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Abstract 

The usual presentation of the Casil1lir effect refers to the presence of 

forces between uncharged macroscopic bodies due to the vacuum 

j7uctuations. 1f the macroscopic bodies are put in relalive motion, the 

boundary conditions are continUal/sly changed and this sllOuld lead to 

an el1lission of quanta ou t of the vacuum. The rate of emission is 

estimated 111 tile simplest possible geometrica l and kinel1latical 

situations,the effect is found to be easily calculable but very small because 

the macroscopic bodies are always extremely slow with respect to the 

speed of light. It is however poss ible that a resonant effect might en/wnce 

the process. 



1. Introduction 

The Casimir effect shows the appealing feature of relating forces 

acting on macroscopic bodies to typical features of quantum field theory 

[1] . Although this point of view can be an oversimplification, because the 

microscopic structure of the conductors is essentia l in establishing the 

boundary condition for the e.m. field, it can be kept at least for simple 

configurations and for low frequencies. 

Within this description we can study also a complementary 

aspec t, viz. the effect of a macroscopic motion on the quantum state. To be 

definite we can consider a plane capacitor with zero point e.m. field inside 

and then let one of the plates to be moved with respect the other and 

inquire how the old vacuum is seen in this new condition. Since there 

will be some mismatch between the vacua some photons shall be found . 

The macroscopic motions is certainly extremely low with respect to the 

speed of light, which is the typical speed of the quantum system, so the 

adiabatic approximation should be fully justified and effective. 

The e.m. field shows some complications due to the gauge and 

polarization degrees of freedom, it may be useful, therefore, to start with a 

simplified model where these addi tional aspects are absent and the space 

is one dimensional and then to turn to the real problem. At the end a 

short comparison with previous treatments is presented. 

2. A toy model 

2.1 General featurcs and stcady motion 

This model is given by a massless-and-spin.less field <jl satisfying 

the wave equation 
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(2. 1 ) 

with the boundary conditions 

</> (t,O) = </> (t, Q) = 0 (2.2) 

The Lagrangian, the canonically conjugate momentum, the 

Hamiltonian are respectively: 

Q 

L = ~ J [ $2 - (az </>f ] d z 
u 

Ii L . 
W= -= </> (2.3) 

Ii</> 

Q 

H =~ J[m2+ (az<P)2]u z, 
u 

The standard quanti sation condition is 

[</> (t, z), (p (t, z')] = iii (z - z') (2.4) 

The task is now to study the problem on the segment [0, Q] by 

considering Q a time dependent variable. In this way the field variables 

acquire a new time depend ence through the boundary conditions (eq. 2) 

and the Hamiltonian gets a further dependence through the integration 

limi t. 

The boundary conditions (eq. 2.2) suggest the representation 
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with the inversion formulae: 

1m o=lrf +tz};Uurrn'llt cit 
o 

1 

p,,::;{[ I v:f(Z:)Mu "Mcll dz . 
v 

(2.5') 

The relations (2.5) and (2.5') allows to calculate the explicit time variation 

of the mode operators qn and Pn " 
. j 'dq'l ,. 2./2!1 9,.-; -ri ) p .. ",l ~1 

Taking into account the different dependences on -f we write 

(2.6) 

;1j 0-Ii 1. - 1r;; {{ f ~IZ)""ff.r/fdz ,({ '" ff)~TTm 
o 

The third term is vanishing,precisely owing to the boundary conditions 

and some calculations,quite standard although lengthy,allow to ge t the 

expression: 
,.... ,., 

(- ) 1t»f 
J 

(2.7) 

together with the completely analogous one for p. 

In the mode representation we have for the Hamiltonian the 

representation 

H -; f f,Jr': f (1TM/f/r".z] (2.8) 

and for the derivative the expresSion] t 
d H \ [1k:: Z A -1-~ u/ 9 .. ')i ::; LtJ PM ~.e f ~ 7!'rl -Ie .e LM .. Z ) 

Wich is reduced to the very simple form 
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(2.9) 

With the introduction of the absorption and emission operators: 
. 

