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ABSTRACT

The rational ¢ <1 theories are reconsidered beyond the space of BRST states, allowing
for intermediate states not contained in the Kac table. The intertwining properties of the
screening charges Qm,Q,-m are used to derive linear relations for the general conformal
blocks. The fusion rules are recovered on BRST states, combining these relations with
previously obtained identities for the fusion matrices, due to the corresponding {,(sl(2))-
irvariant operators. The extended formulation is applied to give meaning for ¢° =1 to the
quantum group covariant conformal correlations initiated by Moore and Reshetikhin. The
correlations are manifestly covariant under the action of the R- matrix and in the diagonal
case they coincide with the averages of the screened vertices, recently proposed by Gomesz
and Sierra.
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1 Introduction

The representation theory of quantum groups [1,2] differs drastically from its classical ana-
logue when the deformation parameter ¢ is a root of unity, ¢° = 1 [3-10]. Thus, while the
embedding pattern of the Verma modules for generic g is governed by the finite Weyl group
W of the complex semisimple algebra g, for ¢ = 1 it is essentially parametrized by the
infinite affine Weyl group W of g™ [11]. The group W describes [12,13,14] the singular vec-
tors of the Verma modules of the affine algebras g), underlying the RCFT. Comparing, for
example, the diagrams depicting the embeddings of the Verma modules in the simplest case
when g = sl(2) (see Fig. la,b and Fig. 2), one sees that the only difference is the direction
of some of the arrows. In particular, unlike the Virasoro (or A(ll) ) modules, any 2{,(s!(2))
module is itself embedded in a bigger module.

The singular vectors of the Verma modules give rise to operators invariant under the
(left) action of the algebra ; these operators, generated by the right action of the algebra,
intertwine pairs of partially equivalent representations, which need not be highest weight
representations. In particular the intertwining operators D = X»*! and D = X?"¥~! of
U,(sl(2)) can be realized as finite difference operators in spaces C; of functions of one
complex variable [7]. The diagram on Fig. la then admits another interpretation, replacing
the Verma modules with the functional spaces at the points; then the arrows indicate the
action of the operators D and D.

The correspondence between singular vectors and intertwining operators has not been
very useful for the representations of the Virasoro algebra, since there are no explicit general
formulae for the singular vectors. This difficulty has been overcome using free fields (Fock
spaces) realization [15,16,17,18]. The invariant operators , intertwining Fock spaces, are
represented by the screening charges [17,18). The diagram describing the action of these
operators (see Fig. 3) is identical, including the direction of the arrows, with the diagram in
the quantum group case, with D, D replaced by Qm,Qp-m, 1 <m=2j+1<p-1.

The analogy between the quantum group generators and the screening operators first
noticed in [3] has been further deepened in [19] where it has been shown that the elementary
screening currents of the AL‘_!I WZW models satisfy in a weak sense , under integration , the
Serre identities for the negative (or positive, depending on the realization) root generators of
Uy(sl(n)) .

This functorial equivalence of the intertwining operators (i.e., the operators invariant
under the corresponding left action of the algebra) is essentially the source of all the striking
similarities of the quantum groups and the RCFT - theories described by fields which are at
most quantum group scalars.

In this paper we analyse the implications of the two sets of intertwining operators for the
rational ¢ < 1 conformal theories and for the related theories with an explicit action of the
quantum group, initiated in [20] (see also [21,22,23,24]) and recently further developed in
[25]. In Sect. 2 we reconsider the minimal theory in the initial big Fock spaces, thus allowing
operators which do not leave invariant the "physical” space of BRST states. To do that one
has to take into account intermediate states labelled by integers m =25+ 1,m'=2;'+1,
beyond the values described by the Kac table: 1 <m <p—-1,1 <m' <p' —1. They
correspond to the triple of Fock spaces, depicted in the middle of Fig. 3. The existence of
intertwining operators leads to linear relations for the n-point conformal blocks corresponding



to the pairs (j,j =p—j —1) (or, (j,7j==7—1)), 1 £2j+1< p, with ;' fixed. These
relations and the relations for the fusion matrix due to the invariant operators of Z{,(s{(2))
(7], are used to show that the minimal theory fusion rules (FR) are recovered on the BRST
states and that they are not violated after braiding or fusing. This solves an old problem
in the Coulomb gas approach of Dotsenko and Fateev (DF) [16], [26]. The consideration
in Sect. 2 is alternative to the one followed in [18,27], which describes the minimal theory
entirely in the space of BRST states. It is however more suitable when we turn in Sect. 3
to the quantum group covariant theory. Now all the states which are factorized out in the
pure minimal theory have to be essentially resurrected, if one insists on the R- covariance
of the correlations . The interplay between the BRST charges and the quantum group
invariant operators is once again used to give meaning to the correlations when ¢? = 1. In
Appendix B we show that the 4-point functions constructed in this way essentially coincide
with the averages of the recently proposed new screened quantum group covariant vertices
[25]. This sheds light on the relationship between the operator languages in [20] and [25].
In Sect. 4 we consider the general quantum group invariants, which can be realized using in
particular the operators in [25]. Their transformation properties under the action of the braid
group reflect the quantum group tensor product decomposition rules which are inconsistent in
general with the FR upper bounds. The minimal theory correlation functions are recovered
as an invariant subset, taking appropriate averages of the operators in [25]. Accordingly,
the operator counterparts of the numerical "vertex - path” identities [28,29,30] - relating the
quantum 7R- matrix to the braid matrix, reduce in averages to the FR bounds. In Appendix
C we extend the class of R-covariant correlations, constructing chiral analogues of the non-
diagonal local (and quasilocal) 4-point functions in [31,32). Appendix A contains notation
and useful formulae as well as a generalization beyond the thermal case of the correlations
in Sect. 3, alternative to the approach in [25].

2 Uy(sl(2)), Coulomb gas and fusion rules

Once we have an invariant operator, intertwining a pair of representations, we can expect
relations for the corresponding group invariants. Indeed, such relations for the 3- and 4-point
invariants were derived in [7] using the intertwining operator D= X?™¥7': £,_, | — &,
where £; is a 2j + 1 - dimensional subspace of C; . The relation for the 3-point invariants
(which reproduce the Clebsch - Gordan coefficients) imply furthermore a relation for the
q — 6j-symbols, ¢ = exp 27 ip'/p, where p’, p are coprime integers:

{ -7:1 ]:2 -7:5 } — (_1).jg-isHP'—UUz-t—jd—il"ia) __[23—6+ 1]'? { J:‘ J_lz '7:5 } , (1)
J3jajs |, 276 +1q | JaJass |,

b )
ge =4q"
Here all j;, except jg, are assumed to be regular, i.e., 2j;+1 < p,7 = 1,2,...6. Both sides of
(1) are finite for triples (jy, J2,75), (Ja, J4sJs) , such that jy + 72 +Js+1 < p, Ja+ja+Js+1 <p,
and they vanish identically if 255 + 1 = p = 2j5 + 1 . A similar identity without the sign
factor in (1) results from the operator D , with j replaced by 7 = —j — 1. The relation
(1) , derived in a purely quantum group framework, implies a corresponding relation for
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the minimal theory fusion matrix - represented, up to a mixing sign, by the product of two
q — 6j-symbols, with ¢ = ezp2inp'/p, and ¢’ = exp2ixp/p’ [32] (see App. A). It truncates
the polynomial identities, inherited from the generic g case, to the bounds of the FRs.

