-

Bw.-j - 31181?,' Bw.-,- (3.16)
From Eq. (3.14)
i anet,,.- el
Bw,-,- = %J
If §p; is defined as®
aE,
= 3
byi = = e (3.17)

Eq. (3.16) has the same form of Eq. (3.13). Moreover

dE, = dE, 0dop;
Bnetp.- iy 30;,.' a‘neip.'

Bpi = —

By Eq. (3.15), the second factor of the previous derivative is

Bo,,.-

nety: = g (nety)

To compute the first factor, one must distinguish between the two cases that ¢ is an output unit
or not. In the first case

E,
30;:;

and from the definition (3.17) of §,;, then

= (tpi — 0pi)

8pi = (tpi — op,-)g'(netp,-) (3.18)

from any output unit 7. If 7 is not an output unit

OE,p 0E, dnelyy
—aopl' - _Z 61‘Lefpk aopi = anet Wi = lepkwh

then

(E ok Wki)g (nety) (3.19)

Eq. (3.18) and (3.19) give a recursive procedure to compute §,;, by a back-propagation of the error
signals through the network. These results can be summarized in three equations. First, the
weights updating has the same form of delta-rule in Eq. (3.9)

Apwij = nbpiop;

9Note that, since Opi = netp,- when the output of unit 1 is linear, this definition of 6},,' is consistent with that of
Eq. (3.12).

24

The other two equations specify the error signal, determined recursively starting from the output
unit ,
(tpi — 0pi)g (nety;) if i output unit;
bpi = (ZJP" wg,-)g'(net,,.-) otherwise.
k
In the next section, a discussion on practical application of this generalized delta-rule is presented.

The implementation of the generalized delta-rule results in two phases, denoted by forward
and backward propagation (Ref. 31). First, the weights are initialized with small random values.
During the forward propagation, the input is propagated forward through the network to produce
the output, that will be compared with the target to compute the error signal. A backward
propagation follows, during which the error signal for a hidden unit (for which there is no target
directly available) is computed recursively in terms of the error signal of the units directly connected
and the weights of these connections. In this way, the larger the difference between output and
target and the larger the error signals. The updating of the weights is then made with respect of
these error signals.

Since the derivative of the activation function is used in the error signal computation, the
discontinuous threshold function on which the perceptron is based, is not good. Moreover, a linear
activation function is not sufficient either, because in this case only linear separation is achieved. A
nonlinear, continuous activation function is then necessary, like, for example, the logistic function

1

9(netpi) = T3 emmetn

It is easy to demonstrate that the derivative or this function with respect to its total input net,;,
is given by)

g (netpi) = g(netpi)(1 — g(nety:)) = opi(1 - 0pi)
This derivative reaches its maximum for o,; = 0.5 and, since 0 < 0p; < 1, approaches its minimum
as o,; approaches zero or one. Since the weights updating is proportional to this derivative, weights
will be changed more for those units whose output is near 0.5, i.e., not yet on or off.

The learning coefficient 7 must be sufficiently small to better approximate the gradient descent
procedure and to avoid oscillation. Nevertheless, a greater 7 implies a more rapid learning. One
way to increase 7 avoiding oscillation danger, consists of including a momenium term in generalized
delta-rule updating

Aw;j = n(8i0;) + aA"w;;

where 0 < a < 11is the so-called momentum coeflicient, which determines the effect of past weights
updating on the current ones.

In case of linear output and no hidden layers, the error surface is concave with only one mini-
mum, so the gradient descent procedure implemented by delta-rule, is guaranteed to find it. This is
not the case with the generalized delta-rule, which suffers from the problems of hill-climbing proce-
dures, i.e., the danger of getting stuck in some local minimum. In fact, no convergence theorem
of those mentioned before regarding the single-layer perceptron, exists for back-propagation. How-
ever, in many problems the generalized delta-rule has demonstrated good performances in finding
a solution. One of these problems is the parily problem. In this problem, one wants a classification
scheme that differentiates input with an even number of 1's from those with an odd number. This
problem is a fairly difficult one, since changing any single input unit throws the output from one
class to the other. The XOR problem is a parity problem of size two. Rumelhart studied this
problem for different numbers of input units (Ref. 31). A solution found by the back-propagation
procedure is shown in Fig. 16.

