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ABSTRACT 

The rat ional c < 1 theories are reconsidered beyond the space of BRST states, allowing 
for intermediate states not contained in the Kac table. The intertwi ning properties of the 
,creening charges Qm, Qp-m are used to derive linear relations for the genera l conformal 
blocks. The fusion rules are recovered on BRST states, combining these relations with 
previously obtained identities for the fus ion matrices, due to the corresponding 1I,(sl(2))· 
ir.\·ariant operators . The extended formulation is app lied to give meaning for qP = I to the 
quantum group covariant conformal correlations initia ted by Moore and Reshetikhin. The 
co rrelations are manifestly covariant under the action of the R· matrix and in the diagonal 
case they coincide with the averages of the screened vert ices, recently proposed by Gomez 
and Sierra. 
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1 Introd uction 

The representation theory of quantum groups [1,2) differs drastically from its classical ana­
logue when the deformation parameter q is a root of unity, qP = 1 [3-10). Thus, wh ile the 
embedding pattern of the Verma modules for generic q is governed by the finite Weyl grou p 
W of the complex semisimple algebra g, for qP = 1 it is essentially parametrized by the 
infinite affine Weyl group W of g(1) [11). The group ,jr describes [12,13,14) the singu lar vec­
tors of the Verma modules of the affine a lgebras g(1), underlying the RCFT. Comparing, for 
example, the diagrams depicting the embeddings of the Verma modules in the simplest case 
when 9 = sl(2) (see Fig. la,b and Fig. 2), one sees that the only difference is the direction 
of some of the arrows. In particular, unlike the Virasoro (or All)) modules, any Uq (sl(2)) 
modu le is itself embedded in a bigger module. 

The singular vectors of the Verma modules give rise to operators invariant under the 
(left) action of the algebra; these operators, generated by the right action of the algebra, 
intertwine pairs of partially equivalent representations, which need not be highest weight 
representations. In particular the intertwining operators V = X:j+1 and V = X~-2j-l of 
Uq(sl(2)) can be realized as finite difference operators in spaces Cj of functions of one 
complex ,·ariable [7) . The diagram on Fig. l a then admits another interpretation, replacing 
the Verma modules with the functional spaces at the points; then the arrows indicate the 
action of the operators V and 12. 

The correspondence between singu lar vectors and intertwining operators has not been 
very useful for the representations of the Virasoro algeb ra, since there are no explicit general 
formulae for the singular vectors. This difficulty has been overcome using free fields (rock 
spaces) realization [15,16,17,18]. The invari ant operators I intertwining rock spaces, are 
rep resented by the screening charges [17,18). The diagram describing the action of these 
operators (see Fig. 3) is identical, including the direction of the arrows , with the diagram in 
the quantum group case, with V, V replaced by Qm, Qp-m, 1 ::; m = 2j + 1 ::; p - 1. 

The analogy between the quantum group generators and the screening operators first 
noticed in [3) has been further deepened in [19) where it has been shown that the elementary 

screening currents of the A~'~, WZW models satisfy in a weak sense, under int.egration , the 
Serre identities for the negative (or positive, depending on the realization) root generators of 
Uq(sl(n)) . 

This functorial equivalence of the intertwining operators (i.e., the operators in,·ariant 
under the correspond ing left action of the a lgebra) is essentially the source of all the slriking 
similarities of the quantum groups and the RCFT - theories described by fields which are at 
most quantum group scalars . 

In this paper we analyse the implications of the two sets of intertwining operators for the 
rational c < 1 conformal theories and for the related theories with an explicit action of the 
quantum group, init iated in [20) (see also [21,22,23 ,24)) and recently further developed in 
[25) . In Sect. 2 we reconsider the minimal theory in the initial big Fock spaces, thus allowing 
operators which do not leave invariant the "physical" space of ERST states. To do that one 
has to take into account intermediate states labelled by integers m = 2j + 1, m' = 2;"' + 1 , 
beyond the values described by the Kac table: 1::; m ::; p - 1 ,1 ::; m' ::; p' - 1 . They 
correspond to the triple of Fock spaces, depicted in the middle of Fig. 3. The existence of 
intertwining operators leads to linear relations for the n-point conformal blocks corresponding 
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to the pairs (j,j = p - j - 1) (or, (j,J = -j - 1)), I ::; 2j + I < p , with j' fixed. These 
relations and th-e relations for the fusion matrix due to the invariant operators of U,(sl(2)) 
[7], are used to show that the minimal theory fusion rules (FR) are recovered on the BRST 
states and that they are not violated after braiding or fusi ng. This solves an old pronlem 
in the Coulomb gas approach of Dotsenko and Fateev (DF) [16], [26]. The consideration 
in Sect . 2 is alternative to the one followed in [18,27]' wh ich describes the mini mal theory 
entirely in the space of BRST states. It is however more suitable when we turn in Sect. 3 
to the quant um group covariant theory. Now all the states which are factorized out in the 
pure minimal theory have to be essentially resurrected, if one insists o n the 1(.. covariance 
of the correlations . The interplay between the BRST charges and the quantum group 
invariant operators is once agai n used to give meaning to the correlat ion s when qP = 1. In 
Appendix B we show that the 4-point functions cons t ructed in this way essentially coincide 
with the averages of the recently proposed new screened quantum group covariant vertices 
[25] . This sheds light o n the relationship between the operator la nguages in [20] and [25]. 
In Sect. 4 we cons ider the general quantum group invariants, which can be realized using in 
particu lar the operato rs in [25]. Their transformation properties under t he act ion of the nraid 
gro up reflect the quantum group tensor product decomposition rules which are inconsistent in 

general with the FR upper bounds. The mi nimal theory correlation funct ions are recovered 
as an invariant subset, tak ing appropriate averages of the operators in [25] . Accordingly, 
the operator counterparts of the numerical "vertex - path" identities [28,29 ,30] - relat ing the 
quantum 1(.- matrix to the braid mat ri x, reduce in averages to the FR bounds. In Append ix 
C we extend the class of 1(.-covariant correlations, construct ing chiral analogues of the non­

diagonal local (and quasi local) 4-point functio ns in [31,32]. Appendix A contains notat ion 
and useful formulae as well as a genera lizatio n beyond the thermal case of the correla t ions 
in Sect. 3, alternative to t he approach in [25]. 

