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ABSTRACT 

In this paper we generalize previous work done on the path.integral approach 

to classical mechanics and its symmetries. We study in particular the case that 

the components of the symplectic 2·form W"b, expressed in arbitrary coordinates, 

are allowed to depend on the phase space coordinates. This lifts the restriction 

that the path·integral and its symmetry generators be only expressed in terms 

of canonical coordinates: We show, in particular, that an extra term must be 

added to the anti·BRS charge in order to preserve the ISp(2) symmetry which 

reflects the geom~try of phase space. The cohomology of this new anti·BRS 

operator is found to be isomorphic to the de Rham cohomology of phase space. 

The modification of the anti·BRS charge leads to a modification of one of the . 
supersymmetry generators associated with the classical Hamiltonian. Despite 

this change in the form of the generators, the classical KMS conditions can still 

be derived from this supersymmetry. We also prove that the requirement of 

supersymmetric invariance of the states results in a netD set of equations that, 

despite their new form, are still satisfied by the Gibbs states on a general phase 

space manifold. 
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1. INTRODUCTION 

In previous work I') we developed a path integral formulation of clauica7 

Hamiltonian mechanics, assuming, for simplicity, that the components W"b of the 

symplectic 2-form, W = !W"bdqS" /\ dqSb, are constant in phase space M21l' How­

ever, in general, W can be any closed and non-degenerate 2-form,i.e., dw = 0 and 

det(w"b) '" O. The measure for the classical path-integral is a delta-function which 

confines the system to paths satisfying the classical equations of motion. This 

measure can be expressed in terms of the exponential of an action S that de­

pends not only on the phase space coordinates t$",a = 1, ··· ,2n, but also on 

dual auxiliary variables >.,,' anticommuting ghosts c", and antighosts c". The 

ghosts c" can be interpreted I') as one-forms dqS" making up a basis of the cotan­

gent space T;M21l' while the antighosts c.. form a basis of the tangent space 

T,M2n' Written in terms of these variables, the classical path-integral (CPI) 

becomes more powerful than the delta-function measure from which it sprang. 

In fact, in this form it propagates not only scalar densities e( qS), but also p-forms 

U(t$,c) = ~e" ....... (t$)c"" " c'" 
p. 

(1.1) 

In the CPI the variables (t$, >.) and (c, c) form conjugate pairs satisfying l ' l the 

equal-time (graded) co=utation relations: 

[t$", >'b] = iSt 

[c", Cb] = sr (1.2) 

while the rest of the co=utators vanish. The commutation relations (1.2) can 

be realized by letting qS" and c" be multiplicative operators, while >." and c" are 

realized as: 

\ . 8 . ., 
A" - - I 8t$" =: - IV" 

_ 8 
c" = 8e" 

(1.3) 

The super-Hamiltonian 1(. associated with the path integral action S, once it 

is realized as an operator, acts on p-formS 'U( t$, c) by taking their Lie derivative 
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along the Hamiltonian vector field with components h" = w"b n where H is 

the classical Hamiltonian and w"bWk = 6~. 

The action S is invariant under a set of tran.sformations generated by the 

. following conserved charges· 

K 1 " b = -WAbC C 
2 

- 1 Ab- _ 1 fIb 8 8 
K = -w e,.Cb = -w --

2 2 8c' 8cb 

_ 8 
Qg = c"e,. = c"-

8c4 

Q .'", ,,8 
= lC "" = c 8tP" 

Q- . "b- , fIb 8 8 
= "" e,."b = w 8e" 81/!b 

(1.4) 

each of which is connected with the symplectic geometry I') of phase space. The 

charges K and k can be identified with the symplectic two-form and symplectic 

bivector, respectively, and their conservation corresponds to the Liouville theorem 

of classical mechanics. Realized operatorially, the BRS charge Q acts as the 

exterior derivative on phase space, while the anti-BRS charge Q plays the role of . 
exterior co-derivative, mapping p-vectors into (p+ 1 )-vectors. Finally, the ghost 

charge Qg counts form/vector number, attaching a weight of +1 to each one­

form c" and -1 to each tangent vector c... The BRS and anti-BRS charges are 

nilpotent and (anti- )commute with each other 

[Q,Q] = [Q,Q] = [Q,Q] = 0 (1.5) 