A feed-forward network solution requires at least N hidden units for input patterns of size N.
In Fig. 16, the unbroken lines indicate weights w;; = 1, while the broken ones indicate w;; = —1.

25

Fig. 16. Solution to the parity problem found by the back-propagation learning.

The number in the circles represent the threshold of the unit. The hidden units arrange themselves
to count the number of 1 in the input. If there are m 1 in the input pattern, then the first m
hidden units are on while the subsequent are off. The hidden units are connected to the output
unit with alternately +1 and —1 weights, so that the weighted sum of hidden units outputs is 1 if
there are an even number of 1’s in the input pattern, otherwise is 0.

A certain number of theoretical analyses have been performed to determine the capabilities of
classifiers formed from multi-layer networks. Similar constructive proofs, developed independent-
ly (Ref. 36,37,38), demonstrated that two hidden layers are sufficient to form arbitrary decision
regions using multi-layer networks with step function. A careful mathematical proof (Ref. 39)
demonstrated that using sigmoidal function in multi-layer networks with only one hidden layer,
arbitrary decision regions can be approximated. This proof, however, is not constructive and does
not indicate how many units are required in the hidden layer.

3.3. Optimizations of Back-Propagation

Although back-propagation with the generalized delta-rule has been very successful in a number
of applications, it has a number of drawbacks. First of all the algorithm is not guaranteed to find the
global minimum of the energy function. Therefore the network may get stuck in a local minimum.
Next to this there exists no method of finding the optimal values for the network parameters. The
number of hidden layers and hidden nodes, the temperature, the learning rate and the momentum
term have to be determined by trial and error, thus leading often to non optimal values and slow
convergence of the network. Finally back-propagation shows bad scaling behaviour. This means
that when we increase the number of nodes, the computing time needed for training a network
grows explosively, making the method useless for practical applications.

To overcome these problems a number of refinements to back-propagation have been proposed.
We discuss some of these suggestions that leave the concept of local computation in the network
intact.

3.3.1. Adaptive Back-Propagation

In this section we discuss some strategies to speed up back-propagation (BP) by finding the
optimal learning rate for every weight individually. The heuristics for this approach are given by

26

Jacobs (Ref. 40).
(i) Every weight should have its own learning rate n. The optimal learning rate for a certain weight
might be bad for another one.
(i) The learning rate should be allowed to vary in time. As training goes on the error surface
changes and so will the optimal learning rate.
(iii) When the change of a weight has the same sign for consecutive steps, the learning rate for that
weight can be increased.
(iv) When the change of a weight changes sign, the learning rate for that weight should be decreased.
Three different algorithms based on these heuristics have been developed:
Self-Adapting back-propagation (SAB) (Ref. 41), SuperSAB (Ref. 42) and the delta-bar-delta
rule (Ref. 40). We give the recipe for one of them, namely SuperSAB and present the bench-
mark results for the three algorithms.

In SuperSAB each weight w;; has its own learning rate ;;. They are all initialized to a certain
value 7,4art. We define the increase factor 5y and the decrease factor - for the learning rate.
From here we take the following steps:

(i) Set all 7ij to Nutart-
(ii) Do normal BP step n with 8 momentum term.
(iif) For every w;j, as long as the weight change keeps the same sign, set
n+l _ n
Vs = Nt * 05
(iv) If the weight change has a different sign:

a) Undo the previous weight update

b) Set r,-}}"'l =n- +nfj

c) Set A'u.r,'-}"'1 =L
A comparison of SuperSAB with SAB and standard BP has been made by Tollenaere (Ref. 42).
The three algorithms were tested on a auto-association problem on a 10-10-10 network and on a
set of random patterns on a 10-5-2 network. On these examples SuperSAB was mostly significantly
faster than standard BP with optimal 5 and a. The speed of standard BP is also very sensitive to
the choice of these parameters, where SuperSAB allows a wide range.