2 Uq(sl(2)), Coulomb gas and fusion rules 

Once we have an invariant operator, in tertwin ing a pair of representations, we can expect 

relations for the corresponding g roup invariants. Indeed , such relations for the 3- and 4·poi nt 
invariants were derived in (7J using the intertwining operator V = X~- 2j- 1 £p_j_1 -+ £j , 

where £j is a 2j + 1 - dimens ional subspace of Cj . The relation for the 3-point in"ariants 
(which reproduce the Clebsch - Gordan coefficients) imply furthermore a relation for the 

q - 6j·symbols, q = exp 21r ip'/p, where p',p are coprime integers: 

{ 
11;' Js }, = (_I)i!.- j'+(P'-IHh+j.-h-io) 
J3 J4 J6 

[2j6 + I ], { 
[2j6 + 1], 

1. = p - j - I , 
qi - q-!f 

[a], = 1 _1 
q' - q , 

Jl ;, Js 
)3 J4 )6 

(I) 

Here all ji, except j6, are ass umed to be regular, i.e., 2)i + I < p, i = 1,2, ... 6. Both sides of 

(I) a re finite for triples (jl ,j" ),), (j3, j4,jS) , such t hat ) 1 + j, +), + I < p, h + j, + j s + I < p, 
and they vanish identically if 2j6 + I = p = 2)6 + I . A s imilar identity without the sign 
facto r in ( I) resu lts from the operator 'D , with j replaced by J = -j - I. The relation 
( I) , derived in a purely quantum grou p framew;;rk, implies a corresponding relatio n for 



• 

the minimal theory fu sion matrix - represented, up to a mixing sign, by the product of two 
q - 6j-symbol" with q = exp2irrp'/p, and q' = exp2i1rp/p' (32) (see App. A). It truncates 
the polynomial identitie" inherited from the generic q case, to the bounds of the FRs. 

The relations for the properly normali zed Clebsch - Gordan coefficients just reflect the fact 

that the states e;,,(jl,j,) and ein(jl,]'), Iml ::; j, in the tensor product £;, ®£;, of two regular 
rep resentations , become identical, up to an overall constant, when qP = 1. The same is true 
for the states e!;. , (j,j,) and e!;., (i.,j,) . Unlike the contribution of the pairs (j,t = p - j - 1) 
in the numer ical polynomial equations , the representation states of course, ca nno t cancel; 
rather, to recover all linearly independent sta tes in the tensor product one has to give up 
t he conditions X+ ej = 0 = X:i +

1 ej, thus getting an indecomposable representation £}oi of 
dimension 2j + 1 + 2t + 1 (see [3) for details). -

We now turn to the implicat ions of the analogues of the intertwining operators 'D, 12 for 
the minimai theory correlations. We are considering the BPZ minimal models with central 
charge c,,'.P = 1 - 6(p - p')' /pp'. In the free field representation the fields act on Fock spaces 
Fo •o • generated by a free boson. These spaces are given the structure of Virasoro modules 
of dimension ~n'n = .6.(O'n/n) = 0n'n (anln - 20'0), where On'n = 1;"0'_ + 1;"' Q+! Q_ Q+ = 

- I , 0:' = p'/ p = 8, and 2ero = er+. + er_ is the charge a t infinity, determining a conjugate 
vacuum state v~ = V2oo-a; the integers ni, n will not be restricted for the time being. 

For simpl icity of notation we shall concentrate mainly on the thermal case, er = erln ' The 
screened ,'ertex operators are defined as [i s) 

(2) 

where Y~I" is a Virasoro covariant vertex operator of dimension .6.(0'1") mapping any 
Fock space Fp to FP+o'n' The contours C, are chosen to wind once around 0 , starting 
an d ending at z, in such a way that C;+ l is inside C;. In expectat ion values the integrand 
in (2) is fixed by requiring that it is real (for real charges) for Z > tl > t, > .... > t, on 
the real ax is. The charge conservation condition [i6) ensures that the vacuum expectation 
values of the products of the screened vertices in the presence of the background charge 
2ero are invariant under projective transformations, and more generally , sat isfy the Virasoro 
Ward identities. Deforming the contours one reproduces from the averages of the screened 
ope ralOrs (2) th e DF conformal blocks . In particu la r t he 4-point corre lations are recovered 
according to (see Fig. 4) 

k- ' J-k-1 

f3;(o. b. c; 6) = e;,[(0+<+(.-')6)(.-1)-(k-1)<1[5 - k1, ! [k - i),! IT 5(0 + j8) IT s(d+j8) , 
j=O j=O 

where. iollowing the notation of (16), 

5 = j 1 + j, + h - j, + 1 , k = i , 2, ... , 5, 
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and I. is the muitiple path-ordered contour integral [16] with k-I contours ru nni ng from 0 
to z and s-k contours from 1 to infinity. In the general case the const.nt in front of I(Z 
factorizes into {3{(a', b' , cl

; 6') .3;(a,b,cic5), where a = 2Q-Qn~nl = -a'o, etc. 
Felder proposed a BRST cohomological interpretation of the Coulomb gas realization o[ 

the minimal theory by introducing the screening charges Qm and Qp-m, 1 ::; m ::; p - I. 

(+0) (+0) 

Qm = l dt, .. . l dtm Vo_(t,) .. .vo_{tm). (4 ) 

The BRST charges Qm and Qp-m intertwine pairs of Fock spaces according to Fig. 3, 
i.e., in their range of definition they are invariant under the action of the Virasoro alge bra. 
The irreducible Vir modules "Hm'm, (1 ::; m(') ::; p!'l - 1) arise as the factors "Hm'm = 
KerQm/ImQp_m of the Fock spaces FOm'm' 

The screening charges can 'float" from a vertex to a neighbouring one, if the intermed iate 
states are consistent with their range of definition. In particular using the oasic braiding 
relation [or the vertices Vo(z,jVJ(z,) = exp(2i1rfo,B)Vp(z,)Vo(z , ), (see (3.20) of [IS]) , where 
< = ±1, depending on the direction of the path interchanging the two points, one has: 

(5) 

if n, + n, - 2r, - 1 = 2p - m. n, - n3 + 2r3 + 1 = m; 1 ::; n" m ::; p - 1. 
Here Pr are projectors on the space FOn'n' Let us rewrite this re lation. which encodes 

the intertwining property of Qp-m in a more transparent way, using the fact that when 

projected on FOil the operator V; reduces to a chiral vertex operator (C VO), ( jj~' ), 
denoting n = 2j, + I, 1= 2j, -+- I , n + I - 2r - 1 = 2j + 1, 

(6) 

n, = 2j, + 1, m = 2j5 + l ,j5 = p'- j5 - 1. 

A similar iden tity with j = p - j - 1 replaced oy -; = -j - 1 is obta ined uSlllg the 

operator Qm. In terms. of th~ DF n-point co rrelations, using (3), (6) r"ads 

I'(a b c' ·)=(_I)"(';'+'J' ) T !'~+j,-;' -j,,!,6.~,],![,6.~5]"[,6.~5],,[h+j4+j5+ 1 ] ' !I' (a b C") 
i ' , ,- [,6.~4],![,6.15],![,6.l.],![j,+j,+j.+I ] ,r k " ,. , 

(7) 
where,6." = j, +)1 -in, k = j , +), -). + 1; 1£=j, +j, -). + 1, k,k= 1,2, .... s . 

