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ABSTRACT

From the data collected by the DELPHI detector at LEP during 1990, the
hadronic branching fractions of the Z° boson into all five known quarks have
been measured for the first time in the literature.

A classifier based on a feed-forward neural network has been used for
separating the hadronic decays of the Z° into four classes, corresponding to
(uT+dd) unresolved, s3, cZ, bb. Data on the hard final-state photon radiation
have been then used to resolve the decay rate into u pairs from the decay
rate into dd pairs.

The preliminary results are consistent with the predictions from the Stan-
dard Model. Problems related to the estimate of systematics are discussed.

1. INTRODUCTION

Measurements of the partial widths of the Z° into charged leptons were available
from LEP since 1989, and presently the relative accuracy on their determination
is of the order of 1% [1). Despite the primary importance of the knowledge of the
hadronic branching fractions, after two years of running of LEP, only the partial
widths into bb pairs and into cZ pairs have been measured, with accuracies in the
range 5 — 10% and 10 — 20% respectively [2]. The lack of experimental information
in the hadronic sector is mainly due to the difficulty of separating events in which
the Z° decays into a pair of light quarks.

A powerful probe for the classification of events can be given by feed-forward
neural networks [3], that can map a set of variables calculated from the topology of

INow at CERN, Geneva, Switserland.
3From SEFT. Visitor at the Institute of Physics of the University of Udine.




the event onto a feature space in which the different species are well separated. The
possibility of using a feed-forward neural network for this purpose was explored in
[4], for the problem of the classification of decays into bb pairs. The result of this
study was that, in the case of a perfect detector, a separation could be achieved
with a higher efficiency with respect to traditional separation variables [5]. Further
studies [6] demonstrated that, also in the presence of detector effects, feed-forward
neural networks could be a useful tool for the classification of bb events.

In what follows it is tested wether topological properties of the event (i.e., prop-
erties related to the structure of multiparticle production) can be used by a feed-
forward neural network to classify not only bb events, but also s3, ¢z and (vu+dd)
unresolved events. The robustness of the separation against a wide range of sys-
tematic uncertainties related to the model-dependence of the classification has been
investigated. As a result, it has been possible to measure, from the data collected
by the DELPHI detector [7] at LEP during 1990, the rates of the hadromc decays
into the four classes listed above.

For the sake of completeness, the LEP measurements of the rate of final state
radiation from gg pairs have been used to compute the relative probabilities of decay
into u% and dd pairs. This last separation is based on the assumption that the abso-
lute value of the charge of the u quark is double with respect to the absolute value of
the charge of the d quark, and thus, the probability for the photon bremsstrahlung
process is four times larger.

2. EXPERIMENTAL PROCEDURE AND EVENT SAMPLE

This analysis is based on a data sample collected by the DELPHI detector at LEP
during 1990.

The components of the DELPHI detector, relevant for this analysis, have already
been described in Ref. (8], as well as the trigger for the hadronic events.

Charged tracks are measured in a 1.2 Tesla magnetic field by a set of three
cylindrical tracking detectors : the Inner Detector (ID) (inner radius = 12 cm, outer
radius = 28 cm, covering polar angles between 29° and 151°), the Time Projection
Chamber (TPC) (inner radius = 30 cm, outer radius = 122 cm, covering polar angles
between 21° and 159°) and the Outer Detector (OD) (inner radius = 198 cm, outer
radius = 206 cm, covering polar angles between 42° and 138°).

TPC, ID and OD provide a complete coverage of the region between 25° and
155° in the polar angle 6, with reconstruction efficiency near to 1. The average
momentum resolution is Ap/p ~ 0.005 p (p in GeV/c).

Only charged particles fulfilling the following criteria were used in the analysis:
(2) impact parameter at the nominal primary vertex below 5 cm in radius from the
beamn axis and to within 10 cm of the nominal crossing point in z; (b) momentum
p larger than 0.1 GeV/c; (c) measured track length in TPC above 50 cm; (d) polar
angle § between 25° and 155°.