* The second equality gives the oper&torial realiJ&tion of each chuge cont&ining deriV&tive 
oper&ton. 
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and, together with the rest of the charges, they make up the algebra of ISp(2): 

[Q"Q) = Q 

[Q"Q) =-Q 

[K,Q) = [K,Q) = 0 

[K,Q) = Q 

[K,Q) = Q 

[Q"K) = 2K, [Q"K] = - 2K, [K,K) = Q, 

(1.6) 

In addition to the ISp(2) charges, which reflect the symplectic geometry 

of phase space, independent of the classical Hamiltonian H, there is a pair 

of supercharges for every independent conserved quantity of the dynamical 

system I'! . In particular, if we take H as conserved quantity, the supercharges 

are 

QH = ezp«(3H) Q ezp(-pH) 

QH = ezp( -(3H) Q ezp«(3H) 
(1.7) 

Q and Q are the BRS and anti-BRS charges introduced before and (3 plays the 

role of inverse temperatur~. The charges in (1.7) are genuine supersy=etry 

generators, satisfying 

[QH,QH) = [QH,QH) = 0 

[QH,QH) = 2i(31i 
(1.8) 

Physical states of ghost number 2n which are invariant under this supersy=etry 

turn out I'! to be just the Gibbs states I>! I-! U(tP) = k ezp [-(3 H(tP») charac­

terizing thermodynamic equilibrium. This supersy=etry can also be used to 

derive!'! the classical KMS condition I'! characterizing the Gibbs distribution. 

The classical path-integral, the generators of its ISp(2) symmetry, and the 

Hamiltonian supercharges were all constructed in Refs.[1,2) assuming that the 

coefficients "'Ah of the symplectic form were constant. We know that it is 

always possible!'! to cover a symplectic manifold with local charts for which 

5 

• .._-- --" 
t .;- ." .' ' J'. • 



,WGb is constant (Darboux theorem). However, if the path-integral and symmetry 

generators are to retain their global geome~ric significance, independent of the 

particular choice of coordinates, they should be formulated for the general case 

that WGb depends on the phase space position. 

In this paper (Sect.II) we show that the action S of the CPI, formulated 

with a position dependent symplectic form, is invariant under nonlinear as well as 

linear canonical transformations. Considering the generators of the ISp(2) sym­

metry, we find in Sect. III that the anti-BRS charge must be modified by a term 

proportional to the derivative of wGb so that it remains conserved, and retains ' 

its algebraic properties (1.5), (1.6) and its geometric interpretation as the exte­

rior co-derivative on phase space. In Sect.IV. we study the cohomology problem 

associated to the modified anti-BRS operator and prove it to be isomorphic to 

the standard deRham cohomology of phase space. 

The additional term in Q leads to a modification of the supersymmetric 

charge QH derived from it. The requirement of supersymmetric invariance of 

the 2n-ghost states!') now leads to a new equation, but its solutions are still the 

Gibbs states on a generalized phase space manifold. Also the KMS condition 

continues to be derivable from this supersymmetry using the modified QH: all 

this is reported in Sect. V. We confine some computational details to three 

appendices A,B,C. 

2. CANONICAL COVARIANCE. 

Let us briefly review the derivation of Ref.[l] of the CPI, now allowing the 

coefficients WGb of the symplectic form to depend on the phase space coordinates 

</>. In classical mechanics the propagator p( </>, tl</>o, 0), which gives the classical 

probability for a particle to be at the point with coordinates </> at time t, given 

that it was at the point </>0 at time 0, is just a delta function 

(2.1) 
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where 4Jel(t,t/>o) is a solution of Hamilton's equation 

(2.2) 

subject to the initial conditions 4J4 (O) = 4J(j. 