The relations for the properly normalized Clebsch - Gordan coefficients just reflect the fact
that the states e/ (1, j2) and €f(j1,72), |m| < j, in the tensor product E;, ®E;, of two regular
representations, become identical, up to an overall constant, when ¢? = 1. The same is true
for the states e} (,72) and e (j,72). Unlike the contribution of the pairs (j,j =p —j —1)
in the numerical polynamial equations, the representation states of course, cannot cancel;
rather, to recover all linearly independent states in the tensor product one has to give up
the conditions X4 ej: =0=X¥H e_’,:, thus getting an indecomposable representation &;; of
dimension 2j + 1 + 2j + 1 (see (3] for details).

We now turn to the implications of the analogues of the intertwining operators D, D for
the minimal theory correlations. We are considering the BPZ minimal models with central
charge ¢,y = 1 —6(p — p')*/pp’. In the free field representation the fields act on Fock spaces
Faa, generated by a free boson. These spaces are given the structure of Virasoro modules
of dimension Aniy = A(nin) = @nin (@nrn — 2a0), Where ay, = 52 + I'T“'ct.,., . B ==
-1, a? =p'/p = 6, and 209 = a4 + a_ is the charge at infinity, determining a conjugate
vacuum state v} = Vz4,—a; the integers n’,n will not be restricted for the time being.

For simplicity of notation we shall concentrate mainly on the thermal case, @ = a;,. The
screened vertex operators are defined as [18]

VI (2) = jc . fc Aty Varo(2) Voo (t1)Vo (1) | (2)

where V,,. is a Virasoro covariant vertex operator of dimension A(ai,) , mapping any
Fock space Fj to Fjpia,, - The contours C; are chosen to wind once around 0 , starting
and ending at z, in such a way that C;, is inside C;. In expectation values the integrand
in (2) is fixed by requiring that it is real (for real charges) for z > t; > t;, > ... > {, on
the real axis. The charge conservation condition [16] ensures that the vacuum expectation
values of the products of the screened vertices in the presence of the background charge
2aq are invariant under projective transformations, and more generally , satisfy the Virasoro
Ward identities. Deforming the contours one reproduces from the averages of the screened
operators (2) the DF conformal blocks. In particular the 4-point correlations are recovered
according to (see Fig. 4)

(o [V H(VE () |en) 2 = Bi(a, b, ¢; 8) 202 (1 — 2)222% [2(a, b, ¢; 2), (3)
s k-2 s—k—1
Bila.b.c;8) = e-ﬂ[(a+c+(s—215)(s—1)—(k-lld[s —~&s! Tk = 1], H s(a + j6) H s(d+390),
1=0 =0

where, following the notation of [16],
a=2a.a1, c=2a_a3, b=2a_az, d=2a_(2a0 —4);a; = 01n;; 8(a) = 2isin(ra),

s=h+ht+ih—-Js+], k=125,



and I} is the muitiple path-ordered contour integral [16] with k-1 contours running from 0
to z and s-k contours from 1 to infinity. In the general case the constant in front of I
factorizes into J}'(a',¥,¢c;68") 3(a,b,c;8), where a = 2a_ap,, = —a's, etc.

Felder proposed a BRST cohomological interpretation of the Coulomb gas realization of
the minimal theory by introducing the screening charges Qm and Qp-m, 1 <m <p—1.

(+0) (+0)
Qu= [t [ b Vi (t)eVo_ (i) )

The BRST charges Q,, and Q,_,, intertwine pairs of Fock spaces according to Fig. 3,
l.e., in their range of definition they are invariant under the action of the Virasoro algebra.
The irreducible Vir modules Hmim, (1 < m() < p() — 1) arise as the factors Hpim =
KerQm /ImQ,_,, of the Fock spaces F,_, .

The screening charges can "float” from a vertex to a neighbouring one, if the intermediate
states are consistent with their range of definition. In particular using the basic braiding
relation for the vertices V,(z)V3(z2) = exp (2imeaB)Va(z2)Va(z1), (see (3.20) of [18]), where
¢ = =+1, depending on the direction of the path interchanging the two points, one has:

Pria, ViatP=™(z3) V73(2,) Pray = Pray Vii(23) QpamVy2(22) Pry,

= "™k Pro, Vis(2s) Virt?~™(z2) Pra, , (5)

n3
fny+n,—-2rm—-1=2p-m.ny—=n3+2r3+1=m; 1 <n;, m<p-—-1.
Here Pr are projectors on the space F,, , . Let us rewrite this relation, which encodes
the intertwining property of @,—, in a more transparent way, using the fact that when

projected on F,,, the operator VI reduces to a chiral vertex operator (CVO), ( ]J.'h ),
2

denoting n =2j,+1, I=25,+1, n+{—-2r—-1=25+1,

—imejse j‘i Zi J‘_S jl - —ime)se j4 j5 j5 jl
e = . : = € . . 1 (6)
J3 5 Jz2 22 J3 23 J2 5

ni=2ji+1,m =2j5 +1,js = p—js — L.

A similar identity with j = p—j — 1 replaced by j = —j — 1 is obtained using the
operator . In terms of the DF n-point correlations, using (3), (6) reads

I}(a,b,c; z)=(_1)P'(2j1+2m-rfn+i¢ “3y=73) [A?Q]q![Ags]q![ﬂgslq![jfﬁ‘j-l +j5+1]1![§(a bc; z)
B [A34o![As]e [ As)e! 7+ 2 +is + 13! ’ ;
(7

where Al = ji4+ji—jn, k= +j2—Js+1; k=5 + 12 -Js+1, kk=1,2,..s.
This relation simplifies for the normalized blocks I (see App.A), useful in recovering
the primary fields structure constants [16]:

-~ . 3 / [2]‘5 + 1] ¥
Ia,b,cz) =i—1 (j2+1a—51=32)(p'+1) ._—-'i Ia. b5 ), (8)
L( ) ) [-2]5 + ]. q k



In general when I is replaced by I3; (7),(8) are modified by a factor (—1)(*-K(53+23),
Note that both sides of (8) vanish identically if 2j5+1 =p = 2js+1,0r 2j5+1 = 0=25;+1.