SuperSAB is slightly more instable. In general normal SAB is performing worse than SuperSAB
and is behaving in a less stable way. SuperSAB shows a much better scaling behaviour than
standard BP. The values user for 7 and 74 used in the test were 2.0 and 1.05.

Tests done with Jacobs delta-bar-delta rule show similar results. Standard BP with and without
momentum term has been compared to delta-bar-delta with and without momentum term on three
different problems. One is the well known XOR task, one is a 6-6-6 network with should perform
a multiplexer task and the third one is a 3-1-8-8 binary-to-local decoder (a three bit binary value
should be converted to one bit set in a word of 8 bits). For all algorithms and problems the network
parameters were tuned to get a good performance. The delta-bar-delta method converged twice
as fast as BP on the first problem, slightly faster on the second one and 9 times as fast on the
third one. Also the delta-bar-delta method proved to be less sensitive to the choice of the network
parameters.

3.3.2. Other methods

In addition to adaptive BP some other methods have been tried to improve the network con-
vergence. One of the simplest is derived from the simulated annealing method in Boltzmann
networks. The temperature and the learning rate of the network is not kept constant during the
training phase, but are slowly decreased. This allows faster learning in the beginning and avoids
oscillations at the end of the training phase. An example of such a method can be found in Ref. 51.

Another method by Samad (Ref. 43) involves modifying the learning rule. In the delta-rule the
weights are updated using the error on the destination node i and the actual value of the source
node j (A,w;; = 16,i0p;). In the hidden layer we can use the expected value of the source node

27

instead of the actual one since we can compute it with &,; = (3, Spkwii)opk. The alternative
weight update rule becomes then: Apwij = népi(op; + 8p;)-

A comparison between the standard and alternative learning rule has been made for the XOR
task with a different number of layers (Ref. 43). In the test the alternative method converged twice
as fast on a 2-10-1 network. This number is increasing dramatically with the number of hidden
layers. The disadvantage of the alternative rule is that the errors §,; need to be computed twice.
Once to correct the source node value and once as the error on the destination node of a weight.

3.4. Applications of Feed-Forward Neural Networks to Classification Problems

The feed-forward neural network model is well suited for pattern classification tasks and thus an
interesting tool for the classification of, e.g., events, in High Energy Physics experiments. Pattern
classification (Ref. 9) in general can be defined as follows:

Given an object 0, one wants 1o associale this specific

object with one of several classes Cy,...,Ch. A class is formed by all those objects fulfilling

certain criteria which define the class itself. First of all, the object must be described through

a finite number n of quantities selected to be useful for distinguishing between classes. These

quantities are the result of measurements with a transducer T', and computation based on this

result. The n quantities form a pattern z, which can be seen as a point in an n-dimensional
space: the pattern space P. In general, classes may share patterns, but the main interest is in
disjoint classes. In such a term, the task of pattern classification consists of partitioning the
pattern space P into disjoint regions, one region for each class. In many cases, the classification
is not really done in P, but in another more convenient space F, called the features space. Each
pattern z is transformed in an m-dimensional features vector z, where the transformation can
be linear or non-linear. The major purposes of this transformation are
e To reduce the dimension of the vector/space to be studied (m < n), without losing significant
information. In fact, frequently some components of 2 can be correlated in single data, since
the objects will only have a rather small number of significant features.
e To obtain vector components which are better suited for patiern classification than the original
ones.
This transformation is performed by a fealures eziracltor E, whose general aim is to reduce the
complexity of pattern classification. Finally, a classifier C splits F into disjoint regions that indicate
the classes to which the patterns belongs. The entire process can be mathematically described by
a set of mappings. Each object is associated to a point o in object space O. The transducer
represents each o mapping it into a pattern z in pattern space P. A features extractor transforms
each z into a point z in features space F. Finally the classifier maps each z into a class designator
d in decision space D:

o ENp 5D
o z z d

This division of the problem into representation, features extraction and classification is ar-
bitrary and the entire process can be viewed as a single mapping from object space to decision
space.