9,. = V J~fl ((" - D·n 
It resul ts also 

H == r n W M (e.,t {M + ~ r (2 .10) 

1!i: ~[L C-}"JW" (C..,-c...+)] 2 
dl J-f .. 

The operators c t creates states whose energy is time dependent;this is the 

very idea of the adiabatic treatment [2]: the states follow the external 

parameters in their evolution but transitions are induced if the evolution 

is not infinitely slow. 

According to the usual formalism for the adiabatic approximation in the 

case of discrete spectra we consider a state I '¥ > evolving with the 

Schrbdinger equation 

and a set of "adiabatic" eigenstates 

For the projection coefficient 

y,Je} 0: ~/,[i J ~kU) Jr] <k IV) 
, tv 

we have the equation 

d • '" if i < J JJ./"> J IT {kIf) :;:.1 L e E [j k de /} Yjl.f 
C' J-/:I( -; - k 

with l 

(2" 11) 

(2.11') 

<if:;: f (Ek - ~) dr. 
/" 
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Taking as initial condition at t = 0, Q = Qo the vacuum state: 1'1' > 

= I ° > the only different s ta te reached at first order is the two-particle 

state, the corresponding Yo coefficient is 

1. Ii'i y-lf};:" 2,/2 e I Yo(f' } elf'!l' 
'if} f 

. J. 1. cUI i ;:" 1fT (tIIJ ·;tIt) .F pi . 
I" 

(2.12) 

(2.12') 

When the transi tion probability is small also the correction to 

Yo is small so we take, to this order Yu = const = 1, if futhermore the speed 
• of the external parameter is constant Q = u one can calculate explicitly the 

expression (2.12-12') and the transition probability from the vacuum to 

the two-particle sta te is obtained 

ly'1.(:::: 1/.{2 M1Me)~2 1-1-W1 [f(MJltllt)~-f- ] J. (2.13) 
~ 1(7 (MjfM2 ,(0 

Eq. (2.13) ends the investigation of the model, in the case of 

s teady motion of one boundary;the factor u2 in front says that for any 

realistic situation the transi tion probability will be very small, so the use 

of the first approximation is fu lly justified. 

2.2 Vibrations and resonance 

11t may be interesting to investigate the fie ld configuration where one of 

the boundaries is vibrating so that 1. =' d -I- b CtT?J2 f 
In this case the phase appearing in the adiabatic formulae eq.(2.11-11') 

.takes a more complicated aspect: rr 1I11 ·II1t 

ip _ ch/-' 1H'~MllJ' [a+ Sot- be-i.Q~]-Jf -S- (2.14) 

e - ex;- 111" S d 15fbel.Qt 

5;::: (~7 -I- I,,t)Yz 
The expression in brackets may be expanded in series and it takes on the 

general form: ,-0 
'" irJU (2.15) _:;- r dY e 
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In order to calculate yone must integrate the expression remembering 

that also 1/ p' gives rise to an expansion like eq.(2.15);the integrand is 

always made up from periodic functions but for the case 7t (n1+n2)/s=Or, 

in this situation in fact it results 

itf iDi[CJ+stbe-dHjr e :: e ·"t 
d + 5 ~ b e'u (2.16) 

so that in the integrand there appear some terms which are constant in t. 

These terms give finally a contribution which grows linearly with the 

total time tf -ti .It is clear that for tf -ti too large the whole treatment 

caru10t be correct;it is,however,true that there is the signa l of a resonance 

where the transition is strongly enhanced. For every mode n the 

corresponding frequency varies between 7tn/(a+b) and 7tn/(a-b),so the 

relevant quantity to define the resonance condition appears to be the 

geometrical mean of the extreme frequencies. 

3. The real case 

In the real case, as anticipated in the introduction, we consider a 

parallel plane capacitor: the distance between the plates (to be varied) will 

be Q and the plates will be two squares of side A, in every case A»Q. 