In deriving (7) we have assumed that both the regular js and its partner js; = p—j —1 are
allowed from the classical decomposition rules for the products j, @ j; and j3 @ js . That
implies that both js and js violate the FR. In that case the integrals in (8) are finite, non-zero,
unlike the corresponding_averages for the Felder screened vertices, which vanish due to the
constant 37 in (3), in agreement with the results in [18]. That means that the normalized DF
correlations in (8) correspond to operators which do not preserve the "physical” BRST space
@mHm . They create intermediate states in Fy,_,, and in ImQp-m C Fin, (1 £m <p-1),
which are compensated in the physical (local) 4-point functions taking into account (8).
Similarly, intermediate states in Im@,, C F_,, and in F,,/Ker@. appear. Note that
one can extend (7), (8) in principle to arbitrary n-point functions. The point is that the
normalization needed to recover the DF blocks I{ (or i} ) (cf. (3), (A.4)) can be attached
to the bilocal chiral vertex operators V], (z,21) , Vi, (2,0)[0) = V,(2)]a) . They are
obtained by adding the vertex V,,(z;) after the string of screening currents V,_ on the
r.h.s. of (2) (see, e.g., [25]).

The relation (7) (and the one obtained when j is replaced by 7 = —j — 1) shows that
the set {/{,k =1,...s} of basic integrals is not in general linearly independent. Furthermore
it indicates a singularity of the integral on the r.h.s. of (7), as a function of the parameters
a,b,c. Let us consider for simplicity the case when j; = j3, j2 = j4. If the triple (Ji1,J2,75)
is inconsistent with the FR and js is regular, the primary field structure constant D, ,
which can be recovered for coinciding arguments z,; — 0 , vanishes [16]. Hence, as in the
example considered in [26], there should be a diverging constant in front of higher orders
in z)2, leading altogether to a finite, non-zero descendent structure constant. Indeed , the
corresponding primary field structure constant Dﬁh , recovered from the L.h.s is finite, non-
zero. It is amusing to see that the quantum groups provide information about the analyticity
properties of these generalized hypergeometric series.

Finally, combining the linear relations (7) with the relation (1) for the fusion matrices
one gets following the notation of [16], (no summation in k.k),

cxl(;)(a,b,c; ) I}(b,a,c;1 —z) = —af;)(a,b, c;6) I} (b,a,c;1 — ),

e'mi(“'b)af;)(c, b, a;8) I_,E_”(a,c, bilfz) = —e""a"(f‘b)afz)(c,b,a;5) Ii(a,e;b; 1 /) (9)

where Ay(a,b) = Ay, = js(Js +1)6 —Ji js = +Jja—k+1, js=71+Jja—k+1 and
al)(a,b.c;8) is the DF fusion (crossing) matrix,

Bla,beyz) = Za;‘k(a,b, ¢;8) Ii(b,a,c;1 — z)
k=0

proportional to the 6j-symbols (see (A.8)).

The same relations hold when £ is replaced by k = j, + j2 — Js + 1.

The relations (7), (9) for the thermal case are easily generalized, taking into account
all sign factors. Let J; = (j{,7.) , and let {ji,J2,J5,J3,74} be an admissible set. i.e.,
ji & = 1,...,5, are regular and the triples (jy,J2,Js), (J3,J4,Js) , obey the FR. In terms
of the full normalized conformal blocks J;,(Z) , which differ by a standard prefactor from



the contour integrals I{ii(z) (see (A.11)), the relations (9) say that the summation in the
braiding relations

jJs(zln Ji; 22, J2; 23, J3; 245 Ja) =ed”m]‘_‘a“—ah-ajs)z {Jl Jg} jJe (23, J3322, Jai 21, J15240 J)-
Ja
(10)

- Ze:ir(AJl+AJ,-—AJ5-AJB) { Jo Sy } jT(th]; 23, Ja; 20, Ja3 24, J4) (11)
J KT
effectively reduces to the FR bounds, since the contribution of each FR violating pair (J, j)
(and (j,7)) vanishes as a whole. Here { } is the full fusion matrix (see (A.7)). Note that
if only the first spin j of the pair (j,7), or, (j,7) appears and violates the FR (which can
happen for particular combinations of 71, ...;J4), then its contribution is identically zero.
This solves in general the problem of reconciling the DF realization with the fusion rules,
discussed in [26]. The fusion transformations are derived in [16] assuming an analytic con-
tinuation to generic values of the parameters a,b,c, so that the basic blocks are linearly
independent. This leads at the end to the appearance of terms violating both the upper and
lower bounds of the FR . A careful derivation, using the standard contour deformation tech-
nique, would instead reproduce our relations (7), derived above directly from the intertwining
property of the screening charges.

"In the approach of [18,27] the general fusion matrix is expressed recursively by the ele-
mentary fusion matrix, describing the products 1 ® j . Accordingly the higher spins are
thought to be obtained by subsequently fusing the elementary ones. In such an approach it
is enough to ensure that the border points 2j +1 = 0 (mod p) do not appear as intermediate
states ( when the products of operators are applied on BRST states), so that the FR violating
pairs (7,7) and (j,7) cannot be created. Then all other fusion matrix elements are defined
to be zero. Unlike [27] we deal directly with the general spin correlations. Then there is no
need to postulate that the fusion matrix elements vanish beyond the FR bounds - rather, we
can adopt as in (1) the values obtained by analytic continuation from the generic ¢ case.

The fact that the braiding transformations (10),(11), also hold with the classical decom-
position bounds will be of special importance in our next consideration. Note that these
transformations still have a sense when js on the Lh.s. violates the FR. In this case the
67 - symbols develop singularities which are of the same type for both sides of (1). These
singularities are compensated via L'Hopital, taking into account (7) and the corresponding
identities for the properly normalized 6j - symbols. Then any pair (j,j) , allowed by the
classical upper bounds on the r.h.s. of (10),(11) gives a finite contribution.

3 7TR-covariance versus fusion rules

In [20] (see also [22,23,24]) Moore and Reshetikhin (MR) have considered a theory with an
explicit action of the quantum algebra {,(s!(2)), by replacing the conformal representation
spaces H; with the product H; @ £; .! They introduced vertex operators, covariant under

'Here and in what follows we use the notation H; instead of Hm , 1 <m=2j+1<p—-1



the action of U,(s/(2)) as linear combinations of CVO multiplied by ¢ - Clebsch - Gordan
coeflicients, i.e.,

Vi(z) = Z |m,)(j1 _jz) [ i J Ja ] (my| (12)

- J my m m,
JiyJ2
My, M2

which act in H= &;(H; ® &) . The sum in (12) is assumed to run over regular spins j, ja,
and such that the triple (j,,,72) is consistent with the FR. Here |m,) is a normalized state
in &, ,and (m|n) = é,,, . The order (jy,7,72) in the Clebsch - Gordan coefficients and in
the CVO need not be the same - we have preferred the symmetric choice.