The delta function in (2.1) can be rewritten as 

where we have sliced the interval [O,t] in N intervals and labelled the various 

instants as 1i and the fields at 1i as 4J(i)' Each delta function contained in the 

product on the RHS of (2.3) can be written as: 

2n 

.s2n (4J(i) - 4Jel(ti, 4>0)) = II .s W - W
4bo"H) It; det[.s:8t - 0" (w",,( 4> )8c H( 4»)] It; 

. 4=1 . 

(2.4) 

where the argument of the determinant is obtained from the functional derivative 

of the equation of motion (2.2) with respect to 4>(i)' Introducing anticommuting 

variables c4 and c4 to exponentiate the determinant, and the commuting 

auxiliary variables '\4 to ,<xponentiate the delta functions, we can re-write the 

propagator as a path-integral using the slicing (2.3)· : 

• p(4), tl4>o,O) = J'D4> 'D>' 'Dc 'Dc ezp is (2.5) 

•• 
- t -where S = 10 dt' .c with 

Holding 4> and c both fixed at the endpoints of the path-integral, we obtain 

the kernel!') , K( 4>, c, 114>0, co, 0), which propagates the phase space p-forms of 

.. The limit of N -+ 00 haa to be taken with lOme care and lOme normalisation fadon might 
appear in eq.[2.51. but they are of no importance for our discussion. 
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eq. (Ll): 

(2.7) 

-
From the Lagrangian (2.6), we can immediately read off the associated super-

Hamiltonian 1i: 

(2.8) 

which, with the help of eqn. (1.3), can be written in operatorial form 

(2.9) 

where we have taken the convention of ordering derivative operators to the right. 

Phase space p-forms, propagating according to (2.7), then obey the "Schroedinger­

like" IIJ equation 

(2.10) 

Recognizing in 1i the combination 

as the components of the Hamiltonian vector field t h = (dB)', we see that 

1i acts as a Lie derivative Ih (along a vector field h) on p-forms 

so 

(lhfJ"'·· .... = h~Ot,'jj,,' ...... + (a,,'h~)'jjba2 ...... 
+ (a,,2h~)'jj"'ba' ...... + _ .. 

1i - - ilh 

- - i[h"a" + (Ot,h")c~ a~] 

t We use the 1I0tatioll of Abraham and Manden of ref.[6]. 
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The Schroedinger-like equation (2.10) is therefore just the Liouville equation 

(2.14) 

generalized to p-forms. 

We .now wish to show that the path-integral Lagrangian I is a scalar under 

infinitesimal canonical transformations 

(2.15) 

where f."4(.p) are components of a vector field f."(.p) along which the Lie derivative 

of the symplectic form w = ~W4bd.p4 II d.pb == ~W4bC4Cb vanishes: 

(2.16) 

Locally this vector field is given in terms of a generating function G(.p, t) by 

Under the transformation (2.15), we have· 

H -+ H'(.p') = H(.p) _ oG 
at 

h4 -+ h'4(.p') = h4(.p) _ hbo"f."4 _ Btf."4 

A4 -+ A~ = A4 + Ab04f."b 

4>4 -+ 4>'4 = 4>4 - 4>b o"f."4 - Btf."4 

;;4 -+ (;'4 = ;;4 _ ;;bo"f."4 _ 4>'CbO.o"f."4 

(2.17) 

(2.18) 

Inserting these expressions into the Lagrangian I' ( .p') = A~ 4>'4 + ic:.C'4 -1t', we t 

• See appendi:J: A Cor details. 
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obtain: 

(2.19) 

" . and, when the classical equation of motion ~" = h" are satisfied, we get 

-----

i' (¢') = i( ¢) 

Therefore, the path-integral action S is invariant under canonical transforma­

tions. 