All particles were assumed to be pions. Hadronic events were then selected by




requiring that: (a) each of the two hemispheres cosf < 0 and cosf > 0 contained
a total energy of the charged particles E;, = IE; larger than 3 GeV, where E;
are the particle energies; (b) the total energy of the charged particles seen in both
hemispheres together exceeded 15 GeV; (c) there were at least 5 charged particles
with momenta above 0.2 GeV/c; (d) the polar angle @ of the sphericity axis was
in the range 40° < 6 < 140° (this cut ensures that the retained events were well
contained inside the TPC).

The resulting data sample contains 79015 hadronic events. The contamination
from beam-gas scattering, 7 interactions and v*7~ events is negligible (< 0.3%).

3. VARIABLES USED FOR THE SEPARATION

Eighteen variables were used as an input for the separation.

Their choice came from the examination of the literature, and from a study of
flavour-dependent distributions based on the JETSET 7.2 Parton Shower Monte
Carlo [9] (JETSET PS in the following), that has proven, after two years of activity
of LEP, to reproduce well the main features of the hadronic decays of the Z° [8, 10].
The particles in the event were clustered in jets according to the JADE/EQ algorithm
[11], with ycue = 0.05. In the following, the most energetic jet will be called “first
jet”, and indicated by the superscript (f); the second most energetic jet will be
called “second jet”, and indicated by the superscript (s).

The variables used are:

1. The sphericity S(/) of the first jet, calculated after a boost 8 = 0.96 along
its axis. The axis of the jet was defined by the sum of the momenta of the
particles belonging to it.

2. The directed sphericity S}{L of the 4 most energetic particles in the first jet.
For a set Q of tracks in a jet, this variable is defined as

EQP?
Sq= =2t
o SQIPP

where the |p|’s are the momenta in the rest frame of the set Q and the p,’s are
their components perpendicular to the original jet direction in the laboratory
frame.

3. The directed sphericity .5'1,34
4. The invariant mass Ml(z:u of the 4 most energetic particles in the first jet.
5. The invariant mass Ml(;:u of the 4 most energetic particles in the second jet.

6..9. The products of the homologue direct sphericities for triplets of particles in
the first and second jet, S,Jk uz
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10..13. The products of the homologue invariant masses for triplets of particles in the

first and second jet, M.(;? X M,(;,Z

14. The momentum of the slowest pion of the jet 1, after a boost along the jet
axis corresponding to a D" energy equal to one half of the beam energy.

15. Same as 14., for the second jet.

16. The momentum of the most energetic K° in the event (0 if no kaons recon-
structed).

17. The momentum component perpendicular to the axis of the nearest jet of the
most energetic K° in the event (0 if no kaons reconstructed).

18. The sum over the jets of the ratios between the momentum of the leading
particle and the momentum of the jet.

All variables were rebinned in such a way that they were ranging from 0 to 1.
Examples of the distributions of the variables can be seen in Fig. 1, compared with
a simulation based on JETSET PS plus the full detector simulation DELSIM [12].

4. THE NEURAL NETWORK CLASSIFIER

Four independent feed-forward neural networks have been used (one for each class
that had to be separated) with 18 nodes in the input layer, associated with the
input variables z;, defining the pattern space P; a variable number of nodes in the
hidden layer; and one output node, associated with the output value ©, belonging
to the feature space F. The number of nodes in the hidden layer of each network was
chosen by making different trials with an increasing number of nodes, and stopping
when the classification efficiency was reaching a plateau.

In the structure chosen, each neuron (node) performs a weighted sum of the
output values from all the nodes of the previous layer; the node output is then
computed via a sigmoid function

1

at a “temperature” T>. The output o; of the i-th neuron of a layer (starting from
the second) is then ‘
oi = gr(3_wijo;),
J

where the sum is made over the nodes of the previous layer.