The braid relations of the properly normalized correlations of the chiral vertex operators
go over to transformations of the operators in (12) with the quantum 7R- matrix. These
transformations, which make the mixed correlations reminiscent of the local 2-dimensional
n-point functions (i.e., they are symmetric "up to R-matrices”), rely on numerical identities
[28,29,30], connecting the vertex and path representations of the quantum R matrix:

E J1Ja ] J J2 Ja (Rjajz ny ny
my Ny m . T Tig TNy i € ma ma

n2,n,m

— Z el‘l’!(ﬂ,‘-f-ﬂ,‘-—a:—.ﬁ"‘){ .?’3 ?.‘J.. } jl j2 js js j3 j‘i (13)
ms.Js Ja Jads ). |- "R g vEg || THE TH3 Ty q'
A; = Aley gj) = j(G +1)6 - j, REP = (RPN,
Here R)'7? = (/' @x7?) R represents the universal R- matrix acting in the space &, @&,
(30],

R (631!: ®C-TT‘?2) = Z (R‘””);l::,’u Ef.,,lu @t’.,};’“. (14)
my,ma

The matrix elements are recalled in App. A.

The expression in front of the Clebsch - Gordan coefficients on the r.h.s. of (13) coincides
up to a sign with the thermal braid matrix By;(¢) (cf. (11) and (A.7,8)). The R- matrix can
be written in terms of the 3j-symbols as a sum of projectors

Rivaymna ixe(Byy =0y, =0y | T2 J1 T5 Jn o 3s | 1
e )mlm; ;‘Ese Mg My Ms ny N Mg (1)

The relation (13) with (15) inserted on the Lh.s. is equivalent , via the polynomial q -
Racah identity, to the fundamental 6;-symbols defining equality [30]:

Z[ J2 Ja} J1 ] J4 z Jaja2j J1 J2 Js Js Ja Ja (16)
mymym | | mymmy J1 Ja Js JLmmems || msmymy |

m g Jsmy

Vice versa, one can recover the explicit expression (15), using (16) and the q - Racah
identity.



The summation over js in (13), (15), (16) runs according to the classical tensor product
decomposition rules. For ¢” = 1 the Clebsch - Gordan coefficients develop singularities. Let us
assume that in (13), (15), (16), all j;,2 = 1,2, 3,4, and j areregular, i.e., 2j;+1 < p,2j+1 < p,
and furthermore, let the triples (ji,J3,7), (j2,J4,7) in (13) (or (j2,J3,7),(j1,Js,7) in (16) )
be consistent with the FR. Then both sides of (13), (16) remain finite and the right hand
sides include in general contributions beyond the upper bounds of the minimal theory FR
(see [7] for a discussion of (16)). Indeed if j = (p — 1)/2 appears on the r.h.s., it survives,
since a zero in the fusion matrix is compensated by a singularity in the second Clebsch -
Gordan coefficient. Each FR violating pair (j,j = p —7 —1) gives as a whole a finite, non-
zero contribution, which corresponds to the in-decomposa.ble representation £;;. It can be
computed via L’Hépital - essentially the singularities of the standard normalization constant
of the Clebsch - Gordan coefficients are compensated by the relations resulting from the
intertwining operator D. For the same reasons the summation on the r.h.s of the equality
(15) defining the R- matrix is also finite and in general runs beyond the bounds of the FR.
Let us see what are the implications of these observations for the 4-point functions.

Guided by (12) we construct explicitly these correlations using the normalized DF con-
formal blocks. Namely we define in the thermal case

Fr—i- (21,22, 23, 24)=Z(—1)A?’ KTJ—E (J11J2 Ij3|j4)jj5 (212713 22,725 23033 Z4,J4 )1 (17)
s

B B 8 % % L NG S
1\:—3(]1,]2|13,J-:) = Z il ] [Jl 4 8 J [Js 3 h] [34 M ] 3 (18)
q q q q

I1,ms,ly 0 my b ly my ms ms ma Iy [ymg O

f_’.7= (mhmz,ma,m«t),

where J;, is the conformal block of the previous section. However, in counterdistinction to
what one would obtain strictly following (12), we will not restrict for ¢* = 1 the sum in
(17) to the FR bounds. -

The first Clebsch - Gordan coefficient in (18) reduces simply to ém,i, . The choice of the
sign in (17) is dictated from the explicit expression for the fusion matrix transforming the
normalized DF blocks J, ; it can be absorbed in J;, , changing the normalization. Indeed
with this choice we get using (13)

Fhmb Moy myzz) = 3 (RPAYSM FARA N onz),  (19)
n2.n3

and similarly,

FLAh Mo, n,e5,2) =' Y, (REAYam  pRARE S, o 25,24) . (20)
nyn2
The last Clebsch - Gordan coefficient in (18), which reduces to a constant, is needed to
ensure the corresponding relation with the last two arguments replaced. Combining (19),
(20), one gets an analogous formula with z,,z; replaced. The composite R?'7 - matrix
satisfies the relation (compare with (10))

[ Ja J2 J ] [ J jl j4 ] (Ri:jl)ma mi .
E : ¢ /nym
q q .

mi,ma,m Mg MMaq m M my my
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= BBy =By =) T Jaj2J J1 Ja Js Js J3 Ja | (21)
Jidags ], L TaMams | | Mgnamy |

ms.Js

We now come back to the problem discussed above. If we restrict for ¢? =1 the sum in
the mixed functions (17) according to the upper bounds of the FR (in the cases when these
bounds do not coincide with the classical ones), we will not be able to reproduce in general
the R-covariance condition (19). Indeed, as discussed above, the restricted numerical "vertex
- path” identitities do not hold true.

This problem in the construction based on (13) was first noticed by the authors of [22].
The strategy followed in [24] is to use (12) (and hence (17)) with the sum restricted according
to the FR , but to require the R-covariance only on a subspace of the space H= &;H; @, .
This is equivalent to the R- covariance of (17) in the cases when the classical and the fusion
bounds coincide.

We adopt a different alternative, taking the sum in the 4-point functions (17) to run
according to the classical bounds. Hence we admit in general terms violating the upper
FR bounds. The arguments of the previous section can no longer be used to cancel these
terms, since now the DF integrals are multiplied by the singular ¢-blocks (18). Thus the
unphysical border point j = (p — 1)/2 survives, reflecting the fact that the vertex operator

i O
J4 . i i ;
Pry V.. Flasi [ m2 mz i no longer vanishes identically on the states in H;, ® &, .

