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ABSTRACf 

The electron·positron pair production in the collision of heavy ions show a rapid 
raise of the rate with the total nuclear charge (_Z20). It has been shown that the 
gross fearures of the process are correctly reproduced by a first·order adiabatic 
approximation. In this paper we estimate the correction to the emission 
probability coming from a second-order iteration of the adiabatic treatement. The 
numerical results show that the correction beth to the size and to the slope of the 
production rate is small. if compared to the present experimental uncertainties. 
The ftrst·order description is therefore conftrmed. 
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Quantum electrodynamics has been extensively and successfully tested in its 

penurbative sector for a long time. 

Recently, experiments on heavy-ion collisions have thrown new light on the 

behaviour of QED in the non perrurbative environement created by the strong fields 

surrounding the colliding ions. Two classes of new phenomena have stimulated the 

interest of physicists: the detection of narrow e+e' states and the strong dependence of the 

e+e- production rate on the total nuclear charge Z. 

The appearance of e + e - peaks is a spectacular feature which have triggered a 

proliferation of unusual and sometimes very suggestive speculations. Contrary, the rapid 

raise of the e+e- production rate is usually explained with rather conventional tools. 

This paper focuses on this latter phenomenon about which a long lasting 

investigation has been carried out [1-5]. For sake of completeness we find convenient to 

recall the relevant aspects of the formulation presented in ref. [I], on which we explicitly 

rely. The colliding ions are regarded as pointlike charges moving along classical Coulomb 

trajectories. Since the considered ions are not very fast a non relativistic dynamics is still 

allowed for them. The e~e- creation is treated in first quantization, a first order adiabatic 

approximation is used and it gives the following expression for the transition amplitude 
A(l)fi: 

(1) 

where 1<Pi<R.:» and 1<I>r<RJ> are eigenfunctions with lowest angular momentum of the Dirac 

Hamiltonian corresponding to a fixed internuclear distance Rc. 1<I>r<Rcl> is a positive 

energy state while I<I>JRc» is a negative energy one, so that they correspond to electron 

and positron states respectively. Since the analytic evaluation of eg. (1) is extremely 

difficult, one must resort to numerical methods. In order to reduce the amount of 

computations, the problem is further simplified and the true two-body potential is 

replaced by a blowed-up nucleus of radius R= ~ Rc(t) and charge Z=Zl +Z2 (Zl and ~ 
being the charges of the interacting ions). This approximation is usually referred to as the 

"monopole approximation" [3]. 

The resulting model actually reproduces the rapid raise of the e+e· production rate 

with the nuclear charge Z: the dependence on Z can be fitted by a function Zn with n-20. 

Although the results show finally simple features, no straightforward analytical or 

heuristic derivation is yet available. 
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Various refinement of the model can be foreseen. One could try a better 

description of the potential of the two ions, which is really a non spherical potential. 

This line of investigation has been already followed [3,6]. One could consider, in a more 

or less standard way, radiative corrections coming from the dynamical degrees of 

freedom of the electromagnetic field. Published results [7-9] can be found also on this 

line which has ben followed in the attempt to explain the appearance of narrow states. 

One could finally improve the dynamical description, going beyond the first-order 

adiabatic approximation. We fmd interesting to consider this possibility and it is in fact 

the purpose of the present paper. 

In the following we ·keep the ·monopole approximation together with the first 

quantized formalism, but we take a sight at the stability of the dynamical treatement under 

the iteration of the adiabatic approximation, possibly modified where it may be no longer 

reliable. Our aim is therefore to estimate the corrections that the second order induces on 

the transition rate as derived from eq. (1). The second-order contribution to the transition 

amplitude (see fig. 1) is given by the following expression: 

x i~ dt' ei(E.,-E;)l' R(t') <<Py(R')I~~I<Pi(R'» . (2) 

While for the general procedure we refer to the appendix, some funher explanations are 

Th aH ak' d' " h· h necessary. e operator aR t es m coor mate representatlOn, WI! m t e monopole 

approximation, the form 

<rI~Hlr'> = Za ~ 8(R(t)-r) 8(r-r') . 
oR R2(t) 

(3) 

Eq. (3) expresses, in panicular, the fact that outside the charged shell the potential 

remains constant. With the aid of eq. (3) the matrix elements in eq. (2) can be written as: 

aH f !cR(t) • <<Pf.i(R)~<Pv(R» = ~ dQ dr r2 <P f.i(r;R) <P y(r;R) 
uR R2(t) 0 

(4) 

The radial wave functions are proponional to the Bessel functions in the domain 

of integration r<R(t) and to the usual Coulomb waves in the region r>R(t). 
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Fig. 1. 
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Second-order transition from positive to negative energy states lEi) and IEf)' The 

intermediate swtes are both of electron and positron type, fig. la and fig. I b respectively. In 

the neighbourhood of Ef and Ei we sum the amplitudes corresponding to the symmetrically 

arranged levels Ey and E'v in order to reconstruct the principal value prescription of eq. (2). 

The product of the Bessel functions can be integrated analytically, their time 

dependent normalization is obtained by connecting smoothly the wave functions at r=R(t) 

[4]. 