3. NEW anti-BRS CHARGE. 

Let us now turn our attention to the generators of the ISp(2) algebra in 

eq.(1.4). The symplectic two-form K = !W"bC"Cb and symplectic bivector 

K = !w"bc"Cb are invariant geometric objects which should retain their expres­

sions when Wab and w"b depend on ¢. The ghost charge Qg = cab and the 

BRS charge Q = cGa:. are independent of w, 50 they shall not change when the 

components of W depend on ¢. The anti-BRS charge 

Q = wabb~, on tl).e other hand, will have to be modified when wab depends 

on ¢, since it is no longer nilpotent and does not commute with the super­

Hamiltonian 'H.. In order to find a suitable Q, we take advantage of the com­

mutators of the ISp(2}-algebra (1.6), assuming that this symmetry is intrinsic to 

the CPI on a general phase space manifold. In particular, we have Q = [K,Q], 

and this relation is the one which gives to Q its meaning as an exterior co­

derivative'll . So if we want to maintain this geometrical meaning of Q, we have 

to keep the above relation. It is easily checked that Q and K both commute 

with 'H, and therefore, by the Jacobi identity, their commutator Q should also 

t it/ is given by (2.8) with the nn-primed vari&bJ .. repJaeed by the primed ones 
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be conserved. Evaluating this commutator~ , we obtain 

.-' . -.. ~ 
Q
- . .. ~ _ \ l8w , _ _ 

= lW c""6 - 2 8tP' c ~ .. C6 (3.1) 

which becomes in the representation (3): 

, ~. 

(3.2) 

With the help of the identity wcu~~': + eye. perm. of (a,b,c) = O,which follows 

from Jw = 0, one can show that the anti-BRS charge (3.1) is nilpotent and 

(anti- )commutes with the BRS charge 0 

[Q,Q] = [Q,Q] = 0 

In Ref.[l] we showed that, when w"~ is constant, the anti-BRS charge acts 

as an exterior co-derivative on p-vectors 

We now wish to show that the new anti-BRS charge (3.1) retains this role 

for W
A6

( <p) . 

The exterior co-derivative is obtained I') as follows. First we use the symplec­

tic structure to associate with the p-vector V(p) the p-form 

V:(p~) = .!.Wf ••• wI V 91 " '6, cll ••• cf, p! 191 ,9, 
(3.4) 

then we take the exterior derivative d = c'8, of the resulting p-form 

(3.5) 

Finally, we use the canonical correspondencellil
') between forms and vectors to 

b See appendix B lor details. 
o See Appendix B. 
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.obtain the exterior co-derivative of V(p) 

(3.6) 

Calculating the graded commutator of the anti-BRS charge (3.1) with the p­

vector (3.3), we find 
, . 

(3.7) 

The right hand sides of (3.6) and (3.7) are equivalent because of the identity 

"" a1/1 ow /.91 _ _ _ _ ~ OW441 
__ 

w w 04>' CeCal - 2 0¢91 CaCal (3.8) 

and therefore we have proven that 

(3.9) 

This means that the new Q has the same geometrical meaning as the old 
II) one . 

4. Anti-BRS COHOMOLOGY 

From our previous work I') ,we know already that the cohomology of the . 
BRS operator Q acting on p-form fields t--p) is isomorphic to the deRham 

cohomology. In the following we compute the cohomology of the new anti-BRS 

operator Q. This means that we solve the equations 

where Q is given by . (30) and where the "Schroedinger state" I') 

t p)(4),c) = ~e?.~'-40(4))ca • ... ca, 
p. 

(4.1) 

(4.2) 

is considered a function of the (anticommuting) c-numbers c4 rather than an 

operator. Note that Q maps p-forms onto (p-l)-forms. In order to solve 
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eqs.(4.1) , we change the .representation!') of the operator algebra (2). In­

·.~ead of the "position 8pa.ce representation" ~3), we .hall use the "momentum 

space representation" for the ghosts. Then Co .is a multiplicative operator and 

CO = k acts as a deriva.tive. Previously!') "states" were represented by p­

form fields qr.p)(t/>, c), now this role is played by the p-vector fields V(p)(t/>,l) of 

eq.(3.3)o .. The Gra.ssmannian Fourier transform 

(4.3) 

establishes a one-ta-one correspondence between vector fields and form-valued 

fields. Therefore the solution of the cohomology problem (4.1) follows from the 

solution of 

(4.4) 

where the anti-BRS operator is now represented by 

(4.5) 

This differential operator ha.s the following action on p-vector fields (3.3): 