Similarly the contribution of the pairs (j,j) canno longer be cancelled .? This is in agreement
with the quantum group tensor product decomposition rules which do not coincide with the
FR.

QOur choice ensures that the R-covariance is maintained for averages on the full space
H= @®;H; @ &; . In particular (19) is valid for any ji, j2, Ja,ja-regular. Although in this
way we have to apply the "vertex-path” relation even in cases when both sides of (13)
are divergent, no problem arises, since we actually use this relation always multiplied by
the conformal blocks J; with the sum over j taken. That makes its contribution finite,
combining once again the relations obtained from the intertwining operators D = X7~ %!
and @Qp—z;-1. (The relation (13) itself can be given meaning in that case by choosing an
appropriate normalization of the Clebsch - Gordan coefficients.)

The appearance of unphysical intermediate states makes the correspondence of our cor-
relations and the operator formalism in [20] rather heuristic , since this implies that, unlike
[20,24], we allow operators which do not keep invariant the space H. Furthermore the in-
decomposable representations £;; will have to be taken properly into account to adapt the
formulation in [20]. @

Recently Gomez and Sierra (GS) [25] have proposed new screened vertex operators acting
in a Fock space, which differ from those in (2) by the choice of the contours. They are shown to
provide a representation space for the (left) action of a quantum algebra, which reduces in the
thermal case to the algebra U, (s!(2)) , ¢ = exp(2mip’/p), or, Uy(sl(2)), ¢' = exp(2xip/p’).

“The contribution of these pairs can be made manifestly finite if (17) are rewritten in a different basis,
so that the DF integrals [} . (z) are replaced via contour deformations by integrals with inhomogeneous

behaviour for both + = 0 and 1 — z = 0, while the coefficients in front of I{ ;,(z) become finite. This

reflects the indecomposable character of the representation &; ;.
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The operators in [25] are manifestly R-covariant and presumably they provide the proper
operator language behind the correlations constructed here. We show in Appendix B that
for my = —j, our 4-point correlations can be recovered using the screened vertices of [25].
We end this Section with a remark concerning the R- covariance beyond the thermal case.
The general R- matrix elements have been obtained in [25] as products of the thermal ones,
times mixing phases. This reflects the fact that the quantum algebra in the general case
does not reduce simply to the product of the two thermal algebras 2, and U, , considered
as Hopf algebras. On the other hand, with the knowledge of the explicit expression for the
general fusion matrix it is straightforward to extend (17) and the R- covariance relations (19),
(20) beyond the thermal case, taking simply the product of the thermal Clebsch - Gordan
coefficients. The resulting general R- matrix factorizes up to an overall phase , depending
only on the corresponding spins j;,j/ . Although the correlation functions obtained in
this way coincide again up to a constant with those computed with the GS operators, they
apparently describe a different quantum algebra. We leave the details to App. A.

4 Quantum group invariants

One can invert (17) using the normalization relation for the Clebsch - Gordan coefficients:

_1\i+n=iF (T = i J Ja )4 Ja J4 Fi(3

(-1+amisi(Z) = 30 [mlmzm] [mmsz.] [ i } Fi(7).  (22)
m,,m,ly q

The r.h.s. of (22) is thought of as the limit for ¢ — go, g5 = 1, of the expression extended

to generic values of ¢ . Similarly, the local 2-dimensional (scalar) functions are recovered as

S FARRAG) FARAAG) = T4G) G) (23)
my,mz,M3,My

The summation on the r.h.s. of (23) reduces to the FR bounds taking into account the
results of Section 2.

The inverted formula (22) expresses the conformal 4-point chiral correlation as a U, (s!(2 ))~
invariant. The invariants of the algebra U,(s!(2)) under the action of A" in &, ®...§j,
were realized in [7] as n-point functions of complex variables uy,...,u, , obtained by invari-
ant pairing of the basic 3-point kernels, related to the Clebsch - Gordan coefficients. The
monomials uj"'”‘/\/[j +m],![j —m],! correspond to the states e, . The invariants read
(see also [33] for n=2,3, and [34])

5,(“’}(3':|--,J'n)= Z [ 0 51 a ] [ ay J2 a; ] [ a; jaz as ] (24)

M. Ma, 0 my my, Mgq, M2 Mg, Mg, M3 Ma,

Whap s st Moo Mg,_,Ma 0

[ @n-2 Jn-1 Gn-1 ] {ﬂn—a Jn 0
1

jl j? jn
] € {’-}e,,,2 we e
q

{Cl} = {al :'jlyaha:is veeyGp_2,0n_1 =Jl‘|}

[n the second quantized version of [35] the variable u is replaced by an operator, generating
together with the finite difference operator D, a g-deformed Heisenberg algebra. The G5
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vertex operators e’ (z) provide yet another realization of the states e/ and of the invariants
(24).3

For generic ¢ the invariants in { &, ®...®¢;,, } for a,_;- fixed span a representation of
the braid group By ,n=N —1 , generated by ¢i=I®..R""™* . ®I,i=1,2,.N -1,
where R=P R and P is the permutation operator. This can be seen using (14) and the
"vertex - path” representation (13) of the matrix R/ acting in £, @ Ejis1- Consider the
restricted subset of invariants for j;, 1 =1,...,n - regular, labelled by restricted paths {a},
i.e., all a; are regular and furthermore, any triple (a;-y,j;,a;) is consistent with the fusion
rules. The action of By is well defined on this subset for ¢ =1, since (13) is well defined,
as discussed above. However, it does not keep the subset invariant. On the other hand if we
take, under the same restrictions, the vacuum expectation value of both sides of (21), when
the states are realized by the GS screened operators, we reproduce the conformal blocks, as
in (22) for n=4. They provide a restricted set, invariant under the action of By . Taking the
average has the effect of automatically truncating all summations violating the bounds of the
FR. This implies in particular that the "vertex-path” identities can be given meaning with
summation restricted according to the FR. Indeed, consider for admissible {j1, 72, Js, J3, Ja}
instead of the numerical relations (13) the operator identity obtained by multiplying both

my — My 0
vacuum expectation value reduces the r.h.s. to the bounds of the FR, reflecting the fact that
the FR are fulfilled on the space of BRST states.
For j; =1/2, i=1,..,n —1 = N one can consider the corresponding representations
of the centralizer algebra of {,(s!(2)) in the space S?N . The centralizer is the Temperley

sides of (13) with [ Ja Ja 0 ] el (z1)el2,(z2) ..€*. (z4) and summing over m; . The

