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Abstract

We provide analytical and non perturbative expressions for the effective coupling
constant of QED in the presence of slowly-varying background fields. Our results agree
with previous numerical calculations but, for strong magnetic fields, w;: observe some
deviations from the expected logarithmic increase of the fine structure constant. These
effects tend to reduce the effective charge, thereby providing further evidence against the

existence of a new, strong-coupling phase of QED in heavy-ion collisions.




I. Introduction

The fine structure constant can be regarded as an effective coupling constant Oleff
which receives corrections in the presence of external electromagnetic fields [1]. By
properly choosing the background field configuration and strength one can hope to shift
the value of ofr up to the strong coupling regime oefp~1, where QED is supposed to have
a new confining phase [2]. The existence of such a phase in heavy-ion collisions has been
postulated [3,4] in order to explain the narrow e*e" peaks observed at GSI by the EPOS
and ORANGE collaborations [5,6].

The Schwinger's "proper time" formalism [7] has been used in [1] to estimate Off
as a function of constant background fields. The numerical results show that the effective
charge increases but the growth is only logarithmic and it is not enough to trigger the
postulated phase transition.

The aim of this note is to provide analytical expressions for the aeff dependence
on the external field strength and direction. Our results will confirm the numerical
analysis of ref. [1] but, for strong magnetic fields, we find some deviations from the
expected logarithmic growth. Such effects conspire to make O smaller, so that it is even
more difficult to reach the critical point aefp~1. This circumstance, in turn, provides
further evidence against the existence of a new, strong-coupling phase of QED in heavy-

ion collisions.



II. An effective Lagrangian for QED in the presence of background fields
In this section we describe in some details the method used to evaluate the

effective fine structure constant as a function of constant background fields. We start

from the generating functional for QED:
Wil = I @Aucxp{ i f d*x [LA+JuA“]}] DT!chp{ i f d*x [Lrre Y1 v A"]} (1)

where LA and Lg are the free field Lagrangians for photons and fermions respectively.

Formally, one can integrate over the fermion variables to obtain a generating functional

for the photon field only:

Wall]l = DAy exp{ ] dx [LA+L'+ JpAp’]} ?)

with:

w‘chp{ i f d*x [Lrw\TrwA”]}

exp {i j d*x L'} = f W_mexp{ ij . Lf} : (3)

The electromagnetic field can now be regarded as a closed system governed by the

Lagrangian L=Lp +L. L' includes, in an effective way, the dynamics of the fermion
fields. Schwinger [7] provided an evaluation of L for the case of slowly-varying fields

Fyy. In particular £ can be given the following integral representation:
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b= <[(R+ - A" (5.5)
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where Fand G are the fundamental invariants of the electromagnetic field, 7=(E2-B2)/2 ,
G=E-B and m represents the electron mass. If the vectors E and B are mutually parallel

the invariants a and b have a simple physical meaning, namely:

B
a% L bSS (5.0)

Since we want to discuss a quantized electromagnetic field Aﬁ in the presence of

an external classical field A;“. we find appropriate to write Ay = A‘:l + Ael_:“ and to

expand £ in powers of Aﬁ. The quadratic term

_ oL q q
=3 OuAgIEAY s = AP oAl Bl ©)

is then used as an effective interaction Lagrangian in computing the corrections to the

photon propagator. As one can easily verify the tensor A®BY® has the following

symmetry properties:

Aaﬂyﬁ = -—ASGYS =— Auﬁ&f = A‘VBEB. (7)




In terms of this tensor the leading correction to the photon propagator is given by:

SDy(x-y) = - f d2 (01 T Aux) Avy) A% BaAp@)] [A:110),  (®)

‘where the superscript "q" has been omitted. From the corrected propagator in momentumn

space T);v(k) we extract the effective fine structure constant as:
a Dpo(0,k) = aefr Dpo(0,k) , ©)

where Dy (k) is the free propagator and k = (0,k). Obviously, the coupling constant Ceff
defined by eq. (9) is a non isotropic quantity which depends on the direction of the

exchanged momentum k.
Before considering some specific configurations of background fields it is useful

to give eq.(8) a more compact form. First, we apply the Wick theorem to obtain:

BDyu(x-y)=-| d%z (O T Au(x) 9% Ag(2) 10) (O T Avly) FAs@)I0) A

(10)

] [ dz (01 T Au(x) & Ag(2) 10) (O T Aly) % Ag(2)I0) AP,

Because of the symmetry properties of A®BY3 the two terms of the r.h.s. are equal, so

that:

SDp(xy) =2 f ¢z [%D,p(x-2)] [93D\aly-2)) A an



Finally, by introducing the Fourier transforms of the free photon propagators we obtain,

in momentum space:
8Dyv(k) = 2 Dyp(k) APk Djy(k) . : (12)
III. Weak fields

We now use eq. (12) to find ae¢fas a function of weak background fields. We
treat this problem just for the sake of completeness, since it is not strictly connected to the
"new phase scenario" proposed in [3,4] .

i

2
For weak fields, that is for E,B « 0l the Lagrangian L' is well approximated

[8] by the expression:

= 2 2_p2y2 2
L 4——ﬂ—5_8n2m4[(13 B2)? + 7(E-B)?) . (13)

The corresponding tensor A% turns out to be :

ACB1S _ 25_8(%_4_[ AFPFeB 4 FImE,,_ (g gB5 - gud ghy)
OTL°mM

+7 FOFP 47 o Fim, | (14

where ﬁlm is the dual of Fim. From eqs. (12) and (14) we get the following result for
BDuv(k):

2 | FoukOFo k¥ _ Fo k®Fok?
8D,y (k) = —AMO)” | g Tk T Ly q o W o Fim BV i
45-8n2m*4 (k2)? (k2)? k2 |. (15)
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Obviously, the term with the completely antisymmetric tensor £aB does not contribute

to the photon propagator . The expression for 8Dgo(k) is much simpler,

2 2 -
D _ 2 4 (k-E) ?(koB)- 2(B“-E*)
oo(k) 4—4-q—5m = [ Y + o + 2 (16)

and it is straightforward to obtain the effective fine structure constant Qff:

ar=afi+—2[ 282 708 262 - 48] a7)
45nm*

?

where t is the unit vector in the direction of k. As far as weak magnetic fields are

oo i

concerned, we see that the effective coupling strongly depends on the direction t of the
exchanged momentum K: O,ff increases if t is perpendicular to B but the opposite holds
when t is parallel to the magnetic field. The effect of a weak electric field is easier to
comprehend [1] and, as one would expect, it tends to reduce the effective fine structure

constant.

IV. Strong fields

e

Let us now consider the most interesting case of strong background fields. The
knowledge of oeff as a function of constant electric fields provides informations about the

behaviour of QED around static configurations of highly charged sources. On the

g

contrary, the study of ff in strong magnetic fields can be regarded as a first step

towards the description of QED in the neighbour of large moving charges, such as the K

heavy ions colliding in a GSI experiment.
When the electric field is so strong that %E-i»l, the formalism developed in section

(II) is no longer reliable; electron-positron pairs are produced with sizeable probability
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and we cannot describe the dynamics of A, by means of a real effective Lagrangian
dcﬁcndihg on Fyy only. Thus, we shall evaluate oefr as a function of a strong magnetic
field B, whereas E will still be supposed to be weak. In a heavy-ion collision the
condition E«B is actually fulfilled in the region between the colliding nuclei, whcr.e the
electric fields mutually cancel out. The size L of this region depends on the impact
parameter s of the collision as well as on the P of the ions. A rough estimate gives L~fs,
as one can verify by means of very simple arguments.

As in the previous section, we have to start from the tensor A8 | which can be

written as:

abe_ploc W o @ awr ar 9%
2| 322 99aAp)d(ByAs)  9(a2)? B@uAp) 0(ByA5) b2 A(BaAp)I(ByAS)

Lo v a’L'( a2 db2 b2 da? ) -
3(b?)? dBaAp) d@yA5) 0a%0b? (9(@aAp) 9@yAs) O(BaAp) IByA) )| -

Since the external electric field is supposed to be weak, we evaluate the derivatives of the

invariants a2 and b2 up to the quadratic terms in E only. We obtain:

da2 ZJL[(E-BF ppo, EB F‘ﬂa:l

0(daAp) R B4 B2 55
abz _ aaz o
oy ~ 3ty 2% Fhe (19,b)
0%a2 s [ _2_( E/? 2) Bys . JEi?
= 1-6— +EZ | FPEY® g1l poBpyd
3@ApO@AD mé | B2\ g2 'B2 Y
2 . :
+ 250 (godghr g 88 ) 4 4 =B (puspd , proges) o EB B“M]
B2 ; B4 B2 2 (20,a)




9%b? N 0%a2 0 0 (cabofy. urrefh
a(aaAB)a(a')Aa) - a(auAB)a(a-rAa) . m? (gu g°T- g*g ) . (20,b)

where E; is the component of E parallel to B. As far as the derivatives of L' are

concerned it is useful to express the Lagrangian as:

L'(a,b) = Lo(b) + a2 Lp(b) + aLy(b) + ..... . (21)

where Ly, £, and L4 are obtained by expanding the r.h.s. of eq. (4):

en|2b? ]
Lo= 81:2 . dnﬂ3 [11 3 7b coth(nb) +1 (22,2)
=mt en X
L = ) dnsn [nb coth(b) 1]' (22,b)
=mt b p——
Ly 82 45 ), dne1n*coth(nb) _ (22,c)

Then, keeping in mind that a2 = n—?z E;2+O(E4) , we have:

g: £a6) + 2B B2 £(b) O, 23.)
ar 3
___ﬂ. QF 2a£’ +0(1.34) (23,b)

b2 9b2 m* | b2
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and similar relations for the higher order derivatives. All the previous expressions are

greatly simplified if we set E=0. In particular, the tensor A8 takes the form:

afyd oL aL U 0L
AP _ o FPEY® 0L ( Byoas _payeBs 28 _ FoBpy
[(8&2 | R OL (gBrgad garg )+ 207 ] (24,2)

Lo| F*PEY0 _9Lo (.py 8o 2-Gua‘°1=aﬂmf>
o~ [( ab,) 52 (gPrge® -gevght) + mé 3002 . (24,b)

According to eq. (12), the corresponding correction to the photon propagator turns out to

be:

9% FoyukoFpk? 4 9Lo Buy

Dyv(k) = 2% (47)2|-L
8D(K) = 2% (4n) [32( i T

921, Fouk®Fpk?
+ 2—@- , (25 )

m* 3b2)?  (k?)°

where a gauge term proportional to kj;ky has been omitted. Once again the correction to

the Dyg(k) component has a rather simple expression:

8Dgo(k) = &IL 81!_(1; [3[0

k-B)?
b2 ab?| 2p? | (26)

k?B

From this we extract the the effective coupling constant Off:

2 a0 (-B)
e “{Hm[atf.g (I” PO ]} @n
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_The problem is now reduced to find the asymptotic behaviour , for b —ee, of Eﬁ){g and

£Lp(b). Starting from eqgs. (22,a,b) it is not difficult to recognize that:

9L m* .1 |np2 —.m_. L (

b2 8 6 ‘“ @8
~Int . (b.liny2)=mt.| B ( ] 29

% 872 ( ) 812 3m2 G

Later on we shall need the asymptotic behaviour of £4 too. The integral appearing in eq.
(22,c) can be evaluated analytically and it gives:

- nn? =21 ,_.l_ *
fo dne 12 coth(nb) [4b3 P 1], 30)

where {(n,x) is the generalized Riemann zeta function. From this result one easily

obtains:

4
L)~ & 8"‘? b. 31)

Inserting the relations (28) and (29) in eq. (27) we get :

(t:B)
et~ © [u&u{@_ B ] 32)

This formula looks very strange since it predicts a negative aeff when t-B#0 and

B»é-n——— .The origin of this drawback is easily recognized: eq. (32) has been obtained

o
from the first-order correction (12) which is not enough to account for the big corrections

induced by strong external fields. In order to obtain meaningful expressions we have

12
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then to evaluate the photon propagator to all orders in Leg. This "exact” propagator D can

be cast into the form:
D=D+DVD+DVDVD+.....= D[D-DVDJ'ID = D[D—SD]'ID. (33)

where V is the external field vertex operator VB3= 2kakyA®PY3. If we work in the
Feynman gauge Duv=4n5”— and we set ko=0, the matrix D-8D has the simple block

structure
X000
D-sD~| 0XXO0
0XX0 (4
000 X
as one can easily verify with the aid of eq. (25). This result enables us to write:
i Doo
Dyo =D [ D - 8D 1-lgo Doo = —— (35)
1-8Dgo
which, in turn, yields:
o
=—, 36
Ceff =1 (36)

where & stands for the first-order correction to the effective fine structure constant. As a

consequence, we can now replace eq. (27) with the improved one:

Oeff = 2 » (37)

13
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As in the case of weak magnetic fields, we observe an increase of Ofr in the t-B=0 plane.
However, the growth is too small to corroborate the hypothesis according to which the
critical point Cefr ~1 is approached in a heavy-ion col}ision. In fact, the strength of the
magnetic field produced between the colliding nuclei is of the order Bion~103 MeV?2,

d : . -0
corresponding to a relative correction Ee;-f—r—-O.OOS only. Furthermore, as soon as we
a ;

amove away from the t-B=0 plane, the leading effect of the applied field is to reduce the

T o 5 ; . o eB (t-B)2
coupling, since the logarithmic growth is dominated by the linear term Imm? BZ In

this regard, it is easy to understand why such an effect was not reported in ref. [1]. In

this reference the effective fine structure constant has been defined as:

- oL|! 0 N
a=%£) - f;[g}(wr.)] . (38)

Since La -=£ we can write:
4r

— oL']! oL']!
= i | | N Q. QL V=
a a[l+41r afJ a[l 8n méonz| - (39)

That is, & is nothing but the value taken by our aff at t-B=0. Thus, its asymptotic

behaviour is given by:

o~ Qo (40)
1- & 1 [2B2
6n m4

without terms proportional to B in the denominator.
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The foregoing results, in particular eq. (37), require minor emendations when a
weak electric field is superimposed to B. In this case it is useful to split the tensor
ASP(E B) as follows:

ASBY(E B) = ACBYS(B) + A0BYS | (41)

where A2BY8(B) is given by eq. (24) and AP accounts for the corrections introduced
by the external electric field.

1.0041

1.003¢

Oefr(B)/o

1.002¢

200. 400. 600. 800. 1000.
BMeV?2)

Fig. 1. The logarithmic increase of the effective coupling constant as a function of the external

magnetic field. The plot corresponds to the case k‘B=0, where k is the exchanged momentum in the
photon propagator (see the text).

Correspondingly, the first order correction to the photon propagator is written as:

SDuv(E,B) = BDuv(B) + 8Wuv (42)

where 8D,,y(B) is given by eq. (25) and

SWpv(k) = 2 Dyp(k) A%BWkokyDy (k) , (43)

15



as dictated by eq. (12). Then, according to eq. (33), the "exact"” propagator 2XE,B) takes

the form:
7(E,B) = D[D-3D(B)-8W]-'D = XB)[ 1+ D1 W D! XB) ], (44)

7X(B) being the exact propagator in the absence of background electric fields. From this

equation we obtain the following relation for o (E,B):

Oeri(E,B) = 0efi(B) [ 14Dy 8W g0 “fT‘(B)] (45)

with aef(B) given by eq. (37).The correction §Wqq can be evaluated with the aid of egs.
(19) and (20) . Since the tensor A®P" takes in this case a rather messy form we just state

the final result, omitting the intermediate steps. It turns out that oef(E,B) can be cast into

the form:

0terr(E.B) ~ o;.,ffas)[l -4 sBalp,

2
, (t-B) Olerr(B)J
5% m? m I & . (46)

B2

The logarithmic growth in the t-B=0 plane is then unaffected but, for t-B#0 , the
presence of a weak electric field gives a further contribution to the decrease of the

effective coupling constant.
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V. Summary

- - ~'In this work we have discussed the photon propagator in the presence of slowly-
varyiﬁg external fields. Analytical and non perturbative results have been obtained by
including the fermionic dynamics in an effective Lagrangian depending on the photon
field only. From the 2y component of the corrected propagator we have cxtrac?ted an
effective fine structure constant Ol as a function of the external field configuration.

The behaviour of oegf in the presence of strong fields has interesting implications
for the e*e- peaks observed in heavy-ion scattering experiments at GSI [5,6]. More
precisely, it is important to ascertain whether the unusual field environment induced by
the heavy ions can shift aeff up to the strong coupling regime ¢efr~1, where QED is
supposed to have a new confining phase; as suggested by many authors [3,4], the
presence of this new phase would actually explain the gross features of the observed ete-
narrow structures. In this regard, the main motivation for our work has been to
analytically reproduce the numerical results of ref. [1] which show that the increase of
Olefr is too small to trigger the postulated phase transition.

From the formalism developed in sections (II) and (IV) we have derived a simple
expression describing the behaviour of o,ff in the presence of a strong magnetic field B.
In the plane perpendicular to B the effective coupling shows a logarithmic growth which
agrees with the numerical evaluation of ref. [1]. For a field strength B~103MeV?2,
comparable with that produced in a heavy-ion collision, we have estimated a negligible
shift of the effective coupling constant, namely a%'a-o.oos . This small correction
clearly militates against the new phase hypothesis.

Sizeable deviations from the expected logarithmic increase have been found for
directions with a non vanishing projection on B. In particular, the dominant effect of the

applied field is to reduce the effective charge, thereby providing further evidence against

the existence of a strong-coupling phase of QED in heavy-ion collisions. Anyway, one

17



has to keep in mind that our formalism applies to slowly-varying fields only. When the
leﬁgﬁh scale of the fields is comparable with the electron Compton wavelength we cannot
rely on the assumptions used to derive the cffcctivc'Lagrangian (4). As a consequence,
- we cannot rigorously rule out the possibility that a phase transition is triggered by external
field configurations closer to the experimental conditions. A lattice calculation [é] shows
that this is unlikely to occur for the Coulomb case, but the role played by time dependent

fields is still an open question.
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