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ABSTRACT 

The bosonization technique has been recently applied to the study of supercritical QED 

around a large·Z nucleus. New charge-neutral metastable states emerge from the spectrum of the 

theory and their existence represents a possible explanation of the e+e- peaks observed in heavy-ion 

collisions. Actually, we suspect that such metastable states might be a mere product of the 

approximations introduced in the treatement of the bosonized Hamiltonian. In this work we present 

both quantitative and qualitative arguments to support our conjecture. 



Introduction 

The observation of narrow peaks in the positron and electron spectra produced 

from the collision of heavy ions have created much interest [1-4]. Up to now no 

satisfactory explanation of such structures is available. Results resembling the 

experimental data have been obtained by introducing some more or less convincing 

"ad hoc" hypoteses [5-9]. In this scenario a series of interesting papers [10-14] have 

been produced by Y. Hirata and H. Minakata . They have studied the problem in the 

non perturbative framework of a Partial-Wave-bosonized QED. In such a scheme it is 

possible to go beyond the external field approximation and to take into account, at 

least partially, the quantum fluctuations of the electromagnetic field.The form of the 

bosonized Hamiltonian is quite involved and its spectrum can be found at the cost of 

many severe approximations. Once simplified the theory predicts the existence of new 

neutral metastable states which are interpreted as arising from the non penurbative 

aspects of QED. The energy and the width of these states suggest that they might be 

the cause of the narrow e+e- peaks observed in heavy-ion collisions. Actually, we 

suspect that such states would be ruled out by an improved analysis of the bosonized 

Hamiltonian. In other words we think that their origin rests on the various 

approximations introduced in references [10,11] . In order to show this we shall 

bosonize the QED Hamiltonian in the background or external field approximation; 

since this problem is exactly soluble it will be straightforward to check whether the 

approximations adopted in [10,11] do introduce wrong states in the spectrum of the 

system. 
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Bosonized QED in the external. field approximation 

QED with an external charge density Ze p(r,t) is described by the Lagrangian 

density 

(1) 

with p(r,t) nonnalized to unity: Jd3rp(r,t) = I . In references [10-12] a spherically 

symmetric source is considered, the higher partial waves of the fields are omitted and 

only the s-wave electromagnetic field and the U=I/2)-wave spinor field are retained. 

As a result the theory is casted into the fonn of an effective two-dimensional 

ferrnionic theory. The bosonization technique [15-17] can then be used to obtain 

the corresponding two-dimensional boson theory which is described by the 

Hamiltonian: 

(2) 

+ L :K ~ [2-cos(2m <Pm> -cos(2m Q,,)] 
m 4 
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The fields <l>m and <1n are Boson fields living in a (t,r) universe with r ~ 0 . rIm and 

Pm denote their canonical momenta. The index m (= ± 1) represents the z-component 

of the angular momentum and /) (= ± 1) corresponds to the chirality. C(r,t) is defined 

as: 

C(r,t) = 41tZf: r'2 p(r',t)dr' (3) 

and f={e with e=2.71S ... 

As anticipated in the introduction, we now consider the external or 

background field approximation. We also assume a time indipendent external 

source. The Lagrangian density of QED is now given by : 

(4) 

where AO is the external potential. A straightforward application of the bosonization 

technique gives: 

(5) 

+ I It tnt [2-cos(2m <l>m) -cos(2m Q"J] + e
2 

C(r) I (<l>m~) 
m 4 41tmr2 m 

We see that the relevant effect of the external field approximation is to remove from H 

the term: 
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(6) 

which then describes the fluctuations of the electromagnetic field. Actually. th s term 

corresponds to the quantum fluctuations of the longitudinal degrees of freedom since 

only the s-wave electromagnetic field has been kept. 

To explore the spectrum of Hex! we now follow closely the methods 

suggested in [10-12]. We first look for the configuration (<l>cIoQcU which minimizes 

Hex! by solving the classical equation of motion. We take the symmetric ansatz 

<l>c1=QcI and we work in the approximation of vanishing canonical momenta 

I1cl=Pcl=O. see references [10-12] for details. As expected we find two local minima 

corresponding to the neutral and charged vacuum respectively. The energies of these 

vacua are plotted in fig. (I) as a function of the central charge Z. In our external field 

approximation the transition from the neutral-undercritical vacuum to the charged

supercritical one takes place at ZC ...... 170. This value agrees with that of [10-12] and 

with the results obtained by more conventional tools [18-19]. 