3The sigmoid function squeeses the node output between 0 and 1; the final output becomes
more peaked at 0 or 1 as the temperature decreases, becoming exactly 0 or 1 in the limiting case
in which the temperature is sero.
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Figure 1: Individual input variables (simulation). (a) Variable § (see tezt) for
bb events (crosses), and for non-bb evenis (solid); (b) Variable 14 for c& events
(crosses), and for non-cZ events (solid). The distributions are normalized to the
same area.
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The network training procedure fixes the values of the weights associated with
the node interconnections. The aim is to realize a mapping of the input pattern space
(z; € P) to the feature space (© ¢ F), such that a good separation of events belonging
to a class A from events belonging to the complementary class 4 is obtained by a
simple cut in F.

In the “back-propagation” learning algorithm the output feature values obtained
from the “training” input patterns are computed and compared with the correspond-
ing desired “target” values. A least mean square error function E is computed to
quantify the difference between the obtained output © and the desired target t.

E=; ¥ (t-0).

patierns

This function is minimized by changing (“updating”) the weights by an amount
computed from the error function by the gradient descent method [3]. The process is
controlled by the “learning strength parameter” 5 and the “momentum” a [3]: each
updating step in the space of weights, computed by gradient descent, is multiplied
by n and added to the previous step, multiplied by a. To smooth out fluctuations,
weights are updated using the cumulative error from a number of input training
patterns (10 in our case). A sequence of 10 patterns will be simply called an “update”
in the following.

For the training of the system, a set of 100,000 events generated by the Monte
Carlo JETSET PS, plus a detector simulation, was used. The training was made
with an equal number of “signal” (class A) and background (class A) events, because
it has been verified that this improves the performance of the network [6].

The training was done using the simulator JETNET [13] and the simulator
developed in [6]. No differences in the performance were noted.

Two symmetric target values (0 for class A and 1 for class A) were uscd.

At each step of the learning procedure, an indication on the performance of the
network can be inferred from the error function. A more reliable evaluation is ob-
tained by testing the response of the network on a set of input patterns independent
of the training set. The test sample was generated by the Monte Carlo program
JETSET PS, plus the full simulation of the detector DELSIM [12]. The test sample
was made by 40,000 events.

The “signal efficiency” es was measured as the ratio:

es = Ng/Ns,

where N¢ is the number of patterns accepted by the (© > ©.) criterion in a sample
of Ng input patterns of “A” type. The “purity” p was defined as:

s/[N§ + Ng],

where N is the number of patterns, accepted by the same criterion, from a sample
of Ng background patterns. The purity can be interpreted as the fraction of “A”




Network 1 | Network 2 [ Network 3 | Network 4
(vu+dd) (3) (c?) (bB)
Nodes in the hidden layer 30 23 54 6
Tlcycr 1—layer 2 1.0 2.0 1.0 2.0
Tiaswrz-iuyird 0.33 0.67 0.5 1.0
a (training) 0.5-0.8 0.5-0.8 0.1-0.9 0.5-09
7 (training) 0.1-0.015 | 0.2 - 0.011 { 0.05 - 0.001 | 0.01 - 0.001

Table 1: Characteristics of the four neural networks

events to be found in a mixed sample, selected by the criterion © > ©,, if the
input events are a mixture of signal and background in the proportion predicted by
the Standard Model.

In the training phase, the four networks were specialized in such a way that
network “1” was designed to be more performant for separating Z° decays into
uT or dd, network “2” for separating decays into 3 pairs, network “3” for separating
decays into ¢z pairs, and network “4” for separating decays into bb pairs.

The architecture of each network is summarized in Table 1, together with the
parameters used in the training phase. For the four neural networks, purity from
the test sample is plotted versus efficiency in Fig.2.

5. ANALYSIS AND RESULTS

From each of the four networks (i = 1...4), the fraction of events ﬁ,(-i) of each class j
(j = 1...4) was determined by means of a x? fit to the form

RO(e) = 3287a(0),

where RU)(¢) is the map of the data through the network i into the feature space,
and ag')(t) are the distributions for each class j in the feature space, determined in
the test sample. All distributions were normalized to unity.

The four networks are constructed in such a way that each network provides a
fit with small (in module) correlation coefficients between the class that the network
itself was teached to distinguish and the other classes.