- Lieb - Jones algebra [36], isomorphic to a factor of a Hecke algebra Hy(q) of type Ay .
The irreducible representations of the factor algebras for ¢ = 1 realized in [37] in terms of a
restricted set of Young tableaux, are equivalent to the representations provided by the related
conformal blocks [38]. To interpret these algebras as the centralizers of the quantum algebra
one needs the restricted tensor product, obeying the bounds of the FR [6] (see also 28], [3]).
It is clear now that instead of imposing the rather artificial restricted product on the general
invariants. one can realize them by the products of the independently defined operators in
(25]. Taking the expectation values keeps invariant the restricted set of invariants. More
generally, given the quantum group covariant operators ei::{m(z) , the full minimal theory

can be recovered.
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3By multiplying both sides of (17) with H:=; u'}"'"m' VUi +mil Ui = mi],! and summing over m; one
gets a linear combination of two types of invariants, which can be interpreted as the 4-point function of
U, -invariant conformal fields ¢;,(zi,u;) . Examples of such 4-point correlations, in cases when the classical
and FR bounds coincide, were considered in [23], using the formalism developed in [7]..
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5 Appendix A: Notation and useful formulae

We start by recalling the relation for the 4-point {,(s{(2))-invariant kernels in [7]. In terms
of the properly normalized Clebsch - Gordan coefficients it reads (see (18) for notation)

24 )
SR Sy NI e [ o | T
i l(th|.]’:h.?4) =(—1)(P+])(”+“ S [,;—"1 1‘*%(]1\]2]13‘)4), (-'\-1)
[-J +l]q
j_=p—j—1, 1_<_2.7+1<P1
where

KZ(jr,dalia, js) = ¢ KL(jrsdaliasja)y o5 = (=177 ¢;

Cj= Cj(jhjZ) Cj(j31j4) 1 Cj(jhji) = \/[Jl +j2 —J}QI[JI +J2 +J * l]ql .

In deriving the relations (A.1), (7), (8), one has to use that (p'—1)(p—1)=0 mod 2, and

Ei;iit {iz}q 1)P'(@=a) (A Jolp — 1. ALK 1) +DA = [ — 1,1, (A.2)

In (8) we use the normalized DF integrals

Ioi(a,b,e2) = X (e, ¥, 3 8) Xi(a,b,c;8) Ipi(a byciz) (A.3)

k=1 3=k
Xi(a,b:8) = TT stje) [T s(je)
2 s(a+jb)s(c+58) s s(b+j6)s(d + j6)
JI_I sfatc+(k—2+7)8 H b+d+(5—k—1+1)5)’ (44)

=0
kB = 1.2, 05

and the normalized fusion (crossing) matrix,

. X2 (a,b,c;6)\*
bla b by [ it 2 (a.b.c:8) , A.S
&’ (a,b,¢c; ) (X,:(b,a,c;é)) al(a.b.c;8) ( )
I(a,b,c;z) = 3 a4(a,b,¢;6) fi(bya 1 —2). (A.6)
k=0

Let‘ A = (j;’jl)! C == (jévjﬂu B = (j;l:j?:)l D = (j-::.j't)t ‘] = (j.;!jS)! T — (Jé’JG) The
general fusion matrix factorizes [16] to

{ ’;g } = &% (a,b,c;6) &l (a', b, ¢} 6 . (A.T)
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It is expressed by the 6j-symbols according to [32]
& (a,b,c; 6) = (—1)0-11+22+25)+ (=142 +2j;)

(-1 (a—l)(zj:){ J:t(ﬂ) jz(C) J'_s)} ‘ AS
=13 js(8) Ja(d) o (A.8)

where, a,c,b are given by 2a_a; = =256 + 25{,i = 1,2,3, resp,; d = (24 + 2)6 — 2j; - 2;

s=ji4jat+ia—Jatl, Js=htia—it], je=jatia—k+1, J=(5LJs).

The explicit expression in (A.8) was derived in [32] comparing the Racah identities for
the 6j-symbols and for the fusion matrix. There remains an arbitrariness of sign, which is
fixed by the known particular values of o}, , computed in [16]. The first sign factors could
be absorbed changing the normalization of the blocks (A.3), however, the last factor, which
is trivial in the thermal case, cannot be distributed. It is actually important in generalizing
the R-covariance relations in Sect. 3 beyond the thermal case. We define

Fé(z,,il,...,:4,J4) &% I’é.:(Jl Blds Tl Ty mazasddd 5 (A.9)
q J5 4

[(E(Jl Jo|Js Jy) = (_1)’-\?7(1+2J'5+2J5)+Ai'f,a(1+2j:+'2.ia)A’i;’:(J'hjzljs,j*)h’j_ﬁ: (74, 75175.70) (A.10)

—

M= (M, My, M3, My), M =(m',m), J=(,7).
where Ki;: is defined in (18) and j_]s is represented up to a prefactor by the normalized
DF integral (A.3),
J1(Z) = f{ai 2 })221°3(1 — 2)%2% [$3(a, b, ¢;2), = = 228 AT
T13%24

Ay-Bap-Bg=Biy_ By—y=Bgm=Ha
~14

_ Z13
J({ai, 2 }) = 287 Datbi—Di-D; 1
224 T34
with the same identification of the parameters a,b,c, as above. The relations (19),(20), are
generalized with a R-matrix given by
R:’lJz — e~ ime(jija+n3) 'R{‘” Ril'.ﬁ'l (A.12)

where R7172 (or R%"2') is the thermal R- matrix with matrix elements

('R,flﬂ)"ni? == (1= g tymim ([Jl = nl]q!Ul +mily![s2 + nale![j2 — m?]u!)1/2
s [m, —ny)! Ul +n1]q![j! _m'l]q![.jl'_HEJQ!U2+m2}qE

(ﬂ1"2+m1m2+m1(“2+1)+"l("12-1))/45

4 ny+ng,my+ma- i (.’\13)
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Ja Ja O

The additional Clebsch - Gordan coefficient [ |
4 my 0

] in (18) is simply
9

) 7 0 e T ¥
[{nﬂ 0] = (=17 25+ U2 Gy
: §

It is needed as in (17), (18) to ensure the R- covariance when =z is replaced by z,. One

has to use along with (15) the symmetry relation of the Clebsch - Gordan coefficients [30]:

Js J3 Ja | _ (__l)ag,+ja-maq—2,’- M Ja Js Js 3 (A.14)
Mg M3y 14 5 [2]5 - l]q Ll — M3 Ms q

6 Appendix B: Relating the 4-point correlations

In this Appendix we shall recover the factorized expression (17) starting from a 4-point
correlation of GS operators. In order to keep the notation simple we shall consider only
thermal operators; in particular 6§ = a?, q = exp(27i4).