About representation there is little to say, since this topic is extremely problem dependent.
Generally the purpose of this pre-processing is to perform a first reduction from a mass of raw
data to just those informations that are thought to be useful for distinguishing between classes.
Unfortunately, automatic procedures which use the a priori knowledge about the specific problem
are not always available. Normalization of input data and suppression of detail which may obscure
the classification, are performed to reduce noise. Finally, the processed data are formatted to a
form suitable to subsequent analysis.

28

Instead, there are general methods of approach to features extraction and classification. The
features should be invariant or at least insensitive to irrelevant variation, such as limited amounts
of translation, rotation, scale change, etc. while emphasizing difference that are important for
distinguishing between pattern of different types. Assume that a sufficiently large amount of
information z; has somehow been obtained and assembled in pattern z. Taken together, these
quantities are supposed to contain the information needed for classification, but some of them
can be unpractical to use or less important than others. Feature selection methods seek a small
number of z; by obtaining a subset from the original one, by discarding irrelevant information
while keeping the important features. Dimensionality reduction methods obtain a smaller number
of z; by forming, usually linear, combinations of the original ones.

Once a set of features has been selected, the only temaini.ng problem is to design the classifier.
The optimum classification is one for which all the patterns are associated to the proper class
designator. Unfortunately, this is only possible in extremely simple situations. Besides that, a
classifier that performs well on a set of patterns is not ensured to perform so well on a new set.
This suggests that the classification problem has an important statistical component (Ref. 32) and
that perhaps one should look for a classification procedure that minimizes the probability of error.
In such terms, the pattern classification becomes a problem in statistical decision theory. The
conventional Bayes’ classifier (Ref. 32) characterizes classes by their probability density functions
on the input features and uses Bayes’ decision theory to decide to which class the input belongs.
To implement Bayes’ classifier the a priori probabilities and conditional densities must be known
and in most pattern classification situations this is not the case. Usually, however, sample patterns
from each class are available and the necessaries probabilities can be estimated from the samples.

In general, samples of training pattern can be used to design the features extractor and the
classifier. After the training phase, new test patierns are used to evaluate the efficiency of classi-
fication. It is important to note that test data should never be used during training phase, since
this produce an overly optimistic estimate of the real error rate. Test data must be independent
data that are only used to asses the generalization, defined as the error rate on patterns never
seen before. The more complete is the training set and better results are achieved. Rather than
focusing on amount of training samples, it is better to concentrate to the quality and represen-
tativeness of them. A good training set should contain routine, unusual and boundary-condition
cases. Gathering the best possible training data improves training and ensures the best possible
result from the process.

Feed-forward layered networks and their learning procedure are well suited for pattiern classifi-
cation (Ref. 31). The internal representation of input pattern into the hidden layers can be seen as
a sort of features extraction. In this case, the features are the result of weighted sums and linear or
non-linear threshold functions. The weights, which can give some indication on the importance of
an input data for classification, are learned during a training phase. The learning is performed with
supervision, since each training pattern is associated to a label specifying the correct class (target).
Features themselves are subject to subsequent elaboration and forward propagation through the
layers until a convenient features representation is reached. In the last layer the classification is
then performed, using simple threshold functions.

In the event classification problem, one tries to find an efficient mapping between some observed
kinematical variables describing multiparticle production and well separable features. This map is
learned using back-propagation on a set of training samples. After training, the network general-
ization is tested on an independent set. Both sets are generated with a Monte Carlo program. The
procedure is then tested on different Monte Carlo models, to check its model independence (Re-
f. 44).