(4.6) 

This equation is the "Schroedinger picture" analogue of eq.(3.9) in the "Heisen­

berg picture" where V(p) wa.s considered an operator rather than a state. Again 

we see that, up to the canonical isomorphisms, and ~ between vector fields 

and forms, the operator Q acts like the exterior deriva.tive "an. Therefore the 

solutions V(p) of eq.(4.4) are obtained by applying the isomorphism, to repre­

sentatives of deRham cohomology cla.sses. Furthermore, because (4.3) gives rise 

to a one-ta-one map between solutions V(p) of (4.4) and solutions qr.p) of (4.1) , 

we conclude that also the original cohomology problem (4.1) is isomorphic to 

deRham cohomology. 

• We keep using >.. == - i8. for the bosonic variables. 
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5_ SUPERSYMMETRY, 
GIBBS STATES AND 

KMS CONDITION_ 

In ref.[2] it was shown that every :"iamiltonian system has a hidden super­

symmetry generated by the supercharges QH and QH of :Eq.(1.7). Since the 

. -supercharge QH is derived from the anti~BRS charge Q, which we have now 

. modified, we must check that the results of Ref. [2] continue to hold when wGb de-

pends on 4>. The new Hamiltonian supercharges, constructed according to 

are given explicitly by 

Calculating the anticommutator of these two supercharges, we obtain 

(1. 7), 

(5.1) 

(5.2) 

while their nilpotence is guaranteed by the nilpotence of Q and Q, and by . 
(1.7). Since their anticommutator closes on the super-Hamiltonian, QH and 

QH are genuine supersy=etry generators. Physical states which are invariant 

under this supersymmetry must be annihilated by both supercharges. If we are 

concerned 1'1 with calculating expectation values of scalarobservables A( 4», we 

need only consider physical states given by 2n-form distributions 

(5.3) 

because only then will the expectation value (A}i = ftP"4> tP"c A( 4»e-( 4>, c) be 

nonvanishing_ Any 2n-form will be annihilated by QH , since it involves multi-

14 

, . '," .. 



plication by an extra ghosts. Invariance under the other lupersymmetry genera­

tor QH, on the other hand,leads to the nontrivial condition 

Q- ;;(In) 1 ., ."(f'l./' !J8B)( .I~ ) - 0 H(! =(2n_l)'t: ........ ,.c .. ·c Vb + "8q,b w (!- (5.4) 

Therefore the phase space density distribution (! must satisfy the equation: 

(5.5) 

In ref.[2] it was shown that supersymmetric invariant states satisfying (5.4) with 

constant w"~ are precisely the Gibbs states. In case wAb are not constant, a 

solution of the equation above is 

(5.6) 

where K .. b is a constant matrix. Due to this constant matrix K .. b, the solutions 

(5.6) is not a scalar density as it should be if we want the ~ln) of eqn.(5.3) to 

transform as a 2n-form. ~ The solutions of eq. (5.5) that are scalar densities 

are t : 

• (!(q,) = k[det{w"M)}]l" ezp{ -PB(q,)} (5.7) 

where k is a constant. The origin of the determinant in eq. (5.7) is easy 

to understand. Recall that the Liouville measure on phase-space is given by the 

volume form wn = (!W"b( tP)dq," "q,~)n, which translates into K" = (!w"bCClCb)" in 

* The state (5.6) is only locally a Gibbs .tate. In fact, thanks to the Darboux theorem, we 
ean locally bring OJ to the standard constant off-diagonal form, "" that the factors in front 
of (5.6) becomes just over-&!! costants. Globally anyhow (5.6) is not a Gibbs state 
because the dependence on ~ is not brought in only by H, as it shonld be in any Gibbs 
Itate, but also by OJ. 

t For the details of the .derivation tee the appendix C. 
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our formalism. Because of the identity' 

(5.8) 

the 2n-form obtained by inserting (5.7) into (5.3) -can be writt~n as 

e<2n)(q"c) = k'ezp{ -/3H(q,)} K" (5.9) 

Thus, using the proper ( ¢>-dependent) volume form K", the supersymmetric in­

variant states are again characterized by a simple Boltzmann factor ezp( -/3H) and 

so they are true Gibbs states. Note also that it is K", rather than c1c2 .. ·c2", 

which is invariant under the Hamiltonian flow. In fact, using eq. (2.13) , it is 

easy to prove the slightly more general statement: 

'H.Km = 0, m = l,2"'n (5.10) 

which embodies the conservation of Poincare's integral invariants. 