The determinations of the four branching fractions from each of the four net-
works are listed below, with the correlation coefficients C¥) from the fits. The four
networks have been checked to be statistically independent inside the accuracy of
the measurement.

A1) = (0.455 £ 0.034,0.198 + 0.036, 0.155 + 0.041, 0.186 + 0.030)
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Figure 2: Purity of the sample selected and efficiency for background selection for
each of the four networks, as a function of the efficiency for the selection of signal.
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1.000 —0.785 —0.059 -0.086
o _ | —0.785 1.000 —0.380  0.206
-0.059 —0.380  1.000 -0.834
-0.086  0.206 —-0.834  1.000

X()/NDF =122/(92 - 4)

B® = (0.421  0.036,0.183 + 0.036, 0.198 % 0.046,0.193 + 0.013)

1.000 -0.670 -0.477 -0.271

c® = -0.670 1.000 -0.276 0.337
-0.477 -0.276 1.000 -0.332

-0.271  0.337 -0.332 1.000

X(z)/NDF = 122/(97 - 4)

A®) = (0.435 £ 0.052,0.197 £ 0.043, 0.104 + 0.015, 0.257 + 0.040)

1.000 —0.589 —0.269 —0.569
o | —0-589 1.000 -0.086 -0.258
-0.269 —0.086 1.000  0.069

-0.569 —0.258 0.069  1.000

X{a)/NDF = 130/(100 - 4)

™) = (0.411 + 0.056,0.196 + 0.043,0.180 + 0.043, 0.208 + 0.010)

1.000 -0.634 -0.578 -0.285
—-0.634 1.000 -0.233 0.186
-0.578 -0.233 1.000 -0.045
—-0.285 0.186 -0.045 1.000

X{sy/NDF = 115/(100 - 4)
A graphical output of the fits is displayed in Fig.3.
Finally, the expression

X =¥ < 9 - FIeONF0 - F >,

oY) =

where C() is the _covariance matrix in the fit from the i-th network, was minimized
with respect to 8°, under the constraint that the sum of the branching fractions is

equal to 1. This leaded to the determinations

Tiouig/Th = 0.417£0.015
Ts/Th = 0.233+0.016
Te/Th = 0.139 +0.010
Tg/Th = 0.211:0.006,

I

where the error quoted gives the size of the minimal hypercube that contains the

error hyperellypse, and thus keeps into account correlations.
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Figure 3: Oulput of the four neural networks on real data (open circles), compared
to the Monte Carlo predictions in the cases that the species on which the network
is specialized is absent (solid line) or corresponds to the full sample (dashed line).
Networks 1 (a), 2 (3), 8 (<), 4 (d).
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5.1 Study of Systematics

To study the systematics, the uncertainties in the best tuning of parameters in
JETSET PS as parametrized in [10] were kept into account. In addition, a detailed
study of the effect of fragmentation parameters was done.

Due to the amount of computer time required to provide a full simulation of
events, systematics were studied by comparing approximate fast simulations-with
varying parameters (taken as “test data”) with approximate fast simulations using
JETSET PS with parameters tuned as in [10], taken as “real data”.

The sources of systematic uncertainties which have been considered are listed
below, and the effects are summarized in Table 2. The ranges of variation correspond
to 1o uncertainties, mainly from the determinations of [10].

1. T';5/T 3. The ratio between the branching fractions into u¥ pairs and the
fraction into dd pairs is not known a-priori, and was assumed in the Monte
Carlo as in the Standard Model. The effect of this assumption was checked by
allowing a variation between a situation in which the v events are completely
absent and a situation in which the dd events are completely absent.

2. A. The parameter A in JETSET PS was allowed to vary between 0.28 and
0.31 GeV.

3. Qo. The cutoff on the parton evolution was allowed to vary between 0.7 and
1.8 GeV.

4. Fragmentation. Systematic effects from fragmentation were checked:

¢ In the Lund fragmentation scheme, by allowing 2 variation of the a pa-
rameter between 0.13 and 0.30 (the b parameter was fixed at 0.34 GeV~?),

e In the Peterson fragmentation scheme, by allowing a2 variation of ¢, be-
tween 2 x 10~2 and 7 x 1073, and a variation of ¢, between 15 x 10~2 and
40 x 1073,

The average of the systematics in the two cases listed above was taken as
estimator of the systematic uncertainty due to fragmentation.