Public-domain software implementing the tuning of a feed-forward net is nowadays widely
available (Ref. 45). Correspondingly, feed-forward nets have been applied to a large number of
classification problems, in a “standard” way. We give below a summary of such applications. This

29

cannot be complete due to the growing interest on the subject.

e Quark-gluon Jet separation in ete™ collisions
- (Ref. 44,45,46) Three-layers Neural Network. No detector effects kept into account. Resulls
on quark/qluon jel separaiion and on bb - other quarks separation are stable with respect to
the model used for iraining and testing the network (ARIADNE 3.1 (Ref. 47), HERWIG
3.4 (Ref. 48) and JETSET 7.2 (Ref. {9)). Center of mass energies of 29 and 92 GeV.
- (Ref. 50) Three-layers neural network. Tested on simulated data for the DELPHI detector
at LEP.
b-quark tagging in ete~ collisions near the Z mass
- (Ref. 44) Three-layers Neural Network. No delecior effects.
- (Ref. 51) Three-layers network. Simulation of an average LEP detector, as in Ref. 52.

- (Ref. 53) Three-layers network. Tested on simulated dala for the ALEPH detector.

General flavour classification in ete™ collisions near the Z mass
- (Ref. 54) Separation into { classes : u% and dd (unresolved), s, c¢, bb. Four binary 3 layer
networks. Measurement of the branching fractions on DELPHI 1990 data.

- (Ref. 55) Separation into 3 classes : u@ , dd and s§ (unresolved), cg, bb. Four layer network,
with § oulput nodes. Measurement of the branching fraclions on ALEPH 1990 data.

W /Z classification in pp interactions
- (Ref. 56) Separation of W and Z decays from QCD background using simulated data in the
case study of the UA2 deteclor al the SppS. 3 layers neural network.
b jets identification in pp interactions
- (Ref. 26) 4 layers neural network. Simulated data for the case study of the CDF delecior al
FNAL.
e Electron identification in an electromagnetic calorimeter
- (Ref. 57) Segmented calorimeter with 5 longitudinal samplings. 3 layers feed-forward network
with one tnput layer.

Particle identification in a Ring Imaging Cherenkov
- (Ref. 58) 3 layers neural network. Used in simulated data from the DELPHI RICH.

Some pattern recognition problems can be reconduced to pattern classification, by discretization of
the output space. In such a way, feed-forward neural nets can be used to solve an analog problem
after analog-to-digital conversion. This has the disadvantage of increasing the size of the output
layer, with possible convergence problems. Some applications of such a technique are summarized

below.

e Patiern recognition in a straw chamber
- (Ref. 59) 3 layer neural network with 14 outpul nodes, representing the angles of a track.
Simulated daila without noise.
e Vertex finding in a drift chamber
- (Ref. 59,60) 3 layer neural network with 20 oulput nodes, representing the projections on a
coordinate azis. Simulated data, plus real data from a chamber used in E-735 at FNAL.

4, Conclusions

The study of the operation of brain has lead to artificial Neural Networks that, although using
techniques far from the initial model of the study, can approximate arbitrarily complex functions.
Neural Networks can implement massively parallel and highly interconnected algorithms. Their
architecture promises to allow a significant increase of speed in data processing and the possibility

30

to store memory in the architecture itself.

In this article, we have introduced the basics of Neural Networks, presented some simple exam-

ples of applications (centered on the most interesting feature for HEP: the possibility of learning
by examples), and finally we have shortly illustrated some of the current case studies.

The use of Neural Networks in HEP has been shown to be especially fruitful when dealing

with classification and optimization problems. The first case will imply in the next years the
implementation of Neural Networks on dedicated hardware, today at the level of prototypes, for
the use in fast on-line triggers. The application to optimization problems will probably result in a
new generation of off-line algorithms.

References

) 7

w N

W oo =3 O

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22,
23.
24,
25.
26.
27.
28.
29.

30.

M.L. Minsky, “Computation: Finite and Infinite Machines”, Prentice-Hall, series in Automatic Com-
putation, 1969.

. W. McCulloch and W. Pitts, Bull. Math. Biophysics 5 (1943) 115.
. F.Rosemblatt, “Two Theorems of Statistical Separability in the Perceptron”, Proc. of a Symposium of

the Mechanization of Thought Processes (London 1959), Her Majesty’s Stationary Office.

. F.Rosemblatt, “Principles of Neurodynamics”, Spartan Books, New York 1962.