In eq. (2) there is an integration over the energy of the intermediate states; more 

precisely also a sum over the electron bound states should appear.Those configurations 

are, however, poorly represented in the monopole approximation, moreover they are 

expected to be not very relevant if we are interested in final states not too near the 
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threshold, so their contribution is omitted. The integration over By runs from -~ to -m 

(positron states) and from m to +00 (electron states). 

The leading correction to the differential emission probability comes from the 

interference between the fIrst order amplitude A (1) fi and the second order term A (2) fl. If 

the Coulomb wave functions are chosen according to ref. [4], the fIrst order amplitude 

given by eq. (1) is purely imaginary. With suitable normalization of the electron states, 

keeping fixed the impact parameter of the classical Coulomb trajectories b, the fIrst order 

transition probability is given by 

(5,a) 

With the same conventions the leading correction is expressed by 

(5,b) 

The imaginary part of A (2) fi can be written as 

(6) 

The actual form of f(Ey;Er,Ej) can be easily derived from eq. (2), without going 

into the details we recognize that the function f(Ey;Er,Ej) shows to strong peaks at By=Er 

and By=Ej. The numerical integration over the intermediate energy Ey is then performed 

by sampling the function f(Ey;Er,Ej) around the position of these two peaks. The factors 

Ey~Er and By~Ej improve the convergence for large values of By. 

The contribution coming from the positron states, By<-m, is small as compared to 

the electron states contribution, Ey>rn. In order to explain this circumstance let us go back 

to expression (4) for the matrix elements appearing in eq. (2) . Since the integration 

involved in eq. (4) is over a fInite range surrounding the nuclei, the result is strongly 
sensitive to the size of the wave function near the origin; in particular when Ey<-m the 

repulsive potential depresses the intermediate wave function in the relevant r-range, while 
the function is enhanced when it feels an attractive potential, i. e. for Ey>m. 

In order to compute the correction to the spectrum of the emitted particles, one 

should integrate the f~nction ~~j over the impact parameter b, moreover to get the total 
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cross section one should perform a further integration over the energies Er and Ej. 

However, since our aim is simply to estimate the size of the second order corrections, we 

restrict to single values of b,Er and Ej. We choose b=3fm, since, as shown in ref. [1], 

this value is expected to give the major contribution to the total cross section. From 

reference [1] we also learn that the positron spectrum is peaked at -Ej-2m, while the 

electron spectrum is monotonically decreasing (obviously staning from Erm). Since our 

treatement may be not reliable very near the threshold, we think that the choice -Ej=2m 

for the positron energy and Er 1.7m for the electron energy is suitable for our purposes. 

Fig. 2. 
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Percentage correction 10 the first-order differential probability emission as a function of the 

total nuclear charge Z at fixed impact parameter b=3fm. The plot corresponds to 

Ee+=2me and Ee·=1.7me• me being the electron mass. The distance of closest approach 

between the ions is also fixed at Rmin=16fm. The uncenainty bars are a rough estimate of 

the errors involved in the overall numerical procedure. 

Our quantitative results are presented in the form of a ratio between the correction 

and the first-order transition probability as given by eq. (5a,b). In figure (2) we show this 
Im(A(2) ) . 

ratio p= 2 (It as a functIOn of the total nuclear charge Z. We choose the field of 
Im(A fi) 

variation ofZ to be 146<Z<168. The upper bound is suggested by the consideration that, 

for higher values, the decay of the neutral vacuum to the charged one is expected to playa 

very relevant role; below the lower bound both the first order rate and the corrections 

become very small. 

Before drawing the final conclusions we find useful to justify the iteration of the 

adiabatic approximation up 10 the second order. 
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Eq. (1) states that the first-order transition amplitude is obtained by taking the time 

Fourier transform of (4)r<R)I~~I4>i(R)) with frequency Ol=(E,Ei) which is the total energy 

of the produced panicles; if it is possible to define a "time scale" 't for this matrix element, 

then the adiabatic rreatement is reliable if't » E:E
i
' The iteration of eq. (1) involves 

rransitions from the intermediate energy Ev to the final energy E6 since one has to 

integrate over Ey, the condition 't » Ev~Ef is eventually violated and we have no reason, in 

principle, to believe to the adiabatic approximation when Ey-Ef. 

The contribution to the amplitude coming from these dangerous states IS, 

however, highly suppressed by the. principal value prescription appearing in (2). 

For a further clarification we studied the rransition between to elecrron states of 

nearby energies. Formerly the adiabatic result has been compared with the standard 

perturbative calculation and the discrepancy was found to be of the order of 40%. Then, 

since the Hamiltonian changes rapidly only for a finite interval of time -tc<t<tc' the 

perturbative approach has been applied only to that interval, while outside we have kept 
R· 

the adiabatic evolution. Suitable values of tc are of the order of --"!!!!.., Rmin is the 
v~ 

minimum of the two-ion distance and v ~ is the asymptotic speed. In this latter case the 

discrepancy with the adiabatic rreatement has been found to be of the order of 10%. 

With these justifications we are now in position to present and discuss our final 

results. 