This relation simplifies for the normalized blocks i. (see App.A), useful in recove ring 
the primary fields structure constants [1 6]: 

i'(a b C") - , _1)(n+J.-il-iJ)(p'+lj !. ' I ,- -

6 

[2j. + I], 
[2). + 1], 

i,,(a,b,c;z ) . (S) 



In general when It is replaced by I{: (7),(8) are modified by a factor (_ I )(k-'-l(2J;t2J;I. 

Note that both sides of (8) vanish ident ically if 2i, + I = p = 2j, + I, or 2j, + I = a = 2h" + I. 
In deriving (7) we have ass umed that both the regular ), and its partner ), = p - i-I are 

allowed from the classical decomposition ru les for the products i, 0 j, and j, 0 i, . That 
implies that both), and ), violate the FR. In that case the integra ls in (8) are finite , non·zero, 
unlike the correspond ing averages for the Felder screened vert ices, whi ch vanish due to the 
constan t 13k in (3), in agreement with the results in [1 8]. That means that the normalized OF 
correlat ions in (8) correspond to operators which do not preserve the "physical" I3Il.ST space 
$m 'l1m . They create intermediate states in F2p- m and in ImQp_m C Fm, ( I :s; m :s; p -I), 
which are compensated in the physical (local) 4-point functions taking into account (8). 
Similarly, intermed iate states in ImQm C F_ m and in Fm /KerQ m appeaL Note that 
one can extend (7), (8) in principle to arbitrary n·point functi ons . The point is that the 
normalization needed to recover the DF blocks It (or it) (cf. (3), (A.4)) ca n be attached 
to the bi local chiral vertex operators V;,O I(Z ,Z,) , V;,ol(z,O)IO) = Vo(z)la,) . They are 
obtai ned by adding the vertex VOI(Z,) after the string of screen ing currents Vo _ on the 
r.h.s, of (2) (see, e.g., [25)). 

The relation (i) (and the one obtained when i. is rep laced by J = -j - I) shows that 
the set (It,k = I, ... s } of basic integrals is not in general linearly independent. Furthermore 
it indicates a singularity of the integral on the Lh.s, of (7), as a function of the parameters 
a,b,c, Let us co nsider for simplicity the case when), = h , j, = ),. If the t riple (j"],,j,) 
is inconsistent with the FR and j, is regular, the prima ry fie ld structure constant Dj:;" 
wh ich can be recovered for coinciding arguments Zil ~ a , vanishes [16] . Hence, as in the 
example considered in [26], there should be a diverging constant in front of higher orders 
in Z12, lead ing altogether to a fin ite, non· zero descendent st ru cture constant. Indeed . the 

correspond ing primary field struclure constant D~;, , recovered from the I.h.s is finite . non­
zero. It is amusing to see that the quant um groups provide information about the analyticity 
properties of these genera lized hypergeometric series. 

Finally, combining the linear relations (7) with the relation ( I ) for the fusion matrices 
one gelS follow ing the notat ion of [16], (no summation in k,];,), 

a~~I(a , b,c;o) I{(b,a,c;l-z) = -al:l(a,b,c;o) It(b,a,c; l-z), 

e"";,(a,bla('I(c b a' 0) 1(' I(a c b· 1/-) - _e;''' ,(a,bla(' I(c b a' 0) I' (a c b· 1/') (9) Ii ' 1) i. 1 I I - - Ik I 1 I k I I I -

where Llk(a,b) = Llj, = ).(j. + 1)0 - j; )6 =), +h - k + I , )6 =), +i3 - k+ I and 

a!ZI(a, b, c; 0) is the DF fusion (c ross in g) matrix, 

, 
I,'(a,b,c;z ) = La'k(a,b,c;o) It (b,a,c; 1- z), 

k=O 

proportional to the 6j·symbols (see (A,S)), 

The same relations hold when k is replaced by k = i , + j, - To + l. 
The relat ions (7), (9) for the t hermal case are easi ly generalized, tak in g into account 

all sig n factors, Let J; = V,j,) , and let {j,,],, ),,),,),} be an admi ss ible set, i.e., 
)" i = l. ... , 5, are regular and the triples (j"j"i,), (j3,j"j,) , obey the fit In terms 
of the full normalized conformal blocks j), (0) , which' differ by a stanqard prefactor from 
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the contour integrals J{.(z) (see (A.Il)), the relations (9) say that the summation in the 
braiding relations 

(10) 

= Le"·("J,+"J.-"J,-"J,1 { ~2~'} jT(Z"J,;z3,J3;Z2,J2;Z4,J4) (11) 
J& 3 " KT 

effectively reduces to the FR bounds, since the contribution of each FR violating pair (j,jJ 
(and (j.J)) vanishes as a whole. Here {} is the full fusion matrix (see (A.7)) . Note that 
if only the first spin j of the pair (j,jJ, or, (j,j) appears and violates the FR (wh ich can 
happen for particular combinations of j" ... ,j,), then its contribution is ident ically zero. 

This solves in general the problem of reconciling the DF realization with the fusion rules, 
discussed in [26 ]. The fusion transformations are derived in [16] assuming an analytic con­
tinuation to generic values of the parameters a,b,c, so that the basic blocks are linearly 
independent. This leads at the end to the appearance of terms violating both the upper and 
lower bounds of the FR . A careful derivation, using the standard contour deformation tech­
nique, would instead reproduce our relations (7), derived above directly from the intertwining 
property of the screening charges . 

. In the approach of [18,27] the general fusion matrix is expressed recursively by the ele­
mentary fusion matrix, describing the products t <SI j . Accordingly the hi gher spins are 
thought to be obtained by subsequently fu sing the elementary ones. In such an approach it 
is enough to ensure tbat the border points 2j + 1 = 0 (mod p) do not appear as intermediate 
states ( when the products of operators are applied on BRST states) , so that the FR violating 
pairs (j,jJ and (j,j) cannot be created. Then all other fusion matrix elements are defined 
to be zero. Unlike [27] we deal directly with the general opin co rrel ations. Then there is no 
need to postulate that the fusion matrix elements vanish beyond the FR bounds - rather, we 
can adopt as in (1) the values obtained by analytic continuation from the generic q case. 

The fact that the braiding transformations (10),(11), also hold with the classical decom­
position bounds will be of special importance in our next consideration. Note that these 
transformations still have a sense when j5 on the 1.h.s. violates the FR. In this case the 
6j - symbols develop singularities which are of the same type for bot h sides of (1). These 
singularities are compensated via L'H6pital, taking into account (7) and the corres pondi ng 
identities for the properly normalized 6j - symbols. Then any pair (j,jJ, allowed by the 
classical upper bounds on the r.h.s. of (10),(11) gives a finite contribution. 