. M.Minsky and S.Papert, “Perceptrons”, MIT Press 1969.

. J.J.Hopfield, Proc. Nat. Acad. Sci. USA 79 (1982) 2554.

. K.Binder, “Fundamental Problems in Statistical Mechanics”, E.G.D.Cohen, Amsterdam 1980.

. D.J.Amit, H.Gutfreund and H.Spolinsky, Phys. Rev. A 32 (1985) 1007.

. R.K.Bock, H.Grote, D.Nots and M.Regler, “Data Analysis Techniques for High-Energy Physics Exper-

iments”, (Cambridge Universitity Press, 1990).

Y.Kamp and M.Hasler, “Réscaux de neurones récursifs pour mémories associatives”, (Presses Poly-
techniques et Universitaires Romandes, Lausanne 1990).

D.O.Hebb, “The Organization of Behavior: a Neurophysiological Theory”, (John Wiley & Sons, New
York 1957).

D.Chowdhury, “ Spin Glasses and Other Frustrated Systems”, (World Scientific Publications, Singapore
1986).

S.S.\;cn]catcsh and D.Psalties, “Information Storage and Retricval in Two Associative Nets”, (California
Institute of Technology, 1985);

D.J.Amit, H.Gutfreund and H.Spolinsky, Phys. Rev. Lett. 55 (1985) 1530.

R.J.Glauber, J. Math. Phys. 4 (1963) 294.

W.A.Little, Math. Biosci. 19 (1974) 101.

P.Peretto, Biol. Cybern. 50 (1984) 51,

B.Denby, “Neural Network and Cellular Automata Algorithms”, Preprint FSU-SCRI-88-141 (1988).
J.J.Hopfield and D.W.Tank, Biol. Cybernetics 52 (1985) 141.

J.J.Hopfield and D.W.Tank, Science 233 (1986) 625.

B.Denby, Comp. Phys. Comm. 49 (1988) 429.

C.Peterson, Nucl. Instr. and Meth. A279 (1989) 537,

C.Bortolotto, thesis, Udine 1991.

C.Peterson and J.R.Anderson, Complez Systems 2 (1988).59.

H.Grote, Rep. Prog. Phys. 50 (1987) 473.

B.Denby and S.L. Linn, “Status of HEP Neural NET Research in the U.S.A.", FERMILAB Conf-90/21,
presented at the 1989 Conference on Computing in High Energy Physics, Oxford, England.
M.Gyulassy and M. Harlander, “Elastic Tracking and Neural Network Algorithms for Complex Pattern
Recognition”, Lawrence Berkeley Laboratory Preprint LBL-29654, 1991.

B.Denby et al., “Neural Network for Triggering”, FERMILAB Conf-90/20, presented at the 1989 Nu-
clear Science Symposium, San Francisco.

B.Denby, F.Bedeschi, “Investigation of a Beauty Trigger for the SVX”, CDF/DOC CDF/PUBLIC/1146
(1990).

F.Paige and S.D. Protopopescu, ISAJET Monte Carlo, BNL 38034 (1986), Brookhaven National Lab-
oratory. .

B.Humpert, “On the Use of Neural Networks in High Energy Physics Experiments”, ISU-CS/118
(1989).

T. Altherr and J. Seixas in “New Computing Technigues in Physics Research”, eds. CNRS (1990); T.
Altherr and J. Seixas, CERN preprint CERN-TH-6133/91, July 1991,

31

31.

32,
33.
34.
35.
36.
37.

38.
39.
40.
41.
42.
43.
44,
45.
46.
47.

48.
49,

50.
51.
52,

53.
54,

55.

56.

57.

58.

59.

60.

D.E.Rumelhart, G.E.Hinton and R.J.Williams, “Learning Internal Representation by Error Propaga-

tion”, Parallel Distributed Processing vol. 1, (MIT Press, Cambridge 1986).

R.0.Duda and P.E.Hart, “ Pattern Classification and Scene Analysis” (John Wiley & Sons 1973).