In this last part, we will follow ref.[2] to derive the KMS conditions l
'
l 

. Let 

us calculate, for two observables A1(q,),A2(q,), the following expression 

(5.11) 

IT we requeire that the state U is of the form (5.3) and supersymmetric invariant, 

then the expression (5.11) above is zero. We will now check that, even with the 

new QH inserted in (5.11), this will lead to the KMS condition. Let us first 

• See the appendix C for details. 
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write (5.11) explicitly 

I d2n rP d2nc Al(rPi O)C"[(8" - /38"H)A 2(rPi t )] .· 

.. . e6 8 1 8wlg ,8 8 
• [w (8t, + /38t,H) at:< - 2 8rPb C 8cl 8cg ]' (5.12) 

• (j2n( rP, c) = 

= I d2n -I. (-1.)[ "b 8Al (rPi 0) 8A2( rPi t) /3 "b 8H 8Al (rPi 0) A (-I.. )] 
'I' e 'I' w 8rP" 8rPb + w 8rP" 8rPb 2 '1', t 

thus leading to the classical KMS condition (.J 

or equivalently 

(5.13) 

In the above calculation an extra term from QH cancels with a term coming 

from the derivative of w"b leading to the result previously obtained (2J for a 

constant symplectic form . . 

6. CONCLUSIONS 

A lot of work remains to be done using this formalism. In particular we 

would like to see what is the form that supersymmetric invariant states have if 

they are not in the 2n-ghost sector. For sure they will not be Gibbs state but 

their form might be as universal and important as the Gibbs states. Second we 

would like to see what the KMS condition becomes for these new states of ghost 

number # O. 

Regarding the KMS condition, we would also like to see if it can be derived 

in the same way for systems with an infinite number of degrees of freedom, where 

this condition was originally proposed. 
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Lastly, we would like to make contact between our formalism and the KMS­

functiona.ls and non-commutative-geometry formalism proposed by D.Kastler and 

A.Jairelt] 
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APPENDIX A 

In this appendix we will compile some information regarding canonical trans­

formations . We do this to make the paper self-contained even if a.ll we are going 

to write is by now standard knowledge!f] . 

Let an arbitrary infinitesimal transformation of 4> be of the form 

(AI) 

The symplectic form w, being a 2-form, is invariant under arbitrary coordinate 

transformations: 

From (A2) we get immediately 

= w<,( 4> )d4>< /\ d4>' 

= w<,( 4> )d4>< 1\ d4>' 
(A2) 

(A3) 

Let us remember!t] that the Lie derivative l.w of w along the vector field with 
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components E<, is defined as 

"". 

Using (A3) and (AI) it is easy tei find that 

, . 

80 

(A5) 

The canonical tranl/ormationl (2.16) are those that leave invariant the coeffi­

cients of the symplectic two form: 

(A6) 

If we remember the abstract definition of theLie-derivative· (.J 

(A7) 

and the fact that duJ = 0, we get from (A7) and (A6) that d(i,w) = O. This 

means that i,w is a closed form and locally i,w = dG. In components this can 

be written as 

this gives eq.(2.17): 

(AS) 

With the explicit form for E we can now find the transformations (2.1S). Let 

us remember!'] that the ~ and c are a basis of T,M, while the c are a basis 

* With i. we indicate the interior product with the 'feelor field t . 
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\' 8¢· [ b k)] "'" =841" >'. = 6,,:- 8,,(w 8cG A. 
~ = ::.: c. = [6! + 8,,(wk 8cG)]Cb 

c'" = ~~: c· = [66 - l\(w/IC8cG)]c· 

H'(¢') = H(¢) - 8tG 

(A9) 

The last transformation derives from the well-known requirement I'] that Hamil­

ton's equation of motion keep the same form under canonical transformations. 