3 R-covariance versus fusion rules 

In [20] (see also [22.23,24]) Moore and Reshetikhin (MR) have considered a theory with an 
ex plicit action of the quantum a lgebra Uq (s/(2)), by replacing the conformal representat ion 
spaces Hj with the product Hj <SI [j .' They introduced vertex operators, covariant under 

1 Here and in what. follows we use the nOLation Hj instead of 'H,m ! 1 :S m = 2j + 1 :S p - 1. 
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the action of Uq (sl(2)) as linear combinations of cva multiplied by q - Clebsch - Gordan 
coefficients , i.e., 

V,;,(;) = L (12) 

which act in 'H= $j( 'Hj <21 Gj) . The sum in (12) is assumed to run over regular spins il,j" 
and such that the triple (jloi,j,) is consistent with the FR. Here 1m.) is a normali zed state 
in Gj, , and (min) = 8mn . The order (jl,i,i.) in the Clebsch - Gordan coefficients and in 
the cva need not be the same - we have preferred the symmetric choice. 

The braid relations of the properly normalized correlations of the chiral vertex operators 
go over to transformations of the operators in (12) with the quantum n- matrix. These 
transformations, which make the mi xed correlations reminiscent of the local 2-dimensional 
n- point functions (i.e., they are symmetric nup to n-matrices"), rely on numerical identities 
[28,29,30]' connecting the vertex and path representations of the quantum n matrix: 

'\' [il h i 1 [j j, i, 1 (n;'j, )n, n, 
L- m n m m n m f m3 m] 

J\l,nJ,m 1 3 q 2" q 

=L (13) 

6 j = 6(01 'j+d = j(j + 1)8 - j, n~t' = (n~,j'tl 
Here n"" = (r." 0r.") n represents the universal n- matrix acting in the space Gj,0G;-, 

[30], 

(14) 

The matrix elements are recalled in App. A. 

The expression in front of the Clebsch - Gordan coefficients on the r.h.s. of (13) co in cides 
up to a sign with the thermal braid matrix B'3(f) (ef. (11) and (A.7 ,S)). The n- matrix can 
be written in terms of the 3j-symbols as a su m of projectors 

(n;lh)~"n.;" = L e,,«L>,,-L>,,-L>,,) [ j, jl )5 ] [jl j, j5]. (15) 
)~ . m~ m2 ml 7ns q n l n2 ms q 

The relation (13) with (15) inserted on the I.h.s. is equivalent, via the polynomial q -
Racah identity, to the fundamental 6i-symbols defining equali ty [301: 

) ), 

L )~, { 
. . . } [ . )3 ). ) 11 

)1 J.)5 q ml 1 [
is h j. 1 

q ms m3 m .. q 
( 16) 

mm·1 

Vice versa, one can recoI'er the expl iCit expressIOn (15), uSing (16) and the q - Racah 
identity. 
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The summation over js in (13), (15) , (16) runs according to the class ical tensor product 
decomposition rules. For qP = I the Clebsch - Gordan coefficients develop singularities. Let us 
assume that in (13), (15), (16), allj"i = 1, 2,3,4 , andj are regular, i.e. , 2j,+ 1 < p,2j+1 < p, 
and furthermore, let the triples (j"j"j),(j"j"j) in (13) (or (j"j3,j),(j"j"j) in (16) ) 
be consistent with the FR. Then both sides of (13), ( \6) remain finite and the right hand 
sides include in general contributions beyond the upper bounds of the minimal theory FR 
(see Ii] for a di scussion of (16)). Indeed if j = (p - 1)/2 appears on the r.h.s. , it survives , 
since a zero in the fu si9n matrix is compensated by a singularity in the second ' Clehsch -
Gord an coefficient. Each FR violat ing pair (j, i = p - j - I) gives as a whole a finite , non­
zero co ntribution, wh ich co rresponds to the indecomposable representatio n [ j.j . It can be 
computed via L' Hopital - essentially the singu lari ties of the standard normalizat~on constant 
of the Clebsch - Gordan coefficients are compensated by the relations resulting from the 
intertwining operato r D. For the same reasons the summation on the r.h.s of the equality 
(15) defining the R- matrix is also finite and in general runs beyond the bounds of the FR. 
Let us see what are the impli cations of these observations for the 4-point functions. 

Guided by (12) we construct explicitly these correlations using the normalized DF con­
formal blocks. Namely we define in the thermal case 

Fi. (z" z" Z3, z,)= 2::(-1 )"t, [(:0 (j" j, Ij" j,)ij , (z, ,j,; z"j,; Z313; z"j,), (17) 
~ ~ 

j, 

m= (mI,m2,m3,m4J , 

[ 
j, j, 0 1 
I .... m .... 0 I , 

( 18) 

wh ere j j, is the conformal block of the previous sect ion. However, in counterdistinct ion to 
what one wou ld obtain strictly following (12), we will not restrict for qP = I the sum in 
(17) to the FR bounds. 

The first Clebsch - Gordan coefficient in (18) reduces simply to 8~", . The choice of the 
sign in (17) is dictated from the expl icit expression for the fu sion matrix transformin g the 
normalized DF blocks j j, ; it can be absorbed in jj, , changing the no rmalization . Indeed 
with this choice we get us ing (13) 

( 19) 

and simi larly, 

Tl.),Tl] 

The last Clebsch - Gordan coefficient in ( IS), which reduces to a constant , is needed to 
ensure the corres ponding relation with the las t two arguments rep laced . Combi ning (19), 
(20), one gets an analogous formula with z" Z3 replaced . The composite R j,j, - mat rix 
satisfies the relat ion (compare wit h (10)) 
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= eilf ((D.J4 -6J1 -.61)-.0.13 ) L { 
m$ .}$ 

JJ J, J 

JI J. Js 
(21 ) 

We now come back to the problem discussed above. If we restrict for qP = 1 the sum in 
the mixed functions (17) accord ing to the upper bounds of the FR (in the cases when these 
bounds do not coincide with the classical ones), we will not be ab le to reproduce in general 
the R-covariance condition (19). Indeed, as discussed above, the restricted numerical ""ertex 
- path" identitities do not hold true. 

This problem in the construction based on (13) was first noticed by the authors of [221. 
The strategy followed in [241 is to use (12) (and hence (17)) with the sum restricted according 
to the FR , but to require the R-covariance only on a subspace of the space H= EIlj H, 0 Ej . 
This is equivalent to the R- covariance of (17) in the cases when the classical and the fusion 
bounds coincide. 