The screened vertex operators in [25] are defined according to

(+2) (+2)
B () =j dr,...[m dt, Va_(ts)oVa_(tr) Vi nyor (2) (B.1)

ay.25+1 .
22 100 1

where 2j + 1 < p, and the contours around z are ordered as depicted in Fig. 53, so that ¢,
runs along a contour which contains all the other contours. They can be identified with the
states €], m =1 —j, of a 2j 4+ 1 -dimensional representation of I/,(s!(2)).

We shall compute the 4-point correlation of the operators E7' with o; = a12j,41, 4 =
2ap — ay2j,41 , arbitrary r;,7 = 1,2,3, and ry = 0. The charge conservation condition
implies that m = m; + m; = j; — m3 . Reducing the contours in (B.1) to contours from z
to infinity and path-ordering the integrals with |t;| > |t2]... > |t;| > Iz| creates a constant

(¢7% —q7)"™E(j,m) ,

E(j,m) = [2j]q!qrt1.mmg_;% . F(G,my= (G —-m)(j+m+1). (B.2)
!

Deforming the contours to the right we can write the 4-point function as a linear combi-

nation of path-ordered integrals \,,, along the real axis (see (Fig. 6)):

3
(@ R (1) EZ (2) EZ (0)]0)20, = 2217 (1—2)7°3(q7% — g7)*~" [] £(jiymi)

J1=my N+n-m

LY Cr) Y D(@+yMayemioemy(z) | (B.3)
r=0 y=0

where s = 7, 4+ j2 +J3 —Js + 1, and

‘ A fo—m— . - —]—z—
— ghtma)(=-mi-z)/2 [ J1t)2— T — (ixtma) (itirm-ry1/2 'S‘ y} . B.4
C(z)=q [ o ] D(z+y)=q"" g |, B4
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————

In particular My_10,s-k(z) = I{(a,b,c;2z) . Following a contour deformation argument
similar to the one in [16] we can deform all the integrals from z to 1 in M,,, into integrals
from 0 to z and from 1 to co, and express M,,; as a linear combination of DF integrals I.
First we deform one [z, 1] contour getting the recursion relation:

[r + 1]ss(a + ré)

Mreue = " [ulgs(a+c+ (2r +u—1)8)

A s (B.5)

[t +1),s(a+b+c+ (2u+2r+1t—2)8)

M, - .
[ulss(a+ ¢+ (2r +u —1)é) Fo=iit
One can solve this recursion obtaining
y+r+1
Mys-t-smy = D Alz,y,k)1}, (B.6)
k=z+1

where

A(I’y’k)x(_l)y[z+;:i+1] [k;l]

+y—k : k=r=2 4
sla+b+c+(s+z+y—3-1)) s(a + (z +1)6)
w11 II

b oslatet+(k+z+y—2-1)) 4 s(a+c+(k+z—-2-1)8)" (B.7)

For the r.h.s. of (B.3) (neglecting the prefactor and the constant in front of the sum) we
get, after regrouping the sum:

s s n-my h+jp-m—-z
S b Pe=Y 0 ¥ Cz) S Dla+y)Amuk) .  (BS)
k=1 k=1 =0 y=k—r—1

The sum over y gives:

ZDA [ ~k ] [ k—1 } (=1)irtia=m=zginlitiz—m=ks1)(atetlirtia—m+k=2)0)
Ja—

T
"-ﬁ* s(a + (z +1)6) wtamm=k (b (s — k — L —i)5) (BY)
o Slat+c+(k+z-2-1)8) - s(a+c+ 2k +1)5) )
using a standard formula for the q-hypergeometric function:
[ t—1 -1 ‘
t?r(B (f--”ﬂ)t S A+B+15) = [ ixl(A+B) S(B—’L(S) B 10
zzz [ LIUT AT e I;IS(A+i5)‘ (B.10)

With (B.9) the sum over z in (B.8) becomes

k s n+ijz—-m—k b(b"i'(s—k—-z)(S)
= = ir(j1tr—m—k+1)(a+ct (11 +12-m+k)8)
B ZCZDA LS_mSLE 1;[ sla+c+(2k—-241)é)
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—-my k—zx . . .
.JIZ l:kJ (_1)J1+j2_”'-IH s(a +(z + 1)6) |:Jl+]2Hm_-I} q_%(i:—M:)(il—m:—f]g'i"f(il—*’\l-r)
9 q

=0 LT o Slatct+k+z+2)8)| J2—
_ J2=may —1Fy [21 + l] [.73 + m3]q [+ m] '[A 2]q [A 5]q
= T s =G~ LA (P

where j = js =1+ j2—k+ 1, m=mg=m +my, AS, = Jja+Jb = Jor Fs = Fjs, ms),

and
5 (_l)rq%r(j2+m2)[j2 — My + r]q!Ul + my + r]q! (B 12)
>0 lrletlin =my —rlllja —j +mu +rllgs + 7 + my + 1 47!
This sum is proportional to the Clebsch - Gordan coefficient [ 41 &3 J5 ] , namely,
my My m i

[ J1J2Js ] = ([2j5+1] [35 + m]q!bl ml]q'[& ’Z]GI[A s]q![jl F-79 + 75 + 114’!) i
my mp m s - mlo!n + male![f2 + ma)g![f2 — ma) [ AL,
QAFAFF) |y g (B.13)

To obtain (B.13) one has to use the Racah-Fock form [30,39] of the Clebsch - Gordan
coefficient and an identity for the generalized q-hypergeometric function 3, [40]:

'7-n+J)

— ) q"*3®s(—n,a,6 — fya —n+ 1 —~,8|q,¢'t*77),

(B.14)
with n = j; — m,,a-—-]1+m1+1 B=—js+mbé=fa—j+mi+1,y=—j2—Js+m .

=
3‘32(—“!0‘3;7,5{q q H( %

J8.3 J‘.' } 1s simply
q

The Clebsch - Gordan coefficient [
m ms J4

[s 3 f'*] ey (Ul B 1 )
| T TNy J4 9 [JS"m]q'DS“‘mS]qr[A ]q'[A 5]q (J3+74 JT“JS"f'l]f:
(B.15)

Putting everything together we finally obtain

J1J2 Js Js J3 Ja k-1 [y T P PR - D 16

[ml my m } [m ma js ] i Al b)Y et s - ey
k=jg1+72—7s+1,

with & given in (B.2) and X} - in (A.4). Taking into account (A.3) one sees that (B.16)

reproduces (17) for m4 = —j; up to a constant. Indeed, changing the normalization of the
operators in (B.1) according to
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T

T - | =m . -1/2 pr s -
Eﬂl_:};{.) - (_I)J (E(J!m)) Eﬂl.:;-n‘ r=31-—m, (Bll)
we obtain
RN B R I - OB oy DB, GIED, )10
m1m:m3"ic("’ - PG TR 0 ( 2oo=ry 2y 41 V7 ay,2)541 V3 01.2’24_1(2.'2) 0,‘:“_'_!(&1)} )?no.
q

(B.18)

In particular for 2j;+2j; < p—2, 2j3+2j; < p—2, we can identify the Lh.s of (B.18) with
the MR 4-point function (V2! (z1)...V2} (24))) , where both the conformal and the quantum
group average are taken. (The inversed order of the operators is due to the opposite choice
of the right and left Fock vacuum states in (17).)