Using the transformations above with functions G which do not explicitly de­

pendent on t, it is easy to see that 

Using this, let us now calculate l'(¢'): 

(AIO) 

The last piece in the equation above is zero because of the equation of motion, 

so we get that 

l'(¢') = l(¢) 

t c. are covariant while c· are controvariant. 
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APPENDIXB 

In this appendix we present details of the calculations done to obtain the 

expression (3.1) for Q, and to check that [Q,Q] = o. 
As we said in the paper, we use the 5th relation of equation (1.6) to derive 

Q, that is 

[K,Q] = Q 

Writing the charges in the operatorial form (1.4), we get 

(Bl) 

Let us now show that 

[Q,Q] = 0 

[Q,Q] 
4 8 ,.. 8 8 1 8w9h 8 8 

= [c 84>4' W 8cb 84>. - 2' 84>f c
f 
8c9 8ch] 

4 8 ,..88,..88 4 8 
= c 84>4 W 8cb 84>. + w 8cb 84>. c 84>4 + 

1 8 8 8 8w9h 1 8w9h 8 8 8 
- _C4 Cf _____ _ -----c'--c4 

2 8cg 8ch 84>4 84>' 2 84>' 84>4 8c9 8ch (B2) 
_ 8w'" 8 G- 18w9h 8 ,_ 18wPh 8 ,_ 
- 84>4 84>. c Cb - 2' 84>' 84>h C Cg + 2' 8",' 8,pg C Ch 

8w'" 8 1 8w'" 8 1 ow'" 8 
= c

4 
Cb (8",4 8",. - 2' 8",4 8",. - 2' 8",4 8"'.) 

=0 

In the same way, but with a much longer calculation, it is possible also to prove 
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'hat 

[Q,Q] = 0 

and that 

[Q, 1-£] = 0 

In both calculations crucial use is made of the identity 

(B3) 

It is thanks to this identity that the many more terms present here ,in comparison 

to the few terms present in the case!') of constant w·b, get either cancelled or 

balanced with other terms to produce the same algebra as before!') . 

APPENDIXC 

In this appendix we would like to present the details of the derivation of the 

two equations: (5.8). (5.9). K is the symplectic 2-form: 

(Cl) 

Let us write the volume form w" = K n as 

(C2) 

and now let us determine the function F( tP). From the expression above we have 

F(tP) = f d2nc K" = (n)! f d2nc eK 

= n! f d2nc eC''',oc' = n!pf(w) = ±n![det(wab)]l 
(C3) 

This is eqn. (5.8), where pf(w) is the Pfaffian of Wab . whose square is well 

known to coincide with det(wab). 
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Let us now solve eq.(5.5). 

(C4) 

A solution, presented in (5.6), can be obtained identifying the quantity in 

the square. brackets of (C4) that is w"b(¢)U(¢), With a constant K"b multiplied 

by ezp( -PH) 

which leads to (5.6): 

This solution, anyhow, is not covariantly correct in the sense that Kdb being 

a constant does not transform as the components of a 2-vector under canonical 

transformations. Another manner to solve eq. (C4) is by making the ansatz 

e( ¢) = f( ¢ )ezp( -PH) and inserting it into (C4) to determine f( ¢). The 

equation that one gets is: 

We can proceed to solve it I!-S follows: 

<b 8"f A cob o'T +W,,,VbW 

8.1 <> T = v.(lnf) 

=0 

= wbl8"wI' 
1 bl 

= 2w [8"wI' + alWeb] 

1 bl = -w a,Wlb 
2 
1 _ 

= 2tr(w 18.w) 

1 
= 28.trln(w) 

1 

= a.ln(detw)i 
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·where we used the fad that tL..J = O. So we get: 

1 

f(t/» = k[detw"M)F 

which generates the solution (5.7) and consequently it gives rise to the covariantly . . . 
correct solution (5.9). k in the equation above is a constant. 
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