We adopt a different alternative, taking the sum in the 4-point functions (17) to run 
according to t he classical bounds. Hence we admit in general terms violating the upper 
FR bounds. The arguments of the previous section can no longer be used to cancel these 
terms, si nce now the DF integrals are multiplied by the singular q-blocks (18). Thus the 
unphysical border point j = (p - 1 )/2 survives, reflecting the fact that the vertex operator 

Prp V; Pr2j.+ 1 [ ~ ~ j,] no longer vanishes identically on the states in Hj, 0 E" . 
12 m m3 m4 

q 

Similarly the contribution of the pairs (j,j) can no longer be cancelled.' This is in agreement 
with the quantum group tensor product decomposition rules which do not coincide with the 
FR. 

Our choice ensures that the R-covariance is maintained for averages on the full space 
H= Ell, Hj 0 Ej . In particular (19) is valid for any jJ,j"j"j.-regular. Although in this 
way we have to apply the "vertex-path" relation even in cases when both sides of (13) 
are divergent, no problem arises, since we actually use this relation a lways multiplied by 
the conformal blocks Jj with the sum over j taken. That makes its contribution finite, 
combining once again the relations obtained from the intertwining operators V = X~-2,-J 
and Qp_,,_I' (The relation (13) itself can be given meaning in that case by choosing an 
appropriate normalization of the Clebsch - Gordan coefficients.) 

The appearance of unphysical intermediate states makes the correspondence of our cor­
re lations and the operator forma lism in [201 rather heuristic, since this impli es that, unlike 
[20,2·11. \\"e allow operators which do not keep invariant the space H. Furthermore the in­
decomposable representations [,.j will have to be taken properly into account to adapt the 
formulation in [201. -

Recently Gomez and Sierra (GS) [251 have proposed new screened vertex operators acting 
in a Fock space, which differ from those in (2) by the choice of the contours . They are shown to 
provide a representation space for the (left) action of a quantum algebra, which reduces in the 
thermal case to the algebra Uq(sl(2)) , q = exp(21rip'lp), or, Uq.(sl(2)), q' = exp(2-;riplp'). 

2The cont ribution of these pairs can be made manifestly finite if ( 17 ) are rewritten in a different basis , 
so that the DF integrals l:(j)( =) are replaced via contour deformations by integrals with inhomogeneous 
behaviour for both: = 0 and 1 - z = 0 , while the coeffic ients in front of I{C£)(z) become finite. This 

rcncc ts the indecomposable character of the representat ion [j,i..: 

II 



The operators in [25J are manifestly n-covariant and presumably they provide the proper 
operato r language behind the correlations constructed here. We show in Appendix 13 that 
for m4 = -i4 our 4-point correlations can be recovered using the screened vertices of [25]. 

We end this Section with a remark concerning the n- covariance beyond the thermal case. 
The general n- matrix elements have been obtained in [25J as products of the thermal ones, 
times mixing phases. This reflects the fact that the quantum algebra in the general case 
does not reduce simply to the product of the two thermal algebras U, 'and U,' , considered 
as Hopf algebras. On the other hand, with the knowledge of the explicit expression for the 
general fusion matrix it is straightforward to extend (17) and the n- covariance relations (19), 
(20) beyond the thermal case, taking simply the product of the thermal Clebsch - Gordan 
coefficients. The resulting general n- matrix factorizes up to an overall phase, depending 
only on the corresponding spins j"ji. Although the correlation functions obtained in 
this way coincide again up to a constant with those computed with the GS operators, they 
apparently describe a different quantum algebra. We leave the details to App. A. 

4 Quantum group invariants 

One can invert (17) using the normalization relation for the Clebsch - Gordan coefficients: 

(_I);'+h-ij/z) = L (22) 
m • . m,/4 

The r.h .s. of (22) is thought of as the limit for q ---+ qQ, cfo = I, of the expression extended 
to generic values of q. Similarly, the local 2-dimensional (scalar) functions are recovered as 

Fh h j, i , (z) Fi, j, j, i'("i) = " I(z) I("i) . 
m,m,mJm4 ffllm,m3m4 ~} J (23) 

} 

The summation on the r.h.s. of (23) reduces to the FR bounds taking into account the 
results of Section 2. 

The inverted formula (22) exp resses the conformal4-point chiral correlation as aU,(sl(2))­
invariant. The invariants of the algebra U,(sl(2)) under the action of 6 n

-
1 in £;. (9 "'£in 

were realized in [7J as n-point functions of complex variables UI, .•. , Un , obtained by invari­
ant pairing of the basic 3-point kernels, related to the Clebsch - Gordan coefficients. The 

monomials ui +m 
/ J[j + mJ,![j - ml,! correspond to the states e;". The invariants read 

(see also [33J for n=2,3, and [34]) 

S(a}( . . ) _ " [ 0 jl GI 
n JIl,·,Jn - L 

m m 0 ml mal 
" G, 

L [ :.: ::3 :::a, L (24) 

[n the second quantized version of [351 the variable u is replaced by an operator, generating 
together with the finite difference operator Du a q·deformed Heisenberg algebra. The GS 
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, 
I 

vertex operators e~(=) provide yet another realization of the states e1,. and of the invariants 
(2,1),3 

For generic q the invariants in ( [ji, 0." 0 [ji.) for ",,_,- fixed span a representation of 
the braid group IBN ,n = N -1, generated by 9; = 1 0 ... R; ;+'", 0 1, i = 1,2, .. N -1, 
where R=P Rand P is the permutation operator. This can be seen using (14) and the 
"vertex· path" representation (13) of the matrix Rj,j,·, acti ng in [j, 0 [j, ... Consider the 
restricted subset of invariants for j;, i = I, ... , n . regular, labelled by' restricted paths (a), 
i.e., aH aj are regular and furthermore, any triple (ai_l,ji,ad is consistent with the fllsion 

rules, The action of IBN is well defined on this subset for qP = 1 ,since (13) is well defined, 
as discussed above. However, it does not keep the subset invariant. On the other hand if we 
take, under the same rest rictions, the vacuum expectation value of both sides of (2·1), when 
the states are realized by the GS screened operators, we reproduce the conformal blocks, as 
in (22) for n=4, They provide a restricted set, invariant under the actio n of IBN ' Taking the 
average has the effect of automatically truncating all summat ions violating the bounds of ·the 
FR. This implies in particular that the "vertex- path" identities can be given meaning with 
summation restricted according to the FR. Indeed, consider for admissible {j"j"jS,j3,j,} 
instead of the numerical relations (13) the operator ident ity obtained by multiplying both 

sides of (13) with [ j, i-, 00 1 e~, (z , )e~, (=,) ... e~m. (=,) and summing over m;. The 
m4 - mol q 

vac uum expectation value reduces the r.h.s. to the bounds of the FR, reflecting the fact that 
the FR are fulfilled on the space of BRST states. 