5. 9,/7u. A range of variation between 0.25 and 0.30 was allowed, consistent
with the averages from [14].

6. Br(D** — D°x*). A range of variation between 0.49 and 0.66 was allowed.

Comparisons with three different models for the decay of the Z° were tried:
ARIADNE(15], HERWIG [16] and the JETSET Monte Carlo with QCD 2™ order
generation of the initial state at the parton level (JETSET ME). The Monte Carlos
ARIADNE and HERWIG were tuned as in [10]; for JETSET ME, both the tunings
suggested in [10] and [17] were used. In all cases, the comparison was impossible due

11

e —————————— e



ey . b -

I T TalTh] Tee/Th | Tg/Th |

[Twa/Tag —03 | £0.020 [ £0.017 [ £0.001
A —08 | +0.016 | £0.010 | £0.015
Qo =0 +0.018 | +0.044 | +0.002
Yo/ Yu =0 +0.018 | £0.016 | £0.004
Br(D** — D°x%*) =0 +0.008 | £0.005 | £0.001
Fragmentation =0. +0.036 | +0.028 | +0.013
TOTAL = +0.051 | £0.058 | +0.020

Table 2: S——mgl¥ of systematic effects

to the fact that no values of the ——anclgg fractions were found for which the model
could reproduce the data within : resgmable x* (the cut was done at x?/NDF =
2). This means that a better we—: ofsfimization of such Monte Carlos should be
done before they are useful in sz—- amalysis.

A range of uncertainty at 68"z ” LEtween 0.32 and 0.40 GeV is assigned im [10]
to the JETSET PS parameter o, zne taverse spread of the momentum of hadrons.
This range appeared to be overe=s—madflin the sense that, in the extreme valuwes of
the confidence interval, it was =——oosdlle to find a set of values for the brandhing
fractions for which the network ~—:pulwould be fitted with a x*/NDF < 3.

Due to the effect of systema=—:. tl@measurements become

T e+aa/T: = BT +0.015 £ 0.058
Fa/T: = B3 +0.016 £ 0.051
Fe/T. = ¥W39+0.010 £ 0.058
Ig/T. = W1 +0.006 £ 0.020.

These results, using the determi—==:ionlf the hadronic partial width of the Z° given
by DELPHI [18], Ty = 1726 £+ 1¢ MeYgrovide

P 20 + 104 MeV
r::- +91 MCV
B4 + 35 MeV .
5.2 Separation of v from dd

s a fifth independent equation relafing
the hadronic branching fractions of WZ°. The cross section for this process is
approximately independent of tx= gusfmasses in the region of high p, high p; of
the emitted photon, but is propc=—=ionkBo the square of the charge of the quark.

Photon bremsstrahlung from quaz—ks
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From the average of Ref. [19], one obtains
Tua/Th + Tea/Th = 0.4 % 0.08

that, together with the determinations of the hadronic branching fractions of the
four classes separated by the networks, gives ’

Tw/Th = 0.3040.10
Tga/Th = 0.12+0.10.

The errors quoted above are of course almost completely anticorrelated.

6. CONCLUSIONS

The first determination in the literature of the hadronic branching fractions of the
Z° boson into all five known quarks has been presented. To the knowledge of the
authors, this is also the first time that results on a taxonomy problem have been
obtained in high-energy physics using neural networks.

The results on all branching fractions are consistent with the predictions of the
Standard Model.

Neural networks have shown the potentiality of a powerful tool for classifica-
tion. The errors quoted will substantially decrease when variables related to impact
parameters and lepton spectrum will be used as additional inputs [6].

The study of the effect of changing the Monte Carlo model used for computing
efficiencies will require a more complete work of optimization of the other models
available.
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