The percentage corrections, shown in fig. (2), are never very big, they are in fact 

less than 20% for almost all the considered points. This result is welcome since the first­

order describes correctly the gross features of the available experimental data [10-151, 

which refer to different kinematical configurations of the produced panicles. The 

calculations confmn also the already stated prevision that the connibution coming from 

the intermediate positron states is much smaller, actually less than I %, as compared to the 

electron states connibution. As far as the sign of the correction is concerned we find it to 

be positive for our choice of the kinematical parameters. We foresee some situation where 

the sign may become opposite: according to previous considerations, eq. (6) can be 

approximated as : 

(7) 
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Because of the presence of the factor E:Ev the contribution from m<Ev<Er and the 

contribution from Er<Ev have opposite sign. If Er2m, as in our choice, the former 

contribution is the dominant one and dictates the sign of the whole expression; as E~m 

the range m<Ev<Er shrinks and so the sign of the whole expression changes, 

consequently the sign of the correction is reversed. In this case, however, the missing 

contribution of the electron bound states,which are hardly accomodated within the 

model, may affect heavily this conclusion. 

As expected the relative correction increases with Z but besides being small it is 

also weakly dependent on the charge, in fact if we tried to fit it as a power of Z we would 

get an exponent less than one. Also in this respect, therefore, we conclude that the first­

order calculation is quite stable with respect to the corrections. Nevertheless they should 

be taken into account if we were performing a precision test of non perturbative QED in a 

heavy-ion collision experiment. 
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Appendix 

Since our discussion is centred on the next-to-the first approximation in the 

adiabatic formalism we find convenient to recall a compact presentation of this formalism 

which would enable us to derive all the orders. 

We start from a Schrodinger equation with a Hamiltonian which depends 

explicitly on time : 

i.Q..I\jI(t» = H(t)I\jI(t» 
dt 

(A.l) 

and we associate to it a "stationary" equation where t is considered as an arbitrary 

parameter 

H(t)lljJn(t» = E,.(t)lljJn(t» (A.2) 

where, evidently, the IljJn(t» do not satisfy the evolution equation (A. I) 

We introduce a time dependent change of representation by means of a unitary 

operator A(t): 

(A.3) 

so the evolution equation for l\jIa(t» corresponding to the original one is know n to be : 

iJt l\jIa(t» = :h(t)I\jIa(t» 

with :h(t) = A· l(t) H(t) A(t) - i A·l(t) A(t) and the usual evolution operator is 

(AA) 

where P is the standard chronological ordering. 

The adiabatic treatement is obtained by choosing the unitary operators 1\ as : 
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to denotes rhe instant at which rhe represenrations coincide. 

After computing explicitly A the matrix elemenrs of :J{ are found to be 

Wirh this result we see that rhe expression of the evolution operator Ua(t,to), see 

(A.4), gives rise to a usual perturbative series which, however, corresponds term by term 

to the iteration of the adiabatic approximation [16] for eq. (A.l). 

In rhe original represenration, rhe transition amplitude from the state I<Mto» to the 

srate exp{ -ii: d't Er('t)} I<p{{t» is found to be to the first order: 

Usually, the Hamiltonian H and rhus the states l<Pn(t» depend on time through 

some parameter yet); moreover the matrix element appearing in (A.6) is known to be 

expressible [16] through the matrix elements of the Hamiltonian H(t). We can recast 

therefore rhe transition amplitude into the expression: 

(A.6') 

Wirh rhe same procedure rhe second-order contribution to rhe transition amplitude 

takes on rhe form: 
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(A.7) 

In most situations the spectrum of H contains a continuum pan so that the 

summation must be supplemented by an integration; this integration goes also through the 

points E,,=Ei and Ey=Ef where it seems to be not well defined. This problem arises when 

the particles are allowed to fly to infinity. To answer to this problem we go back to the 

matrix element appearing in (A.6) and we write in coordinate representation: 

(A.S) 

Then, noting that no singularity may arise by integrating over a finite interval we focus 

our anention to the region r~oo, here we substitute the wave functions with their 

asymptotic forms: 

<pr<r) ~ <PA(r)=sin(kr+O(y)+oc) 

<Pi(r) ~ <p:"(r)=sin(k'r+O'(y)+O'e) 

Oe and o'e are the possible pure Coulomb phases. The asymptotic expression of (A.S) 

after introduction of a radial cutoff e'T\T is : 

roo dr e'T\T sin(kr+,1)~ sin(k'r+,1') = 
Jo if( 

_ a,1' ( i) ( ei(MS) 
- if( 4' (k+k')+i11 

with ,1=O+Oe (,1'=O'+O'e)' 

ei(t.·t.') e·i(t.·S) e·i(Mt.') l 
I (k-k')+i11 I (k-k')-i11 I (k+k')-i11 

Some terms are quite regular in the limit k~k' and 11~O, there are some more dangerous 

terms which take the explicit form: 

cos(,1-,1') / 1 + 1 l = cos(,1-,1') p _ l_ 
\k-k'+i11 k-k'-i11 k-k' 
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Out of this result we learn finally the principal value prescription P 1 for E _IE. 10 
Ev-Ef.i v [.1 

eq. (A.7). 
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