One must get rid of the unphysical degrees of freedom of the e.m. field by 

a suitable choice of gauge. The most usual Coulomb gauge does not fit 

very well because if we vary Q, at fixed A, the allowed wave vectors will 

vary in direction what would result in momentum space in a time 

varying gauge condition. For this reason, calling z the direction 

orthogonal to the plates, the axial gauge Az = 0, which is unaffected by 

variations of Q, will be imposed.[3] 

Some notational convention are used: the indices i, j run from 

1 to 3, the indices a, b, run from 1 to 2 
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The equation of motion for the vector and scalar potential are 

(3.1) 

(3.2) 

the conjugate momenta are derived 

(3.3) 

whereas: 

0.3') 

In terms of the conjugate momenta (eq. 3.2) simplifies very 

much, it reduces to 

d; r"=' ~iJG (3.2') 

which can be solved in standard way: 

Cf(Z,~):= J G (Z, t~ ~b 'Ti;, (7', Y:?) dz' 

where G is the Green function of az2 

conditions for the problem. 

The Hamiltonian of the system is 

(3.4) 

with the correct boundary 

H ~ fJ Jt r f Jz (IT./ h) • 'S~'lJ) -fJ<lr' J.,TTlz) Gr"z? ::),7f,p')3') 
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with the magnetic field given by 

Bz -= Ea"d., A" 

J3J = - E"b dz:;1b • 

The general boundary conditions are 

rr; (0 (b) ~ IT; (IJ'b)~ 0 

}5z (0, ~) ;:: -gZ (f, (I)) ::: 0 

(3.6) 

(3.6') 

(3.7) 

but asking only for oscillating modes [4] we require "cosine" conditions 

for Ez and Ba which imply also 

Ab(OJ~) -::j-lb(fJ~)=O 

cr ( 0~) -= ct ( t, tJ) -= 0 

and in this way we get the explicite form for G 

(3.7') 

since with this form dz2 G acts as unity for the functions vanishing at the 

boundaries. 

We expand the potential A and the conjugate momentum n 
Since we are interested in the dynamics along the z-axis we take the usual 

plane-wave expansion in the x and y directions. 

AJZ,re) ~ ; If fp eip''-r" Q~"'(r)~ Tfhll/l 

TTb(Z,~) =frrIpeiP-'-I ... 1!;"'(p)~nM'z/.f 
(3.9) 

With the standard relations: 
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) 

[ Q ;'"' (f) ) F"I"" ~r')] = i J~b ~A"" ~fll. 
(3,10) 

With the same procederes used in the previous section it is possible to 

calculate the derivative of the mode opera tors: 

dQ{M/~ :i '" 2111tM (_(''''''Q {''"' 
Jl f I:i" Mlz_,.ttZ , (3,11) 

the same for p, 

It is understood that P, Q and pare twodimensional vectors. 

A simplifica tion is obtained by introducing for every mode po the tangent 

unit vec tor 'to = po /P-L and the normal Vo = fob 'tb and the corresponding 

components of Q and P: Q't=Qa'ta,and so on ;note that 't and v do not 

depend on .f so this opera tion commutes with the £I-der ivative. 

We may now collec t all the results and give the form of the Hamiltonian 

and of its derivative in terms of the mode operators: * 

He i J,.I;' {f Pv'" If) /2, [Mrl/1C~)j / T."'(I" I' • 
(3.12) 

+ [r'l+ ('irt11/ff] I Q~'" q» J 2 + (rlM/f F ) Qi'" (r' jZ) 

'dH = j, fell' (-t'1)(")12-Yi'1r.~Q(·;J~3.13) 
'd.f. f Lp 11TZ LIt' ,M .It: (PI 11 Lot t1 tv' oI7'J 

<X='t ,v. 

It is now convenient to introduce the energy of the mode 

* 

'l Z 2 
~,,, ::- f .j. (1T',.tt/.e) 

Needl ess to s ay, Ih e re is an IntrIn SIC ultraviolet 
ph e nomenon becau se Ihe condition of reflec tivity for 
cannot hold for very high fr equ e nc ies. 