For j; = 1/2, i = 1, .'" n - 1 = N one can cons ider the corresponding representations 
of the centralizer algebra of U,(sl(2)) in the space [~N , The centralizer is the Temperley , 
- Lieb . Jones algebra [36), isomorphic to a factor of a Hecke algebra HN(q) of type AN. 
The irreducible representat ions of the factor algebras for qP = 1 realized in [37) in terms of a 
restricted set of Young tableaux, are equ ivalent to the representations provided by the related 
conformal blocks [38) . To in terpret these algebras as the centralizers of the quantum algebra 
one needs the restricted tensor product, obeying the bounds of the FR [6) (see also [28), [3)), 
It is clear now th at instead of imposing the rather artificial restricted prodllct on the general 
invariants. one can realize them by the products of the independently defined operators in 
[25). Taking the expectation values keeps invariant the restricted set of invar iants. ,lore 
generally, give n the quantum group covariant operators e~;~m(z), the full minimal theory 
can be recovered. 

ACKNOWLEDGEMENTS 

We thank V.K. Dobrev, C, Gomez, MS Mintchev, H. Sierra and LT, Todorov for dis· 
cussions. One of us (A.G.) would like to thank the hospitality of the Istituto Nazionale eli 
Fisica Nucleare (INFN), Sezione eli Trieste. This work was supported in part by Contract 
no-403 with the Bulgarian Ministry of Science. 

Jily multiplying both sides of (17) with n1=1 u!,+m , JUi + m. ]" !Oi m;Jq! and summing ove r mj one 
ge lS a linear combination of two types of invariants, which can be interpreted as the 4-point funclion of 
U., -invariant conformal fields ¢i , (Zj, Uj) . Examples of such 4-point correlations, in cases when the clC\.Ss ical 
and FR bounds COincide, were considered in [23], using the formalism developed in FJ.. 
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5 Appendix A: Notation and useful formulae 

We start by recalling the relation for the 4-point U,{sl(2))-invariant kernels in [71. In terms 
of the properly normalized Clebsch - Gordan coefficients it reads (see (18) for notation) 

Fp-i- I {. . I' .) - ( 1)(P'+I)(h+i,-h-iJ +i-)) [2j + II, [ ' i (' . I' .) (A.I) 
\;;; )1,]' )3,). - - - [2j + II, \;;; )i,;' )3,). , 

i. = p - j - I, I $ 2j + 1 < p, 

where 

}-(i (' . I' .) - ,(i ( ' . I' .) . - ( I)P'U-i) . - ]l,]2 J3t14 - Cj l' - JI,J2 )3d4 tIe} - - - C}' 
m m -

In deriving the relations (A. I ), (7), (8), one has to tlse that {p' -1 )(p- 1) = 0 mod 2, and 

[~I + pl'; = [[~tll'; (-I)P'("'-"'), [6.],![p - I - 6.],!{ -1)(p'+I)" = [p - I],!. (A.2) 
2 + p ,. w, ,. 

In (8) we tlse the normalized DF integrals 

in(a,b,c;z) = vXna' ,II,c!;5') X,{a,b,c;5) l{;{a , b,c;z) , (A.3) 

k-l J-k 

X;(a, b, c; 5) = IT s(j5) n s{j5) 
I I 

k-2 s{a + j5)s{c + j5) ,-k-I s{b + )5)s{d + )5) . IT IT (A.4) 
i=O s{a +c+ (k -2 +;)5) )=0 s{b+ d + (s - k -I +))5)' 

k,k' = 1,2, ... ,5 , 

and the normalized fusion (crossing) matrix, 

, 
ii' (a b '5) = (Xt{a,b ,C;5))' ,k , ,c, X'(b' ') a:k(a.b.c;5) , 

k ,a, C, u 

• 
l:{ a,b,c;z) = L>:k(a,b,c;5) l;(b,a , c; I -z). 

.1;=0 

(A.5 ) 

(A.6) 

Let A = (j;,jtl, C = (j;,j,), B = (j~,h), D = (j; ,j.), J = (j;,j5), T = (j~,j6)' The 
general fu sion matrix factorizes [1 61 to 

{
A C } - . ( b ') -,' ( , b' , ") B D JT = O'ik a, 1 c; () Cei'k' a" C ; 0 . (A.7) 
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It is expressed by the 6j-symbols according to [32] 

Ci'k(a, b, c; 6) = (_l)(i-l)(l+2ii+2ii )+(k-I III+2i;+2ii) 

.(_I)(,-11I2i :) { jl(a) j,(c) js) } 
h(b) j,(d) j6 " 

(.-\.8) 

where, a,c,b are given by 2<LQ; = -2j;6 + 2jl, i = 1,2,3, resp.; d = (2j, + 2)6 - 2j; - 2; 

The expl icit expression in (A.8) was derived in [32] comparing the Racah identities for 
the 6j-symbols and for the fusion matrix. There remains an arbitrariness of sign, which is 
fixed by the known particular vailles of Q!. , computed in [16]. The first sign factors could 
be absorbed changing the normali zation of the blocks (A.3), however, the last factor, which 
is trivial in the thermal case, cannot be distributed. It is actually important in generali zing 
the R-covariance relations in Sect. 3 beyond the thermal case. We define 

(A.9) 

M= (MI , .lf2 , M3 , M,), AI = (m', m), J = (j',j) . 

where f('.! is defined in (18) and jJ, is represented up to a prefactor by the normalized 
m 

DF integral (A.3), 

jJ~ (z) ;::; f( {Gil Zik} )z2010'l( 1 - Z )20-20 3 jt,'/(a , b, Cj Z), .: = ':12';34 , 
':;13Z2 ~ 

6..-L~:Io\-a2-.6J 64-L~:1]-6'l-.6J 
Z13 Z14 

f ({ Q;, : ,.}) = -"'--02"6:-, -"6:-, +'-6';:','--06".---'6"',--
=24 Z34 

(.-\.ll) 

wi t h the same identification of the parameters a,b,c, as above. The relations (19),(20), are 

general ized with a R-matrix given by 

where R"h (or Ri.,,,,) is the thermal R- matrix with matrix elements 

= (I - q-I )m.-n. ([jl - ntl, !li, + mtl,![j2 + n2],lli2 _ m2], I) 1/2 

[ml - "tJl [jl + ntJ,!li, - mtl,![j2 - ",j,lli, + m,j,' 

.q (n1 "1+m\ m2+ m \ (n2+ 1)+n\ (m'l-l ))/"8 
TlI+"1,ml+m1' 
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The additiona l Clebsch - Gordan coeffic ient [~:~: g 1 in (18) is simply , 
[ 

j j 0 1 = ( _I);+mq _,m [2 j + IJ-' /' b . 
1 m 0 ' l+m.O , 

It is needed as in (17), (18) to ensure the R- covariance when Z3 is replaced by z,. One 

has to use a long with (15) the symmetry relation of th e Clebsch - Gordan coefficients [3 0J : 

[2j, + 1 Jq [ j, h j, 1 
[2j, + 1 J, I, - m3 m, q' 

6 Appendix B: Relating the 4-point correlations 

('\. 1 ~) 

In this Appendix we shall recover the factorized expression (17) starting from a 4-point 
correlation of GS operators. In order to keep the notation si mple we shall consider only 
thermal operators; in particular b = Q~, q = exp(27rib) . 