G.Palmieri and R.Sanna, Methods 12 (1960).

A.Gamba, L.Gamberini, G.Palmieri and R.Sanna, Nuovo Cimento Suppl. no. 2 20 (1961) 221.

B.Widrow and M.E.Hoff, 1960 IRE WESCON Conv. Record Part. 4 (1960) 96.

R.P.Lippmann, IEEE ASSP Mag. 4 (1987) 4. h

S.J.Hanson and D.J.Burr, “Knowledge Representation in Connectionist Networks”, Tech. Rep., Bell

Comunication Research (1987).

L.D.Longstafl and J.F.Cross, “A Pattern Recognition Approach to Understanding the Multi-layer Per-

ceptron”, Memo 3, 936, Royal Signals and Radar Establishment (1986).

G.Cybenko, “Approximation by Superimpositions of a Sigmoidal Function”, Mathematics of Control,

Signals ans Systems 2 (4) (1989).

R.A.Jacobs, “Increased Rates of Convergence Through Learning Rate Adaption”, Neural Nelworks 1
1988) 295.

g&.R.l)):vos and G.A.Orban, “Self Adaptive Backpropagation”, Proceedings NeuroNimes (1988).

T.Tollenacre, Neural Networks $ (1990) 561.

T.Samad, “Refining and redefining the back-propagation learning rule for connectionist networks”,
Proc. IEEE Systems Man and Cybernetics Annual Conference (1987).

L.Lonnblad, C.Peterson and T.Rognvaldsson, Nucl. Phys. B349 (1991) 675.

L.Lénnblad, C.Peterson and T.Rognvaldsson, Phys. Rev. Lett. 65 (1990) 1321.

C.Peterson, “Neural Networks and High Energy Physics”, Lund Preprint LU TP 90-3 (1990).

L.Lonnblad, “ARIADNE-3, a Monte Carlo for QCD Cascades in the Colour Dipole Formulation”, Lund

Preprint LU-TP 89-10

G.Marchesini and B.R.Webber, Nucl. Phys. B310 (1988) 461.

T. Sjéstrand, Comp. Phys. Comm. 27 (1982) 243, ibid. 28 (1983) 229;

T. Sjostrand and M. Bengtsson, Comp. Phys. Comm. 43 (1987) 367.

T.Akesson and O.Barring, “Jet Classification with a Neural Network”, DELPHI 90-59 PHYS 78 (1990).

C. Bortolotto, A. De Angelis and L. Lanceri, Nucl. Instr. and Meth. A308 (1991) 459.

Proceedings of the ECFA workshop on LEP200, A. Bohm and W. Hoogland editors, CERN 87-08, June
1987.

L. Bellantoni et al., Nucl. Instr. and Meth. AS10 (1991) 618,

C. Bortolotto et al., INFN/AE 91-12 (September 1991), to be published in the proceedings of the

Workshop on Neural Networks, Isola d’Elba 1991.

J. Proriol, presentation at the Workshop on Neural Networks, Isola d'Elba 1991;

P. Henrard, presentation at the 4'® International Symposium on Heavy Flavour Physics, Orsay 1991.

P.Bhat et al.,, “Using Neural Networks to Identify Jets in Hadron-Hadron Collision”, DESY 90-144,

LU TP 90-13 (1990).

D.Cutts et al.,, “The Use of Neural Network in the D0 Data Acquisition System”, presented at the

conference Real Time 1989, Williamsburg.

N.DeGroot, presentation at the Workshop on Neural Networks, Isola d'Elba 1991.

B.Denby, E.Lessner and C.S Lindsey, “Tests of Track Segment and Vertex Finding with Neural Net-

works”, FERMILAB-Conf-90/68, presented at the 1990 Conference on Computing in High Energy

Physics, Santa Fe, New Mexico.

C.S Lindsey and B.Denby, “Primary Vertex Finding in Proton-Antiproton Events with a Neural Net-

work Simulation”, FERMILAB-Pub-90/192, Submitted to Nucl. Instr. and Meth. A.

32