1 0 

cutoff in the 
the boundaries 



and an .Q-dependent canonical transformation: 

which implements the transition from the axia l gauge to the Coulomb 

gaug«t and brings the Hamiltonian to the standard form 

H= J 0," rju/ I Q:' (p,}2 ... /P;"'(f'1 2J c<=j,I, v . 
I (3.14) 

It gives also: 

dIl 1, f/' (-J"'p I", /2/, .. Q'''' /2 
- :: -e Lfl LIJ1 Pk (r) - L,.. H lV!,,,, t 1" de (.+111 / 

k .. 1TM QI"') I'll ·/L,.. (-) T y (r) . 

(3.15) 

The introduction of the usual emission and absorption 

operators 

(~) 1. [-0' .. 1 • Q''''.7 ("It 1 t'Vr .. t . Qr .. +] 
Co< (h) = Lor. ~) - 1"f,IM cI (n~ ) Cor. (h) '" ~ J.(}l C(')f 'v,,.. (;( ~I 

r r2Wp,,, I I r2w/"" 
makes explicit the action of the derivative of the Hamiltonian (lH/(l .Q on 

the Fock states. In particular for the transition from the vacuum to the 

two photon state we get: 

(~i p, M2 -p /,IN /Je;o) = (7/ri
[ 7; f 7; 1-7;] 

C;; == 2 {_)"'J''''Z t-/(WJtJzrf (3.16) 

c;; = P (_)""''''1 (!A1J wz) i 
(3.16') 

(3.16") 
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The first two terms are obta ined for the jl- polarisa tion, the third one for 

the v- polar isa tion. 

This shows tha t the dynami cs ca n be fac torised into the 

different transverse modes, provided we keep the modes p and -p 

together, which is clearly required by the conservation of momen tum in 

the plane x-yo 

Now we calculate the transition amplitude from the vacuum to 

two-photon state, according to the adiabatic approximation. 

The proj ec tion coefficient from initia l vacuu m to final two 

photon states is obtained in the same way as infhe previous section see 

eq .s (2.11,12,13) 

(1/ . f fi df'] y;,.;: J. elf i r:x fl) eJCr i (~/W2) 7 
:Po 10 

(3 .17) 

where we have 

(3.18) 

From now we assume P = u = const « l ,what is cer tainly true for 

every macroscopic motion, then the phase in (3.17) is very large, through 

an application of the Riemann-Lebesgue lemma (see Appendix) we can 

write [ ~ ( 

F -i", ('1 ''''. r< r,; I. '1 [~ frO; .,.,,) Je] - ("t 'w/F.!. f (3 17') 

'II tD Po 
so tha t finally the transi tion probabili ty is wri tten as 
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/Y/-::1U1{{tJ1flU1(1 F;.?/ +(tJjw?(F/I-I. l (3.19) 

f f,. .11 
2 (W1 1r..J~1 &. I . (WJ 1t0ri GJ . M;f ,o/t./jIWz"J! 

(t Pi r, 
Through the usual quantization condition po = (21t/ A) rna we 

can connect this expression to a photon density, it results in fact that the 

number of photons of longitudinal wave number n per unit of transverse 

momentum squared and unit of transverse area is 

J.- !!It. -= ~ L I /7 
1\1 Jr1 4; iT 0\ r 

The cosine term oscillates very rapidly around zero as function, 

e.g., of Qf so we tentatively drop it with respec t to the other terms. In so 

doing we get from ,summing over a. . 

..:L J.l-= tU '2 ..l.- r -1 " ~ r2~tJlrr7((.Vr(.Vl+~t]I.f .. i} 
(\7 Jr ~'iT.£2 1 ((,.'J+iJ2) ~WZ t 1/ L 

In the case where p« (iJ we obtain a very relevant simplification,because 

the system behaves as it had only one dimension, and the expression in 

eq(3.19) becomes in fact: 

J /
2", 2~ !l11 1111 r - f!,t 7T? (1111. 1111 )" 

If we tried to sum over the longitudinal quantum numbers we would get 

a diverging expression like: 

tU 2 )~'l 25 (; --Ii) ) (3.20) 

but as it has already mentioned there is always an ultraviolet cutoff. 