This suggests that in general we can identify our correlations with the expectation values

of the products of some Virasoro and U, - covariant fields e (z) ,

Fhn i (Z) = (0]l (21)..€, (24)[0). (B.19)
Their n-point functions admit integral representations realized by the Fock space averages
of the screened vertices of [25]. In (B.18) el is represented either by E;‘;l";')‘“ , or by

_— ‘ ‘ -
[ .:nJm 0 ] E;:a"lam'_“ . However, it does not mean that the GS correlations respect the
q

symmetry a — 2ag—a (see App. C). The operators el (z) provide the i, (sl(2))- invariants
discussed in Sect. 4.

The computation can be easily generalized beyond the thermal case. Similarly to the
factorization of the fusion matrix (A.7), the coefficient in the Lh.s. of (B.8) with [} replaced
by 1%} factorizes to Py (a’,¥',c') Pi(a,b,c) , with Pi(a,b,¢) recovered from (B.11). This
creates an additional sign factor, if compared with (A.9,10), reflecting the fact that the
general Clebsch - Gordan coefficients in [25] factorize to the thermal ones only up to mixing
signs. One can combine the two approaches to find the corresponding generalization of (17)
beyond the thermal case for arbitrary m;, m!, 1 =1,2,3,4.

7 Appendix C: Non-diagonal solutions of the R- co-
variance condition

We can use the results for the non-diagonal local minimal theory correlations [31,32] to
construct more general solutions of the R -covariance relations. We shall assume that p
is even, and hence p' is odd, and for simplicity we shall consider correlations of only two
different fields. One can generalize (17) according to

Ny =+ = E I (RS e O T T - . v
'r-{'r; )(:! Ji.J ) = Z(_I)A”I\:‘f(]l J2IJ3 J-l)lvjslu(]l1]21]3:]4)‘Ij5(:l1.“;"'a:41j-1) ) (Cl)

J5.Js

where ] = (j,7) . The constants N;; are assumed to satisfy the restrictions coming from
requiring locality of the corresponding non-diagonal functions [32]

19



S(N)(zhjlv"w 34132) = ij(zlljl; '-'\34!.].4) N;,_j(}li}?}jhj?) j;(z_laj_l.; "'1?‘;15—4—) . (C'?)

JJ

These conditions ensure as well the R-covariance of (C.1), assuming as in Sect.3 that the
summation is not restricted to the FR bounds. One can recover the local function (C.2) from
(C.1) and (17), in the same way as the scalar combination (23) is recovered.

Let us illustrate the construction by an example, corresponding to the (A4, D) -type [41]
local correlations of [31,32]. Consider (C.1) with j; = ja, j2 = J4y J1 = J1s Jp = O“(]z) =
£ —Jj —1. Then the constants N; are given by

N=. (31,92, J1,02) = (— 1):(;5) i = = 1):(1:)4»:(:5)}\/;]_5 (G2, 31571, 92) »

Ts s
N;5(Gudndnda) = (10 &, 5(5) = & = b7, (C3)

2j1 =0 mod 2, 2j5 + 1, 2j2+1=§m0d2.
Note that given j;,72 , there are two non-diagonal combinations F(N)(_:]:; ;) and

FW)(7: 7 ), which are not identical in general. For a; = a3 = ay2j,+1 the corresponding
correlations can be recovered by the GS operators choosing

Qg = 200 — Q4 = 20’0 — Q12541 » i (C.-l)

or,
Qg = 200 —Qy = 20’0 — 01 p-255-1 -+ (CS)

Let us stress that while in (17) the upper bounds of the fusion rules are not respected
in general, in the non-diagonal generalization (C.1) the lower bounds in the summation over
js , entering J, , can be violated as well.

We recall that the scalar and the (A,D) -type (thermal) local correlations admit a 2-
dimensional, volume integral representation [31], equivalent to (C.2). This is not so for the
exceptional (A,E)-type correlations, which can be realized only by the factorized linear com-
bination (C.2). Similarly, the GS operators, which are analogues of the local 2-dimensional
operators, cannot reproduce the corresponding (A,E)-type counterparts described by (C.1).

One can consider as well chiral analogs of the local correlations containing fermion fields,
just taking over the corresponding constants N5, [32]. Accordingly some of the R- covariance
relations will be modified by a minus sign. In exactly the same way one can construct also
the analogues of the quasilocal 4-point functions with Z; statistics [31,32], which generalize
to all minimal values of ¢ < 1 the order - disorder Ising model correlations.

These results can be extended beyond the thermal case, either generalizing (A.9,10), or
the non-thermal version of [25].
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FIGURE CAPTIONS

Fig. la The diagram describing the embeddings of the I{,(s!(2))Verma modules M;
(2j - integer) for ¢ = 1. The arrows point to the embedded modules. The middle point
is chosen to correspond to M; with1 <2j+1 <p—1 . The same diagram describes the
action of the finite difference operators D and I in the spaces of functions C; .

Fig. 1b A different picture of the same diagram; m = 2j + 1 . The horizontal arrows
correspond to compositions of embeddings depicted on Fig. la.

Fig. 2 The diagram of embeddings of the Virasoro Verma modules M, [13]. The stan-
dard parametrization is recovered identifying M+, with Mp_prpom and Moy mikp, £
- integer. The same diagram describes the singular vectors of the AE” - Verma modules
(14]. The arrows correspond to the action on the weights of the elements of the affine Weyl
group W , generated by w,wy .

Fig. 3 The complex of Fock spaces Fyim, m() =2;() 4+ 1 [18]. The arrows correspond
to the screening charges Qm, Qp-m -

Fig. 4 The contours in the integrals representing the 4-point Felder' correlation on the
Lh.s. of (3).

Fig. 5a The contours in the multiple integral representing the GS screened vertex
B2, (2)

Fig. 6a The path-ordered integrals describing three screened vertices sitting at the points
0,z,1.

Fig. 6b The deformed contours of the path-ordered integrals M., in (B.3).
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