The screened vertex operators in [25J are defined according to 

(+.) (+.) 

E:, .,,.,(z) =j dl , ... j dl, Va_(td · . .vajl,) Va"'J+'(z), 
tOO 100 

(13 .1 ) 

where 2j + 1 < P , and the contours around z are ordered as depicted in Fig. 5 , so that I, 
runs along a contou r which co ntains all the other contours. They can be identified with the 
states e:n , m = r - j, of a 2j + 1 -d imensional representation of Uq(sl(2)). 

We shall compu te the 4-point correlation of the operators E~: with Cti = Ct\.2;, + , , Q, = 
20'0 - 01,2jt +1 , arbitrary rj, i = 1, 2,3 , and r4 = O. The charge conservation cond itio n 
imp li es that m == m , + m, = j, - m3 . Redu cing the contours in (B.l) to contours from z 
to infini ty and path-ordering the integrals with lid > 11,1 ... > 11,1 > 1=1 creates a constant 
(q-t _ qt);-m £(j,m), 

£(j m) = [? jJ ,qF(j.m)/' [j - mJ,! 
, - q' [j + mJ,! :F(j, m} = (j - m)(j + m + 1) . (13.2) 

Deforming the contours to the right we can write the 4-point fun ct ion as a linear co mbi­
nation of path-ordered in teg rals .If," , along the real axis (see (Fig. 6)) : 

3 

(Q,IE:~(1)E:~(z)E~', (O)IO)'ao = z2a ,a'(1 _z),a ,a'(q-t - qt )'-I II £(ji, mol 

i l-m, Jl+J~-m 

. L elI) L D(x+y)Mx" ,'_I_x~,(z), (13.3) 
x=o y=O 

where s = j, + j, + h - j, + 1, and 

(8A) 
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In particular .lh_l,o,,_.(z) = r:(a,b,c;;) , Following a contour deformation argument 
similar to the one in [16] we can deform all the integrals from z to 1 in AI,", into integrals 
from a to z and from 1 to 00, and express AI,", as a linear combination of DF integr"ls rt. 
First we deform one Iz, I] contour getting the recursion relation: 

Ir + 1],s(a + ro) 
[u ],s( a + c + (2r + u _ 1 )0) M'+I,"-I" 

_It + 1],s(a + b+c+ (2u +2r + t -2)0) \1 
lu],s(a + c + (2r + u _ 1)0) J ',"-1,'+1' 

One can solve this recursion obtaining 

where 

V+.r+l 

Mx",,-I-x-, = L A(x, y, k)r:, 
k;:.r+l 

[ 
s-k ] [k-l] A(x, y, k) = (-1)' x + y _ k + 1, x , 

(8,5) 

(8,6) 

x+,-. s(a + b + c + (8 + X + y - 3 - i)o) '-r-2 s(a + (x + i)o) . II II (8,7) 
o s(a +c+ (k+x + y -2 -i)o) 0 s(a + c+ (k +x -2 - i)o) 

For the Lh ,s. of (8,3) (neglecting the prefactor and the constant in front of the sum) we 
get, after regrouping the sum: 

$ 3 )l-ml il+h-m-r 
Lr:(a,b,c;z)p'=LrHz) L C(x) L D(x+y)A(x,y,k) , 
k=1 r=O lI=,!:-.r-l 

The sum over y gives : 

'-x-2 s(a + (x + i)o) 

, 1] s( a + c + (k + x - 2 - i )0) 

j'+n-m~' s(b + (8 - k - 1 - i)o) 

1] s(a+c+(2k+i)0) 

using a standard formula for the q-hypergeometric function: 

t Oi' IB-I'-1)6),( -1)' [ I] IT s(A + B + io) = (-1 )'ei.'(A+B) IT s(B - 10) 
'=0 t ,0 s(A + 10) 0 s(A + 10) 

With (8,9) the sum over x in (8,8) becomes 
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(13.11) 

where j == j, = j, + j, - Ie + 1, m == m, = m, + m" 6~, = j. + j, - j" F, = F(j" m,), 

and 

(_I)'qHh+ m ')[j, - m, + r],!fj, + m, + r ], ! 
S = L [ ] Ifj ] Ifj' ] Ifj ' 1] I r:::O r q' 1 - ffil - r q' 'l - J + ml + r q' 2 +) + ml + + r q' 

(13.12) 

This sum is proportional to the Clebsch - Gordan coefficient [ 
j, j, j, 1 ,namely, 

mlm2 m q 

, 
([

'J' I] [j, + m],![j, - m,j,,[6;,],![6;,],![j, + j, + j, + I], !), 
-),+, [. ]Ifj' ]Ifj' ]Ifj ]I[A']I 15 - m q' 1+ ml q' 2 + m:z q' '2 - ffi2 q' W,lS q ' 

.qt(T'+T'-T')(_I)i1~'S . (13.13) 

To obtain (13.13) one has to use the Racah-Fock form [30,39] of the Clebsch - Gordan 
coefficient and an identity for the generalized q-hypergeometric function 3<1>, [.10]: 

n (1 >-0+;) 
3<1>,(-n,a.3;,,6[q,q) = II (-q) qM3<1>,(-n,,,,6 -(3;" -n + 1_,,6[q,ql+P-» , 

o 1 - q>+) 
(13.14) 

with n = j, - m"" = j, + m, + 1,(3 = -j, + m, 6 = j, - j + m, + 1" = -j, - j, + m, . 

The Clebsch - Gordan coefficient [ j, h j, 1 is simp ly 
m m3 14 q 

Putt ing everything together we finally obtain 

k =j, +j, -j, + 1, 

with E, gi"en in (13.2) and XI - in (AA). Taking into account (A.3) one sees that (13.16) 
reproduces 117) for m, = -j, up to a constant . Indeed, changing the normalization of the 
operators in (13.1) accord in g to 
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I 

E' -( I)j-m(£( ' ))-'/'£' -' 
01,11+1 - - ), m 01,11+1' r - J - m, (13.17) 

we obtain 

F" " j, j, (-) [j. j, 0 1 (DIE (, 'E" ()E" ()E" ()IO) 
'm,m)mJ-J4 Z = - 1n 4 m4 0 q 20'0""'0],2)4+1 "'OV 0\,'2)3 +1 ZJ 01,111+ 1 z? 0\,1)\+1 Z l 2"0' 

(B. IS) 

In particular for 2j, +2j, :::; p-2, 2h+2j, :::; p-2, we can identify the l.h.s of (13.IS) with 
the ~m 4-point function ((V';" , (=d .. .v~j,(z,))), where both the conformal and the quantum 
group average are taken. (The inversed order of the operators is due to the opposite choice 
of the right and left Fock vacuum states in (17) .) 