The above expressions require Qf to stay different from Qi The 

correct zero result for Qf ~ Qi , is reproduced in Eq. (3.19),where the 

oscillating term has not been dropped The problem of finding the 

number of produced photon in the process of mutual motion of two 

plane parallel plates is solved by eq. (3.19) ; the actual number is very 

small because we have always a term u2 in front, which for every 

macroscopic system is very small; this property makes all approximations 

well justified but, unfortunately, it makes also every experimental 

investigation very difficult. 
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Since the phase related to the adiabatic trea tment in this more rea listic 

case is more com plica ted a discussion of the possible resonance conditions 

is no t allowed in de tai led analyti cal form. It appear,however,very likely 

that conditions of such kind may exist ,i t is also clear that these condition 

will unavoidably depend ,in particular if p is not negligible with respect to 

OJ ,also on the transverse dimension A whose role has been essentially 

ignored in the whole previous discussion. 

4. Conclusions and comparison with other treatments 

Since problems more or less strictly related to the one studied in 

this paper have been repeatedly considered it is necessary to present a 

comparison with the previous trea'tments. In the present paper the 

existence of two boundaries in re lative motion is essential,so the 

comparisn with situations where there is only one boundaty is lio t 

straightforward ;in those cases,in fact, it is evident that by Lorentz 

invariance,only the acceleration may,poss ibly,give rise to emission of 

quanta [5,6]. Anyhow,looking at eq .(2.13) one sees that when 1 ... """ a t 

fi xed 1--10 the transition probabilities calcula ted with constant speed of 

the boundary goes to zero as it must. 

A paper where the system is very similar to the present one has 

been wri tten by Castagnino and Ferraro [7] continuing a line of 

investigation initiated by Moore [8], The way they deal with the problem 

is quite different,but given the same physica l starting pOint the results are 

comparable,in parti cular their expression for the total number if particles 

looks like the eq(3.20) of the prasent paper and the same can be said of the 

analogous result of ref. [8],The physica l situation is the same because here 

the vacuum is se t sharply at the initial time t; and the state is 

observed,shrply again,at tf ,in this sense one can speaks of infinite 

accelerations. The logarithmic divergence is ,here,considered unphysica l 

due to the ultraviolet cutoff originating by the finite reflec tivity of every 

physical surface. 
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As already said,in the present paper and in the quoted 

references,one foresees a tiny photon emission because of the smallness 

of the coefficient u2 or in every case of the macroscopic speeds;for such a 

reason the possibility of producing resonance conditions might be 

interesting because then the number of the emitted photons should 

increase with the time at least as long as the approximate calculations are 

trustable. In this context one may notice that when p is not negligible but 

anyhow small with respect to OJ a sort of "nonrelativistic" expansion of 

the type OJp-I' =1tnj-f +p2 .f /21tn could make the analytical study of the 

resonance condition complicated but not hopeless. 
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Appendix 

For completeness here the connection between eq. (3.17) and 

(3.17') is shown. 

If we have 

'J, p, '1(;1 '1 i;- j:'rylJy 
Y/' it· 

with w definite positive and U~O, we define 
;( 

0< (i ) : J ruf'ryJ Jy 
it' 

w hich, being monotonically in creasing, can be inverted as 

;t~i(o.o / Xi~'I((}) 

eXl 

1-j rr (; ) /«!f/,< cI ;HoI.) 'Ii. - r '1(0(. ) e - ct dol 
o 

if <1> (a) =F(x (a)) . (dx/da) we have also 6(1 r 1:: . l 

0( [ '01/'1< 1 c1 cy I cXr'U 

c~r= J Ipfot)e('ol/tU cl~= - itU f(oI)e' Jo +itU diX e dol. 
o The second term is 0 (u2) and reverting to the origina l 

variables 
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