In order to study the dynamics of the system (3) we expand the Bose fields 

around their background configuration: 

<l>rn=(<l>rn)cl +CPrn • Qrn=(Qrn)cl + qrn. I1rn=1trn • Prn=Prn • 

where the small letters represent the quantum fluctuations. Correspondingly. the 

Hamiltonian HeX! is expanded around its minimum up to the quadratic terms of the 

small fluctuations. 
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Fig_ 1. The energy of the normal (solid square) and the supercritical (open square) vacuum are 

plotted as functions of the nuclear charge Z_ The external source is a uniformly charged sphere of 

radius R=IOfm 

It is useful to introduce the fields \jIm= c!>m+ qm and Xm= c!>m- qm _ As one can 

easily verify the \jim and Xm fluctuations decouple under the symmetrical ansatz 

<1>cl=Qcl. Moreover only \jim is coupled to the charge, then we focus our attention on 

this mode, freezing out the Xm degrees of freedom. The effective Hamiltonian for the 

\jim fluctuations reads 

and the fields equations are : 

(8) 
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Setting 'l'm = etirot $m(r) we obtain a Schrtidinger-type equation for $m(r) : 

where V(r) is given by: 

-~ $m + V(r) $m = oil $m 
dr2 

V(r) = [2 r~ +7t2~] cos (2m <I>cl(r» . 

(9) 

(10) 

This potential is very similar to that obtained in references [10,11] and only an 
2 

additive term Ll V - ~ has been removed by the external field approximation. 
7tr2 
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Fig. 2 The potential (10) felt by the small fluctuations is ploued for a uniformly charged sphere 

of radius R= IOfm and Z= 170. The radial coordinate is measured in rO units, rO being the 

classical electron radius. The dashed line correspond to the energy squared of the state 

Irapped in the potential well. 
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In fig. (2) we plot the potential V(r) for a uniformly charged sphere of radius 

R=lOfm and Z=170. Again we found a good agreement with the results of [10,11]. 

In particular, even in the external field approximation, the potential develops the 

pocket structure responsible for the trapping of the boson excitation. If we employ a 

WKB approximation to solve eq. (9) we explicitly verify that the first excitation is 

trapped in the potential well. Both the energy and the width of this state agree with 

the values found in [10, II]. 

Drawbacks of bosonized QED 

We are now in a position to draw some conclusions from the foregoing 

results. The crucial point is that the metastable states of references [10,11] are still 

present in our external field approximation. Within such an approximation, QED is 

nothing but a text-book subject and it is well known that no e+e' resonance can 

appear. Actually, as shown in references [18,19] , only positron resonances are 

present in the spectrum of supercritical QED. Thus we are forced to conclude that the 

metastable states found in [10,11] are simply a mere product of the several 

approximations introduced there. 

It is now useful to identify the approximation which brings the wrong states 

into the spectrum of QED. As far as the vacuum state is concerned, our results seem 

to be resonable. As shown in fig. (1) the transition from the neutral vacuum to the 

charged one is clearly reproduced. Moreover the value of the critical charge Zcr lies in 

the expected range. It is then natural to search the bug in the "small fluctuation" 

approximation, that is in the expansion of the bosonized Hamiltonian up to the 

quadratic terms of the boson excitations. We now give a simple argument supporting 

this hypotesis. Let us consider, from a classical point of view, the field equations (8) 

and let /;(r,t) be the classical fluctuation defined as : 
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(11) 

where co is the energy of the trapped state and ~(j) satisfies equation (9). From the 

effective Hamiltonian (7) we get the classical energy Eel of the fluctuation: 

(12) 

Since ~(j) (r) is confined in a region of lenght L - SOfm. ( the width of the potential 

well) • we can write: 

(13) 

where ( 1 ~(j) 12) is the average of 1 ~(j) 12 in the potential well. Consequently: 

(14) 

and this relation gives us a rough estimate of the fluctuation amplitude as a function of 

its energy Eel . In the exact Hamiltonian the boson fields appear as argument of a 

cosine function. The condition (~(j) « 1 should then be fullfilled in order to rely on 

the small fluctuation approximation. Using eq. (14) we obtain : 

Eel « 2 m(~)( ~)a (15) 

where ro is the classical electron radius. Inserting the numerical values of L-SOfm and 

ro-2me• the last inequality boils down to Eel « 2me' Since 2ffie is a lower bound for 

the physical boson excitations. it is very hard to have (~(j) « I at the quantum level. 
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Conclusions 

We have applied the methods developed in references [10,11] to bosonize the 

lowest partial wave of QED within the external field approximation . As a result we 

have verified that the approximation scheme adopted in [10,11] introduce non existing 

states in the spectrum of QED, namely the metastable states assumed to be the origin 

of the narrow e+e- peaks observed in heavy-ion collisions. We have also given a hint 

to identify the approximation responsible for the described drawback: it is the "small 

fluctuation" one, that is the expansion of the bosonized Hamiltonian up to the 

quadratic terms of the Boson excitations. 

As a by-product of our analysis we have found a rather simple expression for 

the quantum fluctuations of the electromagnetic field in terms of the Boson variables. 

Our results suggest that such fluctuations cannot influence dramatically the spectrum 

of QED around a highly charged source. When confirmed by an improved analysis 

of the overall bosonization strategy, this conjecture will tum in a strong argument 

against the hypotesis of the e+e- peaks as a pure QED effect. For this reason we 

think that the framework developed in references [10,11] can still provide us useful 

informations about non perturbative Quantum Electrodynamics. 
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