This suggests that in general we can identify our correlations with the expectation va lues 
of the prod ucts of some Virasoro and U, - covariant fields elm (=) , 

FI.:, ;,;,;,;, /.:, ez) = (0 le~, (zd .e;': , (=.) 10). (13.19) 

Their n-point functions admit integral representations realized by the Fock space avcrages 
of the screened vertices of [25J. In (13.18) e~ is represented either by E~~.~+, ' or by 

[ j j 00 1 Ei~~o, . However, it does not mean that the GS correlations respect the -m m 0 1. Jtl , . 

symmetry a -> 2ao-a (see App. C). The operators e;',.(=) provide theU,(sl(2))- invariants 
discussed in Sect. 4. 

The computation can be easily generalized beyond the thermal case. Simi larly to the 
factorization of the fusion matr ix (A.7), the coefficient in the l.h.s. of (B.S) with I, replaced 
by It:Z factorizes to P.,(a',b',c') Pk(a,b,c) , with P.(a,b,c) recovered from (B.ll) . This 
creates an additional sign factor, if compared with (A.9,10), reflecting the fact that the 
general Clebsch - Gordan coefficients in [25J factorize to che thermal ones only up to mixing 
signs. One can combine the two approaches to find the corresponding generalization of (17) 
beyond the thermal case for arb itrary m;, m:, i = 1,2,3,4 . 

7 Appendix C: Non-diagonal solutions of the R- co­
variance condition 

We can use the results for the non-diagonal local minimal theory correlations [31,32J to 
construct more general solutions of the n -covariance relations. We shall assume that p 

is C\'en, and hence p' is odd, and for s implicity we shall consider correla tions of only two 
different fields. One can generalize ( 17) according to 

F!:V)(oj;)) = "'(-1)6:'f{~G, J,IJ3J.lN,-, (}"J"13,1.)jj,(="j,; ... ,z.,j.,, , (C. I) 
In ~ m ~,~ 

J~ .)~ 

where J = (j,j) The constants HI .j are assumed to satisfy the restrictions coming from 
requiring locality of the corresponding non-diagonal functions [32J 
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S(N)(",)" ... , Z',)2) = r. j)( z" j,; ... , Z" j,) N;,;(), , )',)' ,),) jy(z" j,; ... , z" j,) . 
i,j 

(C.2) 

These conditions ens ure as well the R-covariance of (C. 1 ), assuming as in Sect .3 that the 
summat ion is not restricted to the FR bounds. One can recover the local function (C .2) from 
(C.l) and (17), in the same way as the scalar combination (23) is recovered. 

Let us illustrate the 'Construction by an example, correspond in g to the (A, D) -type [41] 
local correlations of [31 ,32]. Consider (C. l ) with ) , = )3 , j~ = j~, 1, = j" 1, = a(j,) = 
~ - j - 1 . Then the constants NJ are given by 

v (-. -. -. ') (1)'(;')' (1),(j;)+,(j~)N ( ' -. , -.) 
J h.i!> )I,}2,] I ,J2 = - Clj; , t.1(j~) = - ;;,j!> J2,) I ,)I,12 1 

(C.3) 

2j , = D mOG 2, 2js + 1, 2j, + 1 = ~ mod 2 . 

Note that given 11,]2 ,there are two non-diagonal combinat ions F(N)(;; j) and 

F(N)( j ; -; ) , which are not identical in general. For <> , = <>3 = <>'.2;'+' the corresponding 
corre lations can be recovered by the GS operators choos ing 

a, = 2<>0 - <>, = 2<>0 - <>1,2;'+ ' (CA) 

or, 

0'2 = 20'0 - Ct'4 = 20'0 - O' t ,p-2n- l . (C .5) 

Let us stress that while in (17) the upper bounds of the fusion rules are not respected 
in general, in the non- diagonal genera li zation (C.l) the lower bounds in the summation over 
js , entering j;, , can be violated as well. 

We recall that the scalar and the (A,D) -type (thermal) local correlat ions admit a 2-
dimensional, volume integral representation [31], equivalent to (C.2). This is not so for the 
exceptional (.-\,E)-type correlations, which can be real ized only by the factori zed linear com­
bination (C.2). Similarly, the GS operators, wh ich are analogues of the local 2-dimensional 
operators, cannot reprodu ce the correspondi ng (A,E)-type counterparts described by (C .l ). 

One can consider as well chiral analogs of the local correlat ions containing fermion fields, 
just taking O\'er the corresponding constants N, · [32]. Accordingly some of the R- covariance 

),) 

relations will be modified by a minus sign. In exactly the same way one can construct also 
the analogues of the quasi local 4-point functions with Z, stat istics [31,32]' wh ich generalize 
to all minimal values of c < I the order - disorder Ising model correlations. 

These results can be extended beyond the thermal case, either generalizing (A.9,ID), or, 
the non-thermal version of [25]. 
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FIGURE CAPTIONS 

Fig. la The diagram describing the embeddings of the U,(sl(2))Verma modules Mj 

(2j - integer) for qP = 1 _ The arrows point to the embedded modules. The middle point 
is chosen to correspond to lV[j with 1 ::; 2j + 1 ::; P - 1 . The same diagram describes the 
action of the finite difference operators 'D and 12. in the spaces of functions Cj . 

Fig. Ib A different picture of the same diagram; m = 2j + 1 . The horizontal arrows 
correspond to compositions of embeddings depicted on F ig. la. 

Fig. 2 The diagram of embeddings of the Virasoro Verma modules Um' .m (13). The stan­
dard parametrization is recovered identifying Mm',m with lV!p' _m',p_m and l\1m'+kpl .m+~'p, k 
- integer. The same diagram describes the singular vectors of the A\,I - Verma modules 
(14) . The arrows correspond to the action on the weights of the elements of the affine Weyl 
group ~ir, generated by w, Wo • 

Fig. 3 The complex of Fock spaces Fm'.m, m(,1 = 2jl'l + 1 [18). The arrows correspond 
to the screening charges Qm, Qp-m . 

Fig. 4 The contours in the integrals representing the 4-point Felder' correlation on the 
l.h.s. of (3) . 

Fig. 5a The contours in the multiple integral representing the GS screened ,'ertex 

Et~';;+1 (z) . 
Fig. 6a The path-ordered integrals describing three screened vertices sitting at the points 

O,z,l. 
Fig. 6b The deformed contours of the path-ordered integrals M,", in (B.3). 
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